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Engineering empowered by physics‑based and data‑driven hybrid 
models: A methodological overview

Victor Champaney1 · Francisco Chinesta1 · Elias Cueto2

Abstract
Smart manufacturing implies creating virtual replicas of the processing operations, taking into account the material dimension 
and its multi-physics transformation when forming processes operate. Performing efficient, that is, online accurate predictions 
of the induced properties (including potential defects) of the formed part (to optimally control the process parameters) needs 
moving beyond usual offline simulation based on nominal models, and proceeds by assimilating data. This will serve, from 
one side, to keep the model calibrated, and from the other, to enrich the model and its associated predictions, to avoid bias, 
to improve accuracy or for performing online diagnosis, by advertising on preventive maintenance. For all these purposes, 
a new alliance between physics-based and data-driven modelling approaches seems a very valuable route for empowering 
engineering in general, and smart manufacturing in particular. The present paper revisits the main methodologies involved 
in the construction of the component or system Hybrid Twins.

Keywords  Smart manufacturing · Physics-based modelling · Model order reduction · PGD · Data-driven modelling · 
Artificial intelligence · Hybrid twins · Diagnosis and prognosis

Introduction

The main aim of engineering is moving from the product 
itself to the management of its performance all along its 
operational life. Even if the main aim of engineering was 
always the decision making, in virtue of accurate diagnosis 
and prognosis, it was not possible in the past due to the 
limitation in monitoring large components or systems. The 
irruption of sensors, communication, data-analytics, ... in all 
the domains of science, technology and society, within the 
so-called Internet of Things (IoT), originated major changes 
in engineering practices.

The last century engineering—very successful from 
multiple points of view—employed models expected to 
represent the physical system itself (which we will refer 
to as nominal models), calibrated by using data appropri-
ately collected using sophisticated testing machines. Then, 
several loading scenarios, expected spanning the one that 
the component will experience during its real life, were 
applied to obtain as main output the component or system 
performances.

When the mathematical models became too complex for 
envisaging their analytical solution (within an almost ana-
logical world) computers came to rescue for efficiently solv-
ing them. Despite of the numerous simplifying hypotheses 
involved in the model derivation, in its numerical treatment 
as well as in the definition of the loadings considered for 
the performances analyses, the success stories were abun-
dant and some of them simply impressive, with most of the 
XX century technology as definitive proof. The considered 
engineering workflow is sketched in Fig. 1(left).

However, at the beginning of the third millennium, as 
just commented, managing the performance seems a real 
opportunity. Today when buying an electrical drill, we are 
in fact buying a good quality hole; nowadays engineering is 
more concerned by the number of hours of fly than by the 
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aircraft engines themselves, ... This is the new face of the 
new performances-based engineering.

Engineering is concerned by the real system at the present 
time, with the knowledge of the loading that it experienced 
during its past life (fully described by the collected data). 
Thus, from all this data and knowledge we would like to 
make efficient diagnosis (at the present time) and progno-
sis (by projecting the present knowledge into the future) 
for anticipating and taking the right decision at the right 
time. The workflow of this new engineering is sketched in 
Fig. 1(right).

The domain in which engineering operates is expanding, 
expecting to address systems the more and more large, com-
plex, and involving the more are more variability and uncer-
tainty. As just mentioned, engineering is not only addressing 
the design of components or systems, but monitoring them 
lo learn from their functioning, to make efficient (accurate 
and fast) diagnosis and prognosis, for the optimal decision 
making. To make all this possible, we need new techniques 
able to predict very accurately and very quickly complex 
system responses.

The two main words have been introduced, in a very 
simple and natural way: fast and accurate. In the past these 
two words were almost immiscible. When searching for 
fast responses models were degraded, simplified, ... and 
an amount of accuracy definitively lost. When searching 
for accuracy, models were kept rich enough, but then, the 

responses had to wait, or very powerful computers were 
used, but the last solution is not attainable in a context of 
democratizing simulation for rendering it accessible to small 
industries.

The two existing paradigms, the one of the past, mainly 
focused on physics and analogical knowledge, and the more 
recent and digital one, the one based on the employ of data 
manipulated by advanced artificial intelligence techniques, 
both present their inherent limitations. Both paradigms are 
sketched in Fig. 2.

As it can be noticed from Fig. 2, the physics-based mod-
elling framework produces responses that approximate quite 
well the real ones, as soon as such an accurate model exist. 
The main difficulties when considering such a physics-based 
approach are: (i) the precision of the model itself; (ii) the 
impact that variability and uncertainty have in the predic-
tions; and (iii) the computing time required for solving the 
complex and intricate mathematical models.

On the other hand, the data-driven framework is not 
fully satisfactory, because as it can be noticed in that fig-
ure, even if the data (assumed noise-free and symbolized 
by the blue small squares) represent well the reality, in 
between, the use of a low degree interpolation (in this 
image piecewise linear) produces a quite poor approxima-
tion of the real system response. Of course, by increasing 
the number of collected data, one could expect approxi-
mating the real solution better, however, data is not always 

Fig. 1   The past (left) versus 
the present (right) engineering 
practices

Fig. 2   The physics-based (left) 
versus the data-driven (right) 
modelling paradigms



simple to collect, not always possible to have access to it, 
and in all the cases collecting data is expensive (cost of 
sensors, cost of communication and analysis, ...). Equip-
ping a very large industrial or civil infrastructure with mil-
lions of sensors to cover all its spatial dimension seems 
simply unreasonable. Moreover, even when the solution 
will be well approximated, two difficulties persist: (i) the 
solution explainability, compulsory to certify solutions 
and decisions; and (ii) the domain of validity, because 
even data can be interpolated in a quite safe manner, 
extrapolating them becomes extremely risky.

In view of the limitations of both existing frameworks, 
a gateway consists of allying both of them to conciliate 
these two targets: fast and accurate. The hybrid paradigm, 
sketched in Fig. 3, is a valuable and appealing option. The 
hybrid paradigm considers the reality expressible from 
the addition of two contributions: the existing knowledge 
(the state-of-the-art physics-based models or any other 
kind of knowledge-based models) and the part of the real-
ity that our models ignore, the so-called ignorance (also 
called deviation, gap, discrepancy, ...). As can be noticed 
in Fig. 3, the model represents quite accurately, even if not 
perfectly, the reality.

In some cases, the discrepancy becomes simpler in the 
sense of cheaper to describe (less data) or to explain (com-
pared with a fully data-driven approach), with most of 
its richness captured and explained by the physics-based 
model. Thus, as in transfer learning, or reinforced transfer 
learning, we try to approximate a richer behavior from 
another close enough and well stablished. This hybrid 
approach that combines the use of physics and data, can 
be applied in different ways, some of them reported below:

– In some cases, when the model captures most of the solu-
tion complexity, the correction must describe a discrep-
ancy that could exhibits much smaller nonlinearities, as
was the case treated in [40, 41], where the same amount
of data performed better within the hybrid than within
the fully data-driven framework.

– Sometimes the physics-based model operates very accu-
rately in a part of the domain, whereas the nonlinear
behavior localizes in a very small region that can, in that
case, be captured by a data-driven learned model, as con-
sidered in [39] for addressing the inelastic behavior of
spot-welds.

– When considering constitutive modeling of materials,
different frameworks exist:

– The first is based on the collected data, comple-
mented with first principles (and their associated
variational formulations), as considered in the semi-
nal work of Ortiz [29] with a lot of extensions.

– A second approach considers the collected data to lie
on a manifold embedded into the higher-dimensional
behavior space [24, 27, 33].

– A third approach includes a number of quite gen-
eral rules representing the material description, for
constructing the so-called constitutive manifold that
intimately embraces data and existing knowledge
[32].

– Other physics-informed approaches, within a ther-
modynamical dissipative setting [17].

– Within the augmented rationale (or hybrid paradigm)
the real behavior can be assumed represented by a
first order one (calibrated at best from the available
data) complemented by an enrichment (or correc-
tion) filling the gap between the collected data and
the predictions obtained from the chosen and cali-
brated model [18].

– The hybrid modeling can also transfer the existing knowl-
edge slightly outside its domain of applicability with
small amount of collected data, as performed in [35] for
correcting the usual structural beam models.

– Sometimes the discrepancy concerns an imperfect
alignment of the solution between the prediction and
the measures. That discrepancy seems very high when
evaluating it at each location, however, a small transport
allows aligning both solutions. Optimal transport is very
suitable in these situations, where the hybrid model con-
sists of the usual nominal model enriched from a para-
metric correction formulated in an optimal transport set-
ting as described in [45, 46].

– In [26] a correction of a given yield function was pro-
posed and obtained from the deviation between the
results predicted by using it and the measures obtained

Fig. 3   The Hybrid paradigm: the real systems is expressed from a 
physics-based model enriched from the data-driven model of the dis-
crepancy



at the structure level. Being the correction much simpler 
it can be described from few approximation functions, 
much less that the ones needed for approximating the 
resulting yield function.

– Finally, when addressing processing and performances,
the hybrid formulation, of different granularities, can
exhibit advantages (amount of data, ability to explain,
knowledge transfer, ...), at the heart of the digital twin
developments [3, 7, 12, 16, 28, 47].

Moreover, as bonus, the major contribution of the hybrid 
model, the one based on the state-of-the-art physics-based 
model, can be explained and is nowadays certifiable, fact 
that allows leaving the blackbox image characteristic of 
fully data-driven models, to obtain a light-gray box. It is 
important also to remark, that even if it seems conclusive 
the fact that data is helping the models to be more accurate, 
the existing knowledge also transform the big-data paradigm 
into a smarter one, where thanks to the existing knowledge, 
one can conceive the data to be collected and the optimal 
locations and time to perform the measurements.

Despite of the undoubtable advantages in using the hybrid 
framework, three difficulties persist:

1. Addressing complex and heterogeneous data, for
instance, the manufacturing card of a part, containing
processing data involving categorial, qualitative and
codified informations, like the commercial designations
of materials, ... Sometimes, processing data also con-
cerns time series or images (microstructures, ...), both
with rich topological content.

2. Addressing physics in almost real-time, compulsory
for constructing the so-called Hybrid Twin, to take into
account the contribution (sometimes the most impor-
tant) of state-of-the art physics-based models, that now
must be solved in almost-real time, enabling efficient
diagnosis and prognosis.

3. Finally, the online construction of a data-driven model,
rich enough, from few data and in real-time, constitutes
a challenge for most experienced artificial intelligence
and machine learning techniques.

Reconciliation and allying physics-based and data-driven 
models, leads to the so-called Hybrid Twin [12], that con-
stitutes a digital twin variant. Digital twins are extensively 
used for a diversity of engineering applications, among 
them we could cite [16, 28, 47]. It constitutes a digital rep-
lica of a material, process, structure, component, systems 
or systems of systems, able to replace or substitute the real 
system for anticipating future responses, to access to its 
intimate state, while retaining the following features, qual-
ities and functionalities: (i) accuracy guaranteed by the 
hybrid approach; (ii) frugal, being based on the smart-data 

paradigm; (iii) holistic throughout all the involved physics 
and description scales; (iv) providing real-time responses 
by invoking advanced model order reduction techniques; 
(v) explicable and certifiable; (vi) adaptable; (vii) reliable; 
(viii) resilient; (ix) informed -IoT; (x) systemic to address 
the system within its environment; and (xi) usable.

On the description of complex data 
and the associated metrics

Manipulating data for clustering or classification purposes 
is very common. It is expected that as soon a collected data 
is found belonging to a certain group, it will share some 
properties that characterize the members of the group, that 
is, proximity implies similar responses (in a certain sense).

The main issue is precisely how evaluating the prox-
imity between data, because such proximity implies the 
use of adequate metrics, and sometime those metrics are 
not straightforward defined. This is for example the case 
when manipulating data associated with manufacturing 
processes described by their processing cards, consisting 
of the name of the employee involved in the operation, the 
designation of the employed materials, the temperature of 
the oven used for curing the part and the processing time. 
In that case, comparing two parts, from their respective 
processing cards, becomes a tricky issue. In these cir-
cumstances the comparison metrics itself must be learned 
from the existing training data, as is the case when using 
decision-trees (or its random forest counterpart) [5, 30], 
code-to-vector [2] or neural networks [19].

In other cases, the data exhibits a huge topological 
content, as it is the case when processing time-series 
or images of complex microstructures (foams, ...). The 
question is again how comparing two time-series or two 
images, that seem similar in a certain intuitive sense, but 
are impossible to match point to point. In many circum-
stances, techniques that operate by trying to align the data, 
like DTW [36, 43], fail to accomplish the task. Thus be 
most valuable route seems the one of extracting valuable 
statistical descriptors, to be then used in unsupervised 
clustering, supervised classification or for modeling pur-
poses, as inputs of advance nonlinear regressions.

One of the most appealing techniques for performing 
that extraction consists of using the so-called topological 
data analysis (TDA). It has been successfully considered in 
our former works for addressing complex mesostructures 
[48], time-series [13], rough surfaces [14] and shapes [15], 
with the aim of classifying and also constructing robust 
regressions expressing properties or performances from 
the input data expressed from its topological description.



To briefly summarize the main steps concerned by the 
application of TDA, we consider below its application in the 
analysis of time series and images.

Time series

We consider the time-series Y = {y1, y2, ..., yk, ...} , with 
yk ≡ y(tk) (or yk ≡ y(xk) when considering a profile y para-
metrize by the coordinate x). Now, the local maximums and 
local minimums are identified, and taking into account its 
respective local-minimum to local-maximum proximity, 
matched, giving rise to the � pairs (mp,Mp) , p = 1, ..., � , 
where the lower case m is used for the local minimum and 
the capital letter M for the maximum. In the TDA terminol-
ogy, minimum and maximum pairs are referred by birth and 
death respectively.

When reporting the pairs (mp,Mp) into a 2D diagram, 
with the birth in the abscissa axis and the death if the ordi-
nate axis, the � points will constitute the so-called persis-
tence diagram.

The persistence diagram can be transformed into the so-
called lifetime diagram, by representing in the ordinate axis 
the lifetime, i.e. Mp − mp , ∀p , instead of the death Mp.

Now, by associating to each point in the lifetime diagram 
a bivariate normal distribution and by embedding the life-
time diagram into a lager 2D domain covering (up-to a cer-
tain tolerance) the support of all the regularized points in the 
life-time diagram, after some technical manipulations, the 
so-called persistence image is obtained. It can viewed as a 
regularized form of the lifetime diagram.

The greatest merit of such a representation is its inherited 
invariance, that implies that different time series with similar 
topological content (similar persistence diagram) and even 
if they seems very different when expressed in the time or 
x-domain, their persistence image will be almost the same. 
Adequate metrics can be applied on both, the persistence 
diagram and the persistence images, mostly on the persis-
tence images, making possible comparing, classifying and 
using them for modelling (regressions) purposes.

Complex miscrostructures

In the case of complex microstructures described from 2D 
images, a set of structured or unstructured points is distrib-
uted on the analyzed phase (e.g. the material when assum-
ing a cellular material, like a foam). Now, the evolution of 
points, edges and triangles is evaluated with respect to an 
increasing distance, is evaluated.

When this distance starts with a null value only points 
exist. Then, when the distance increases points connect, to 
create edges. When the edges create a closed loop (a hole), 
a topological feature appears, and the current value of the 
distance represents the birth of the feature. Then, for certain 

value of the distance the hole disappears, fully filled by the 
just created triangles inside. This value correspond with 
the death. The birth and the death represents a point to be 
reported into the persistence diagram.

Then, moving from the persistence diagram to the life-
time diagram and finally to the persistence image, follows 
the same rationale previously described for the time series.

Physics in real‑time

When looking for an approximation of the solution u(x, t) 
of a given partial differential equation –PDE– expected 
governing a particular physical phenomenon, here assumed 
scalar without loss of generality, the standard finite element 
method considers the approximation

where Ui denotes the value of the unknown field at node i, xi , 
and Ni(x) represents the its associated approximation func-
tion—shape function in the finite element method (FEM) 
terminology—. Here, � refers to the number of nodes con-
sidered to approximate the field in the domain � where the 
problem is defined.

This approximation results in an algebraic problem of size 
� in the linear case, or the solution of many of them in the 
general transient and nonlinear cases. In order to alleviate 
the computational cost, model order reduction techniques 
have been proposed and are nowadays intensively used.

When considering POD-based model order reduction 
[11], a learning stage allows extracting the significant 
modes �i(x) that best approximate the solution. Very often 
a reduced number of modes � ( � ≪ � ) suffices to approxi-
mate the solution of problems similar to the one that served 
to extract the modes at the learning stage. In other words, 
while finite element shape functions are general and can be 
employed in virtually any problem, the reduced-order basis 
is restricted to the domain where the learned process was 
accomplished.

By expressing the solution u(x, t) onto the reduced basis 
{�1(x),… ,��(x)}

the resulting discrete problem will now require the solution 
of a linear system of equations of size � , instead of size 
� , which is the actual size of the finite element solution. 
This often implies impressive savings in computing time. 
Addressing nonlinear models requires the use of specific 
strategies to ensure solution efficiency [8].

(1)u(x, t) =

�∑
i=1

Ui(t)Ni(x),

(2)u(x, t) ≈

�∑
i=1

�i(t)�i(x),



Equation 1 or 2 involve a finite sum of products com-
posed by time-dependent coefficients multiplied by space 
functions. These space function are the well-known finite 
element shape functions when no prior knowledge about 
the structure of the problem exists, or the modes extracted 
by applying POD.

A generalization of this procedure consists in assuming 
that space functions are also unknown. This makes it neces-
sary to compute both time and space functions, on the fly. 
Thus, the resulting approximation reads

Since the pairs of space and time functions in Eq. 3 are 
unknown, their determination will define a nonlinear prob-
lem. Obviously, it will require some form of linearization. 
This linearization procedure has been studied in some of 
the author’s former works [9, 10]. The final approximation, 
Eq. 3, will require the solution of about � problems, with 
� ≪ � and � ∼ �.

Degenerate geometries (beams, plates, shells, layered 
domains such as composite materials) are specially well 
suited for a space domain separation. If the domain � can 
be decomposed as � = �x ×�y ×�z , the solution u(x, y, z) 
could be approximated in turn by a separated representation 
of the type [10]

which is specially advantageous, since it gives rise to a 
sequence of one-dimensional problems instead of the typi-
cal three-dimensional complexity. For some geometries, like 
plates or shells, in-plane/out-of-plane this separated repre-
sentation becomes specially interesting,

where the obtained complexity of the problem is roughly the 
typical of a two-dimensional problem, i.e., the calculation of 
in-plane functions Xi(x, y).

A very interesting case is that of space-time-parameter 
separated representations [9]. In this framework a so-called 
computational vademecum (also known as abacus, virtual 
charts, nomograms, ...) can be developed so as to provide 
a sort of computational response surface for the problem at 
hand, but without the need for a complex sampling in high 
dimensional domains. It has been successfully employed in 
problems like simulation, optimization, inverse analysis, 
uncertainty propagation and simulation-based control, to cite 
a few [9]. Once constructed off-line, this sort of response 

(3)u(x, t) ≈

�∑
i=1

Ti(t)Xi(x).

(4)u(x, y, z) ≈

�∑
i=1

Xi(x)Yi(y)Zi(z),

(5)u(x, y, z) ≈

�∑
i=1

Xi(x, y)Zi(z),

surface provides results under very stringent real-time con-
straints—in the order of milliseconds—by just invoking this 
response surface instead of simulating the whole problem.

Thus, when the unknown field is a function of space, time 
and a number of parameters �1,… ,�� , the subsequent sepa-
rated representation could be established as

The standard, intrusive, PGD constructor

We assume the generic model governing the evolution of the 
field under consideration u(x, t)

where L(∙) represents a generic linear or nonlinear differ-
ential operator, F(∙) the so-called forcing term, and � is a 
parameter (here a single parameter for the sake of simplic-
ity) that could affect the domain � in which the problem is 
defined, the physical model itself or the forcing term. Thus, 
it is expected that the solution will depend on the considered 
value of the parameter � , i.e. u(x, t;�).

The Proper Generalized Decomposition (PGD) is based 
on the solution separated representation, originally proposed 
for defining non-incremental transient solutions [31]. In the 
parametric setting, the PGD proceeds by assuming a fully 
separated representation of the problem solution, where 
parameters are assumed extra-coordinates [9]. Thus, the 
parametric solution approximation u�(x, t,�) reads

with x ∈ � , t ∈ T  and � ∈ I .
To compute the different unknown functions involved in 

the separated representation Eq. 8 the usual weighted resid-
ual form is extended according to

Within a Galerkin framework, when looking for the func-
tional product m, the trial and test functions to be employed 
within the integral form (9), read respectively

and

(6)u(x, t,�1,… ,��) ≈

�∑
i=1

Xi(x)Ti(t)

�∏
j=1

M
j

i
(�j).

(7)R(u(x, t);�) ≡ L(u(x, t);�) − F(x, t;�) = 0, in �

(8)u�(x, t,�) =

�∑
i=1

Xi(x)Ti(t)Mi(�),

(9)∫
�×T×I

u∗(x, t,�)R(u(x, t,�)) dx dt d� = 0.

(10)
um(x, t,�) =

m−1∑
i=1

Xi(x)Ti(t)Mi(�) + Xq(x)Tq(t)Mq(�)

=um−1(x, t,�) + Xm(x)Tm(t)Mm(�),



The separated representation constructor deeply described 
in [10] proceeds by using an alternate direction fixed point 
algorithm that computes the unknown function at the enrich-
ment iteration m: Xm(x) from Tm(t) and Mm(�) taken at the 
previous iteration, Tm(t) from Xm(x) and Mm(�) , and finally 
Mm(�) from Xm(x) and Tm(t) . The iteration continues until 
reaching the fixed point, and then the next functional prod-
uct, Xm+1(x)Tm+1(t)Mm+1(�) , is considered.

The main difficulties in applying the just described 
procedure are the necessity of performing an affine 
decomposition of the problem residual involved in Eq. 9 
for making possible the sequential calculation of each 
one of the functions involving the corresponding prob-
lem coordinate. Such affine decomposition is not direct, 
mainly in the case of nonlinear models [1, 9]. The other 
difficulty is related to the procedure intrusiveness that 
makes difficult its use in tandem with usual commercial 
software.

Non‑intrusive PGD constructor

To overpass the just referred difficulties, one option con-
sists in constructing metamodels (also known as surrogates, 
response surfaces, virtual charts or vademecums).

The construction of these metamodels can be per-
formed by considering a quite simple workflow: (i) 
defining a sampling of the parametric space; (ii) comput-
ing a high fidelity solution for each parameters choice; 
(iii) using an adequate regression for extending the solu-
tion known at the points in the sampling everywhere in 
the parametric space.

There are many alternatives for performing the first and 
third tasks, trying to conciliate: (i) a sparse and very reduced 
sampling, considering the best sampling points location, and 
with the number of points roughly linearly scaling with the 
dimension of the parametric space; (ii) the high fidelity solu-
tions post-compression by extracting first and using then (by 
projection) reduced bases; (iii) rich enough approximation 
bases while avoiding overfitting, based on the use of sparse 
regularizations for enforcing parsimony [6] (elastic-net, 
ridge, lasso, ...); (iv) using orthogonal basis for evaluating 
sensibilities in a direct manner; and (v) efficiently addressing 
the high-dimensional spaces induced by the multi-paramet-
ric models, where the use of separated representations are 
specially suitable ... [4, 25, 42, 44].

In what follows the Sparse Subspace Learning (SSL) and 
the sparse PGD (sPGD) constructors, widely employed later, 
will be revisited.

(11)u
∗(x, t,�) = X

∗(x)T
m
(t)M

m
(�) + X

m
(x)T∗(t)M

m
(�) + X

m
(x)T

m
(t)M∗(�).

Sparse Subspace Learning

Again for the sake of simplicity, we assume that only one
parameter is involved in the model, � ∈ I ≡ [�min,�max] . 
The parametric solution u(x, t,�) is searched in the sepa-
rated form

SSL [4] consists first in choosing a hierarchical basis of the 
parametric domain. The associated collocation points (the 
Gauss-Lobatto-Chebyshev) and the associated functions will 
be noted by: (�j

i
, �

j

i
(�)) , where indexes i and j refer to the 

i-point at the j-level.
At the first level, j = 0 , there are only to points, �0

1
 and 

�0
2
 , that correspond to the minimum and maximum value 

of the parameters that define the parametric domain, i.e. 
�0
1
= �min and �0

2
= �max.

If we assume that a direct solver is available, i.e., a 
computer software able to compute the transient solu-
tion as soon as the value of the parameter has been speci-
fied, these solutions read u0

1
(x, t) = u(x, t,� = �0

1
) and 

u0
2
(x, t) = u(x, t,� = �0

2
) respectively.

Thus, the solution at level j = 0 could be approximated 
from

that in fact consists of a standard linear approximation since 
at the first level, j = 0 , the two approximation functions read 
�0
1
(�) = (�0

2
− �)∕(�0

2
− �0

1
) and �0

1

(�) = (� − �0

1

)∕(�0

2

− �0

1

) , 
respectively.

At level j = 1 there is only one point located 
just in the middle of the parametric domain, i.e. 
�1
1
= 0.5(�min + �max) , being its associated interpolation 

function �1
1
(�) . It defines a parabola that takes a unit value 

at � = �1
1
 and vanishes at the other collocation points of 

level j = 0 , �0
1
 and �0

2
 in this case. The associated solution 

reads u1
1
(x, t) = u(x, t,� = �1

1
).

This solution contains a part already explained by the 
just computed approximation at the previous level, j = 0 , 
expressed by

Thus, we can define the so-called surplus as

from which the approximation at level j = 1 reads

u(x, t,�) ≈

�∑
i=1

Xi(x, t)Mi(�).

u0(x, t,�) = u0
1
(x, t)�0

1
(�) + u0

2
(x, t)�0

2
(�),

u0(x, t,�1
1
) = u0

1
(x, t)�0

1
(�1

1
) + u0

2
(x, t)�0

2
(�1

1
).

ũ1
1
(x, t) = u1

1
(x, t) − u0(x, t,𝜇1

1
),

(12)u1(x, t,𝜇) = u0(x, t,𝜇) + ũ1
1
(x, t)𝜉1

1
(𝜇).



The process continues by adding surpluses when going-up 
with the hierarchical approximation level. An important 
aspect is that the norm of the surplus can be used as a local 
error indicator, and then when adding a level does not con-
tribute sufficiently, the sampling process can stop.

The computed solution, as noticed in Eq. 12, ensures 
a separated representation. However, it could contain too 
many terms. In that circumstances a post-compression takes 
place by looking for a more compact separated representa-
tion [10].

When the model involves more parameters �1 and �2 , here 
noted for the sake of notational simplicity � and � , the hier-
archical 2D basis, defined in the parametric space (�, �) is 
composed by the cartesian product of the collocations points 
and the tensor product of the approximation bases.

Thus, the first level j = 0 , is composed by the four points:

with the associated interpolation functions

When moving to the next level, j = 1 , the collocation points 
and approximation functions result from the combination 
of the zero-level of one parameter and the first level of the 
second one, i.e., the points are now: (�0

1

, �1
1

), (�0

2

, �1
1

) and 
(�1

1

, �0
1

), (�1

1

, �0
2

) . In what concerns the interpolation func-
tions they result from the product of the zero level in one 
coordinate and the level one in the other. It is worth noting 
that the point (�1

1

, �1
1

) and its associated interpolation func-
tion is in fact a term of level j = 2.

The main issue when using the SSL is that even when 
limiting the approximation to the first level (the zero level), 
if � dimensions are involved, the number of collocation 
points becomes 2� , that limits the use of the SSL when both, 
the number of parameters, and/or the degree to be consid-
ered (the so-called level) increase. For alleviating this issue 
the sPGD and its regularized variants were proposed, and 
will be summarized below.

From the sparse PGD to its regularized variants: 
rsPGD and s2PGD

For the the sake of simplicity we consider two parameters, 
again noted by � and � , and a field that depend on both them, 
u(x, t,�, �) , with nt known solutions associated with nt dif-
ferent choices of the parameters, i.e. u(x, t,�i, �i) ≡ ui(x, t) , 
i = 1, ..., nt.

In general these solutions are expressed in a discrete man-
ner, in the form of a matrix, where each column contains 
the solution at each node (rows) at a given time step. Thus,
the discrete form of the solution u(x, t,�i, �i) ≡ ui(x, t) is

(�0
1
, �0

1
), (�0

2
, �0

1
), (�0

2
, �0

2
), (�0

1
, �0

2
),

�0
1
(�)�0

1
(�), �0

2
(�)�0

1
(�), �0

2
(�)�0

2
(�), �0

1
(�)�0

2
(�).

noted �i , with the component �i
rs

 referring to the solution 
at node xr at time ts , for the parameters choice (�i, �i) , i.e. 
�
i
rs
≡ u(xr, ts,�i, �i).

However, finding a parametric regression of each com-
ponent of the discrete solution, leading to �(�, �) , is too 
expensive. For this reason, more than working with the 
discrete solution itself, reduced space and time bases are 
extracted: �k , k = 1, ..., � , and �l , l = 1, ..., � . Then, each 
discrete solution �i can be expressed as

where � = (�
1

... ��) , � � = (T
1

... TL) and � , whose size is 
� × � , is obtained by minimizing ‖�i −��

i
�‖.

Now, knowing �i
pq

 , i.e. each component of it for 
each choice i, i = 1, ..., nt , of the parameters, (�i, �i) , 
�

i
pq

≡ �pq(�i, �i) , the more general parametric expression 
�pq(�, �) is searched.

For the sake of notational simplicity, we will describe in 
what follows the construction of regressions of a generic 
scalar f that depends on the couple of parameters (�, �) , 
with f i ≡ f (�i, �i) known at the nt points in the sam-
pling. Here, the scalar f represents each component �pq , 
p = 1, ..., � and q = 1, ..., �.

The goal is therefore to find a function f M(�, �) , 
expressible as a finite sum of � terms, according to

able to approximate the known data f i ≡ f (�i, �i) , i = 1, ..., nt
.

Even if in the 2D case addressed here (with only two 
parameters) the separation of variables is not compulsory, 
we would like to propose a technique general enough and 
able to operate in highly multi-parametric settings.

At iteration m the algorithm looks for the update 
Gm(�)Hm(�) such that f m(�, �) = f m−1(�, �) + Gm(�)H(�) . 
For computing the searched functions, they are first approx-
imated as Gm(�) = ��,T

m
(�)�m and Hm(�) = ��,T

m
(�)�m , 

where ��
m

 represents the basis considered for approximat-
ing the m-mode depending on the �-parameter, being �m 
the associated weights, and similarly for the other direc-
tion ( �-parameter): ��

m
 and �m.

The update comes from the minimization problem:

that by using the notation below:

(13)�
i ≈ ��

i
� ,

(14)f M(�, �) =

�∑
j=1

Gj(�)Hj(�),

(15)

Gm(�)Hm(�) = argmin
(Gm(�)Hm(�))

∗

nt�
i=1

‖f i − f m−1 + (Gm(�)Hm(�))
∗‖2

2
,



results in the two problems:

that are solved iteratively until reaching the fixed point.
This schema constitutes the heart of the sPGD construc-

tor. However, when combining rich approximation bases 
��

m
(�) and ��

m
(�) , with data-sets nt not sufficiently rich (as 

it will be always the case when operating in highly multi-
parametric settings) the just described procedure produces 
overfitting.

To alleviating overfitting, an adaptive procedure was pro-
posed in [25] that consists in adapting the approximation 
bases, whose degree increases when advancing in the modal 
enrichment, that is, with the degree increasing with m.

Looking for a more versatile and automatic procedure, the 
ridge regularization was employed, giving rise to

When looking for sparsity in order to employ extremely 
rich approximations while exploiting parsimony, like pro-
posed in the Sindy [6], it is well known that the lower is 
the employed norm the more intense results the sparsity 
enforcement. Many times the L1-norm (the so-called Lasso 
regularization) becomes a good compromise between spar-
sity enforcement and computational efficiency, and when 
combining ridge and Lasso the so-called elastic net regu-
larization results, that when combined with the separated 
representation constructor reads [42]

r =

⎛⎜⎜⎝

f 1 − f m−1(�1, �1)

⋮

f nt − f m−1(�nt
, �nt )

⎞⎟⎟⎠
,

�� =

⎛
⎜⎜⎝

��,T
m

(�1)bm�
�,T
m

(�1))

⋮

��,T
m

(�nt )bm�
�,T
m

(�nt
))

⎞
⎟⎟⎠
,

�� =

⎛
⎜⎜⎝

��,T
m

(�1)am�
�,T
m

(�1))

⋮

��,T
m

(�nt
)am�

�,T
m

(�nt ))

⎞
⎟⎟⎠
,

(16)am = argmin
a∗
m

�
‖r −��a

∗
m
‖2
2

�
,

(17)bm = argmin
b
∗
m

�
‖r −��b

∗
m
‖2
2

�
,

(18)am = argmin
a∗
m

�
‖r −��a

∗
m
‖2
2
+ �‖a∗

m
‖2
2

�
,

(19)bm = argmin
b
∗
m

�
‖r −��b

∗
m
‖2
2
+ �‖b∗

m
‖2
2

�
.

(20)

am = argmin
a∗
m

�
‖r −��a

∗
m
‖2
2
+ �

�
(1 − �)‖a∗

m
‖2
2
+ �‖a∗

m
‖1
��

,

Figure 4 summarizes the regression techniques usually 
employed to conciliate: (i) a sparse and very reduced sam-
pling; (ii) rich enough approximation bases while avoiding 
overfitting, based on the use of sparse regularizations; (iii) 
using orthogonal basis for evaluating sensibilities in a direct 
manner; and (iv) efficiently addressing the high-dimensional 
spaces induced by the multi-parametric models, where the 
use of separated representations are specially suitable.

Physics‑aware artificial intelligence

Machine Learning (ML), a major protagonist of AI, is able 
to create predictive models from available or collected data, 
with an additional added value, the fact of providing that 
prediction in almost real-time.

However, creating models from scratch, simply because 
the existing models based on physics were not accurate 
enough, is not the best choice. Creating a model based on 
data from scratch needs a lot of data, and in engineering 
and technology, data is synonym of cost, and sometimes the 
data collection also implies to consider an ethical dimen-
sion, to fulfill existing regulations, or must address technical 
difficulties.

In our work we advocate by the alliance between both 
(i) the former analogical world of knowledge and physics-
based models and (ii) the more recent digital world of data, 
manipulated by the more and more powerful (accurate, fru-
gal and explainable -certifiable-) techniques of Artificial 
Intelligence.

This new alliance is materialized in the so-called Digi-
tal or Hybrid Twins, in which physics-based models are 
enriched, to decrease their intrinsic ignorance, in a prag-
matic way, from the data representing the deviation between 
predictions and measurements. The hybrid paradigm not 
only allows reducing the amount of needed data that now 
is only expected describing the gap between the reality 
and the physics-based predictions, but also the ability of 
explaining the part of the model based on the existing phys-
ics or knowledge, and then facilitating the design or decision 
certification.

In order to reduce the amount of data to model the 
observable phenomena (when models do not exist or are 
too inaccurate) or for enriching the existing physics-based 
models within the hybrid paradigm previous introduced, 
physics-aware (also known as physics-informed) Artificial 
Intelligence (Machine Learning or Neural Networks) seems 
being the most appealing route.

(21)

bm = argmin
b
∗
m

�
‖r −��b

∗
m
‖2
2
+ �

�
(1 − �)‖b∗

m
‖2
2
+ �‖b∗

m
‖1
��

.



The so-called Physics Informed Neural Networks (PINN) 
[37, 38] considers the approximation of the unknown func-
tion u(x, t) as a regression problem defined on an adapted 
neural network. Then, as soon as the physics is assumed 
fully known and adequately described by a partial differ-
ential equation, the derivatives involved in the differential 
operator can be applied on the NN and the residual nullity 
is enforced from the NN loss function.

Sometimes, everything concerning the physics is not fully 
known. If we consider an hyper-elastic material, the best 
option consists in learning the free energy by constructing 
a regression linking it to the state variables, in such a way 
that its derivatives leads to the constitutive equation. Then, 
the free energy is learned to be consistent with the collected 
data on the structural component, under the equilibrium 
constraints.

Similar procedures apply in the so-called Structure Pre-
serving NN (also known as Thermodynamic Informed NN) 
where the free energy and the dissipation potential are com-
puted in such a way that energy balance and entropy produc-
tion are ensured [17, 18, 21, 22, 34, 35].

In those works, inspired from the GENERIC framework 
[20], the state � evolution, �̇ , reads

(22)�̇ = �∇ZH +�∇ZS,

where the first term of the right-hand member represents the 
reversible evolution (Hamiltonian contribution) whereas the 
second one represents the dissipative contribution, with H 
and S the energy and the entropy respectively.

Learning matrices � and � , skew-symmetric the former, 
and symmetric and positive semi-definite the last, as well 
as both potentials H and S (subjected to some constraints: 
the Jacobi identities as well as the consistency conditions 
�∇ZS = � and �∇ZH = � ) is performed from the existing 
data concerning the state time evolution �(ti) , i = 1, 2, ... The 
learned model has very interesting properties, as are the ones 
related to energy conservation and positive dissipation, ena-
bling stable and accurate time integrators.

The main issue found when learning such thermody-
namic-aware models is not the regression implementation, 
but the choice of the variables in the state vector, issue dis-
cussed in [27]. In very small systems the state variables are 
easily identified, however in large (continuous) systems such 
a choice is far of being trivial. In that case, many options 
exist. One among them consists of performing a dimension-
ality reduction. The use of most of manifold learning dimen-
sionality reduction has as main drawback the unavailability 
of performing the inverse mapping for coming back from the 
reduced space to the departure one.

In the general nonlinear case, an appealing alternative 
consists in the use of NN-based autoencoders [23], where 
encoding and decoding is learned, while models operate 

Fig. 4   Advanced nonlinear regressors combining different sparse reg-
ularization. They enable addressing nonlinear behaviors with a low 
amount of data, while avoiding overfitting, in the multi-parametric 

setting efficiently addressed by the separated representations at the 
heart of the so-called PGD [42]



(and are learned) in a transparent way in the internal layer 
of reduced dimension where active reduced coordinates (the 
so-called latent variables or latent space) act. Autoencoders 
allow learning the best model representation, that in many 
cases, other than reducing the dimension of the model, allow 
reducing the model complexity (and then its nonlinearity) 
enabling the use of simpler and cheaper regression tech-
niques operating at the level of the latent space, where some-
times linear regressions suffice.

Use case

The present section illustrates the just introduced concepts, 
methodologies and procedures, on a forming process use-
case involving stamping, and more particularly multi-stage 
stamping, where the deviations, due to inevitable uncertain-
ties, accumulate throughout the whole process compromis-
ing the geometrical tolerancing of the final formed parts.

In what follows we consider a two-stage stamping pro-
cess, where the first stage, depicted in Fig. 5, imprints a 
spherical shape on the original planar metallic sheet, 
whereas the second one acts on the shape that resulted from 
the first-stage, to imprint a final cylindrical shape, as illus-
trated in Fig. 6.

Both stages involve three main parameters: (i) the clamp-
ing force F; (ii) the tool-sheet friction coefficient � and (iii) 
the punch-sheet friction coefficient �.

A parametric solution of the first stage was computed by 
using the non-intrusive PGD constructor previously intro-
duced, operating on the solutions provided by the software 
PAM-STAMP (ESI Group) associated with the design of 
experiments associated with the SSL regression up-to level 
two.

The second stage operates on the shape that results from 
the first one. Thus, the parametric model of the second stage 
should include as parameters the ones describing the initial 

shape and its themomechanical state, representing the final 
state of the first stage.

As the final sate of the first stage is parametrized by the 
triplet (FI

, �I , �I) (where the superscript ∙I refers the first 
stage), one could expect having that triplet into the para-
metric space of the second-stage, and then expressing the 
nodal displacement according to �II(FI

, �I ,�I
,FII

, �II ,�II). 
Such a parametric solution is depicted in Fig. 7.

Such a procedure faces three major difficulties: (i) the 
increase of the number of parameters when several stages 
are involved; (iii) the dependence of each stage model on the 
whole process; and (iii) the errors, inaccuracies and uncer-
tainties accumulation from one stage to the next.

A way of increasing generality and accuracy consists 
in creating a generic parametric solution applicable to any 
stage. For that purpose, from the simulation of the whole 
process for different parameters, the final state of each stage 
is computed and the principal modes extracted by using 
the POD. Thus, in our case, from the � available snapshots 
�
I
i
(FI

i
, �I

i
,�I

i
) , i = 1, ..., � , the � most relevant POD modes �j , 

j = 1, ..., � , are extracted. In our case three modes ( � = 3 ) 
suffice for describing the final state of the first stage. Accord-
ingly, each snapshot can be expressed as

where taking into account the orthonormality of the reduced 
basis �j , the coefficients read

More generally, any state resulting from the first stage could 
be expressed from

(23)�
I
i
≡ �

I(FI
i
, �I

i
,�I

i
) ≈

�∑
j=1

�i
j
�j, i = 1, ..., �,

(24)�i
j
= �

I
i
⋅ �j.

(25)�
I(FI , �I ,�I) ≈

�∑
j=1

�j�j.

Fig. 5   Two-stage stamping. 
First-stage: (left) initial configu-
ration and (right) almost final 
configuration

Fig. 6   Two-stage stamping. 
Second-stage: (left) initial 
configuration and (right) almost 
final configuration



This means that as considered in the POD by interpola-
tion, one can express parametrically the coefficients �j , i.e. 
�j(F

I
, �I ,�I).

Such a rationale becomes more general, and enables the 
solution of the second stage being expressed parametri-
cally with respect to �j , j = 1, ..., � , and the process triplet 
(FII

, �II ,�II) , i.e.

Other than gaining generality, because of the fact that Eq. 26 
can be applied to any stage independently of the place that 
it occupies in the whole process, as soon as the reduced 
basis {�

1

,… ,��} is able to express the incoming part, such 
a rationale enables also improving accuracy.

Within the fully physics-based rationale, the part result-
ing from the first stage, when enforcing the process param-
eters (FI

, �I ,�I) , is expressed from

with �j = �j(F
I
, �I ,�I) , j = 1,… , �.

If these coefficients are then inserted into the sec-
ond stage parametric solution, given by Eq.  26, the 
computed solution will correspond approximately with 
�II(FI

, �I ,�I
,FII

, �II ,�II).
However, if the real part after the first stage, represented 

by �̂I , differs from �I , i.e. ‖�̂I − �I‖ > 𝜖 , a fully physics-
based approach will propagate such a deviation to the 
stages that follow.

The hybrid paradigm aims at correcting the intermedi-
ate solutions. If we assume that the reduced basis contin-
ues spanning the real solution we can express it from

(26)�
II(�1, ..., ��,F

II , �II ,�II).

�
I(FI , �I ,�I) ≈ �1�1 +…+ ����,

where 𝛼̂j = �̂I ⋅ 𝜙j.
The real state �̂I is rarely fully known, however, a partial 

knowledge suffices for determining the � parameters 𝛼̂j . Few 
amount of data, scaling with � , is in general sufficient.

Such a data-driven correction allows updating the pre-
diction related to the second stage, �̂II(𝛼

1

, ..., 𝛼̂�,F
II
, 𝜉II ,𝜇II) 

instead of �II(�
1

, ..., ��,F
II
, �II ,�II).

In the numerical example addressed in the present 
section, as soon as the solution of the second stage is 
updated, the solution at the end for (FII

, �II ,�II) results the 
one depicted in Fig. 8(left) where the damage exceed the 
maximum acceptable value. Thus, the control proceeds by 
changing the clamping force F̃II , action that leads to the 
solution depicted in Fig. 8(right) that exhibits an accept-
able risk criterion.

Conclusion

This paper revisited the main methodologies employed 
in the hybrid engineering and hybrid twins, main pro-
tagonists of the incipient performance based engineering, 
where the necessity of predicting very fast and very accu-
rately, while reducing the amount of needed data, leaded 
to the hybridization of physics-based models, efficiently 
manipulated thanks to the use of advanced non-intrusive 
model order reduction techniques, enriched, in view of 
the collected data, by using low-cost physics-aware arti-
ficial intelligence techniques.

(27)�̂
I ≈ 𝛼̂1𝜙1 + ... + 𝛼̂�𝜙�,

Fig. 7   Parametric solution �II(FI
, �I ,�I

,F
II
, �II ,�II)
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