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Data-Driven Models of Monotone Systems
Anas Makdesi, Antoine Girard, Senior Member, IEEE , and Laurent Fribourg

Abstract— In this paper, we consider the problem
of computing from data guaranteed set-valued over-
approximations of unknown monotone functions with ad-
ditive disturbances. We provide a characterization of a
simulating map that provably contains all monotone func-
tions that are consistent with the data. This map is also
minimal in the sense that any set-valued map containing all
consistent monotone functions would also include the map
we are proposing. We show that this minimal simulating
map is interval-valued and admits a simple construction
on a finite partition induced by the data. As the complexity
of the partition increases with the amount of data, we also
consider the problem of computing minimal interval-valued
simulating maps defined on partitions that are fixed a priori.
We present an efficient algorithm for their computation. We
then use those data-driven over-approximations to build
models for partially unknown systems where the unknown
part is monotone. The resulting models are used to con-
struct finite-state symbolic abstractions, paving the way
for discrete controller synthesis methods to be applied.
We extend our approach to handle systems with bounded
derivatives and introduce an algorithm to calculate the
bounds on those derivatives and on the disturbances from
the data. We present several numerical experiments to
test the performance of the introduced method and show
that the data-driven abstractions are suitable for controller
synthesis purposes.

Index Terms— Monotone maps, Monotone systems,
Data-driven models, Data-driven abstraction, Symbolic
control.

I. INTRODUCTION

The recent advancements in data acquisition tools, coupled
with the ability to efficiently deal with the ever-increasing
amount of data harnessed by those tools, gave rise to many new
data-driven approaches and techniques in control theory. Those
approaches have the benefit of being able to tackle unknown or
hard-to-model systems, which justifies the increasing interest
in them. While some methods rely on finding the controller
directly from the data [12, and references therein], others
depend on finding data-driven models, which then can be
used to find the controllers. A survey of both methods can
be found in [2]. Learning the dynamics to find systems’
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CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-
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models leverages the ability to use well-established, well-
studied approaches to find controllers enforcing the desired
behaviors. Moreover, data-driven models can sometimes come
with formal guarantees regarding the approximation of the
real system. Such guaranteed models can be categorized as
stochastic or robust [11, and references therein]. The present
work follows the latter approaches, where the aim is to
find bounds on the function representing the system (non-
parametric approach) or bounds on some unknown parameters
of the function representing the system (parametric approach).

The set membership approach offers an example of how
we can find those robust models. In [27], the set membership
approach is used for the identification of nonlinear systems.
Set membership approaches are used in [4] to synthesize
nonlinear model predictive controllers. In contrast to [4],
the introduced approach does not assume anything about the
stability of the unknown systems. Also, the number of points
that can be handled is greater than the number addressed
in the set membership approach. Another example of robust
models can be found in [17], where interval observers for
partially unknown mixed-monotone nonlinear systems are
found, assuming the unknown part is Lipschitz continuous.
Lipschitz dynamical systems with known bounds on the Lip-
schitz constants are also studied in [30] to reach piecewise
affine set-valued models. In contrast to [17] and [30], we do
not consider the case of Lipschitz unknown functions. Instead,
we start by studying monotone functions. Relying on the
monotonicity assumption, we developed an efficient method to
handle a large number of data points. Monotone functions can
be found in many applications, such as adaptive cruise control
[13] or power networks [36]. In [25], models that enforce a
notion of monotonicity are learned following the argument
that, for many machine learning problems, some inputs relate
to the output monotonically, such as house pricing. Data-driven
approaches are used in [15] for monotone systems reduction.

In this work, given a set of data generated from an unknown
monotone function with an additive bounded disturbance, we
find an over-approximating set-valued map, which we call a
simulating map, guaranteed to include any monotone function
capable of generating the data. Moreover, we look for the tight-
est map with this guarantee. The resulting model (the minimal
simulating map) can be naturally defined as an interval-valued
map using a partition of the input space, which only depends
on the sampled data, and thus it is non-parametric. We also
consider a parametric case where a partition of the input space
is given a priori. We find the tightest interval-valued over-
approximation on this partition. Although fixing the partition
introduces more conservatism to the resulting models, those
models can be calculated and handled more efficiently.
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Then, we use our over-approximation method to learn
models of discrete-time dynamical systems with an unknown
monotone part. Those models are then used to find finite-
state symbolic models of the systems. Symbolic control
is a computational approach to controller synthesis where
discrete abstractions (symbolic models) of continuous-state
dynamical systems are calculated. Then, discrete controller
synthesis techniques [1], [33] are used to find correct-by-
design controllers; those controllers are capable of ensuring
complex specifications (safety and reachability [7], behaviors
described by automata [28], or temporal logic formulas [1]).
In the case of an unknown monotone system, we show that
working with the finite-state symbolic models does not add
any conservatism compared to working with the tightest data-
driven over-approximation models.

Although symbolic control is usually presented as a model-
driven technique, some data-driven approaches have emerged
recently. For instance, approaches that only require the ability
to sample the system dynamics on a given grid of states
and inputs are introduced in [9], [24], or [35]. In [6], data-
driven abstractions within the PAC (probably approximately
correct) statistical framework are found. PAC guarantees are
also used in [5] to build data-driven abstraction through the use
of the scenario approach. The scenario approach is also used
in [18] and [16] to offer probabilistic guarantees on the data-
driven built abstractions. The main difference between all the
previously mentioned work and the approach introduced here
is that, in contrast to our approach, they all give probabilistic
guarantees. Data-driven control design with regular language
specifications is studied in [29] for plants described as abstract
systems. In comparison to [29], our approach can handle
bounded disturbances and is able to satisfy the specifications
robustly, not to a predefined desired accuracy. Unknown parts
of nonlinear systems are modeled using Gaussian processes;
then, those models are used in building symbolic abstractions
in [10].

Some results in this paper appeared in preliminary form in
the conference papers [21], [20], where we focused on the case
of pure monotone systems. The present paper brings a globally
improved presentation of our approach with a redesigned
concept of minimal simulating maps and complete proofs of
theoretical results (whereas only sketches of proofs, in the
undisturbed case, were provided in our previous works). In
addition, we introduce a new efficient algorithm to compute
our set-valued over-approximations. We also generalize the
approach to the case of general systems with an unknown
monotone part. Using ideas inspired by those introduced
to study mixed-monotone systems in [34], we extend our
approach to study systems with bounded derivatives. Finally,
we use the scenario approach, developed for robust control
design in [3], to estimate upper and lower bounds on the
partial derivatives of the unknown function generating the data.
Finally, we validate our results with more extensive numerical
experiments.

This paper is organized as follows. In Section II, we
introduce the problem of over-approximating monotone maps,
give the necessary definitions, and then compute the optimal
solution, and optimal solution given a fixed partition a priori.

In the case of fixed partition, we provide an efficient algorithm
to calculate the over-approximation. In Section III, we use the
introduced over-approximation to build data-driven models for
systems with unknown monotone parts. Then, we use those
data-driven models to find a finite-state symbolic representa-
tion of the system. We also show how we can study systems
with bounded derivatives in this section. In Section IV, we
provide a way to find the upper and lower bounds on the
partial derivatives of a function using data generated by this
function. Finally, Section V is dedicated to presenting some
numerical examples.

Notations: R = [−∞,+∞] is the set of extended real
numbers. We use bold lowercase letters to represent vectors,
e.g. z ∈ Rn

; subscripts are used to differentiate between
multiple vectors zi, whereas normal lowercase letters with
superscripts zi are used to denote the ith component of a
vector z. Given two vectors z1, z2 ∈ Rn

, we define the partial
order ⪯ on Rn

to be z1 ⪯ z2 if and only if zi1 ≤ zi2 for
all i = 1, . . . , n. We use indifferently z1 ⪯ z2 and z2 ⪰ z1.
[z1, z2] = {z ∈ Rn| z1 ⪯ z ⪯ z2} defines a closed interval of
Rn

. We define max(z1, z2), or min(z1, z2), to be the vector z
whose components are zi = max(zi1, z

i
2), or zi = min(zi1, z

i
2)

respectively. Given a set Z ⊆ Rn
, intZ and clZ denote the

interior and the closure of the set Z, inf Z and supZ denote
the infimum and the supremum of Z, i.e. the greatest lower
and least upper bounds of Z relative to partial order ⪯ on
Rn

. Given a collection of sets Zk ⊆ Rn
, for k in some index

set, we will use the following convention
⋂

k∈∅ Zk = Rn
. For

z ∈ Rn
and Z ⊆ Rn

, we define z + Z = {z + z′| z′ ∈ Z}.
A relation R ⊆ Z × Y is identified with the set-valued map
R : Z ⇒ Y where R(z) = {y ∈ Y | (z,y) ∈ R}. We define
the converse relation R−1 = {(y, z) ∈ Y × Z| (z,y) ∈ R}.
A single-valued map f : Z → Y can be identified to the
deterministic set-valued map F : Z ⇒ Y where F (z) =
{f(z)} for all z ∈ Z. In this paper, to avoid confusion, we will
refer to set-valued maps as maps and to single-valued maps
as functions. A map F : Z ⇒ Y where Y ⊆ Rm

is called an
interval-valued map if for all z ∈ Z, there exists y1,y2 ∈ Y
such that F (z) = [y1,y2]. An over-approximation of a map
F : Z ⇒ Y is a map F̂ : Z ⇒ Y such that F (z) ⊆ F̂ (z), for
all z ∈ Z. A property is true for almost all z ∈ Z if it holds
for all z ∈ Z \ Z0 where Z0 ⊆ Z is of measure zero. Then
given two maps F1, F2 : Z ⇒ Y , we say that F1 = F2 almost
everywhere (a.e.) if F1(z) = F2(z) for almost all z ∈ Z.

II. LEARNING MONOTONE MAPS FROM DATA

In this section, we consider the problem of learning mono-
tone maps from data. For a class of monotone maps, we
provide an approach to compute over-approximations of the
maps that are as tight as possible, given the available data.

As we are dealing with set-valued maps, it is adequate to
properly define the notion of monotonicity for such maps.

Definition 1: The map F : Z ⇒ Y , with Z ⊆ Rn
and

Y ⊆ Rm
, is monotone if for all z, z′ ∈ Z with z ⪯ z′,

∀y ∈ F (z), ∃y′ ∈ F (z′), y ⪯ y′, and
∀y′ ∈ F (z′), ∃y ∈ F (z), y ⪯ y′.
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Fig. 1. Example of a set-valued monotone map F : Z ⇒ Y .

An illustration of the notion of monotone maps is shown
in Figure 1. Let us remark that in the case of a function f :
Z → Y , Definition 1 coincides with the usual definition of
monotone functions, that is

∀z, z′ ∈ Z, z ⪯ z′ =⇒ f(z) ⪯ f(z′).

This paper considers a class of maps given by monotone
functions with additive bounded disturbances. Formally, let us
consider a map F : Z ⇒ Rm

where Z ⊆ Rn
and such that

∀z ∈ Z, F (z) = f(z) +W, (1)

where f : Z → Rm
is a monotone function and W = [w,w],

W ⊆ Rm is a bounded interval of disturbances. The following
property of F is a straightforward consequence of (1) and of
Definition 1 and is therefore stated without proof.

Claim 1: The map F given by (1), where f is a monotone
function and W ⊆ Rm, is a monotone map.

We can now describe the problem under consideration in
this section:

• Let us consider a map F : Z ⇒ Rm
of the form (1)

where the monotone function f : Z → Rm
is unknown

and the disturbances lower and upper bounds w, w ∈ Rm

are known.
• Let us consider a set of data D ⊆ Z ×Rm

generated by
the map F :

D = {(zk,yk) | yk ∈ F (zk), k ∈ K}, (2)

where K is a finite set of indices.
Given the data D, the bounds w, w, and under the sole
assumption that f is monotone, we aim at computing an over-
approximation of the map F that is as “tight” as possible.
A precise notion of tightness will be formally defined in
subsection II-B.

Remark 1: In practical applications, we are mostly inter-
ested in maps F : Z ⇒ Rm with Z ⊆ Rn. Note that any such
map can be seen as a map from a subset of Rn

to Rm
and

can thus be cast in our framework. Moreover, working with
extended real numbers will facilitate the mathematical analysis
of our approach.

A. Consistent and simulating maps
Let us define several notions that will help us formalize our

problem. A map will be said to be consistent if it is of the
form (1) and is capable of generating the data D.

Definition 2: A map F̃ : Z ⇒ Rm
is consistent with the

data D if the following hold:
1) There exists a monotone function f̃ : Z → Rm

such
that, for all z ∈ Z, F̃ (z) = f̃(z) +W ;

2) For all (z,y) ∈ D, y ∈ F̃ (z).
We denote the set of maps that are consistent with the data D
by CD.

Obviously, there is at least one map that is consistent
with D, which is the map F that generated D. In general,
there could be more. Then, a map over-approximating all the
consistent maps is called a simulating map.

Definition 3: A map S : Z ⇒ Rm
is a simulating map of

the data D if for all F̃ ∈ CD, for all z ∈ Z, F̃ (z) ⊆ S(z).
We denote the set of all simulating maps of D by SD.

A trivial and useless example of a simulating map is the
map given for all z ∈ Z by S(z) = Rm

. Out of the maybe
infinite number of simulating maps, we are looking for the
tightest ones, which we call minimal simulating maps. Those
maps are the least conservative estimate of the actual map
F , given the available data D. Formally, they are defined as
follows:

Definition 4: A map Sm : Z ⇒ Rm
is a minimal simulating

map of the data D if the following hold:
1) Sm ∈ SD (Simulation);
2) For almost all z ∈ Z, for all S ∈ SD, Sm(z) ⊆ S(z)

(Minimality).

Remark 2: It is important to emphasize that while mini-
mality holds only almost everywhere, it is required that the
simulation property holds for all z ∈ Z. Hence, a minimal
simulating map is always an over-approximation of the un-
known map F that generated the data D. The main reason
for requiring minimality only almost everywhere is that it will
make it possible to give a simple construction of the minimal
simulating map as shown in subsection II-B.

In subsection II-B, we will provide a constructive proof
of the existence of minimal simulating maps. The following
proposition describes the relation between minimal simulating
maps.

Proposition 1: Given two maps Sm, S′
m : Z ⇒ Rm

, the
following properties hold:

• If Sm and S′
m are minimal simulating maps of D, then

Sm = S′
m a.e.;

• If Sm is a minimal simulating map of D, S′
m ∈ SD and

Sm = S′
m a.e., then S′

m is a minimal simulating map
of D.

Proof: We prove the first part of the proposition. Ac-
cording to Definition 4, there exists a set Z0 ⊆ Z of measure
zero such that, for all z ∈ Z \ Z0, Sm(z) ⊆ S′

m(z), and
there exists a set Z ′

0 ⊆ Z of measure zero such that, for all
z ∈ Z \Z ′

0, S′
m(z) ⊆ Sm(z). Hence, for all z ∈ Z \(Z0∪Z ′

0),
S′
m(z) = Sm(z). The set Z0 ∪ Z ′

0 being of measure zero, it
follows that Sm = S′

m a.e..
Now, let us show the second part of the proposition. For

S′
m to be a minimal simulating map, S′

m should meet the
two requirements of Definition 4. The first one is satisfied by
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Fig. 2. Construction of a minimal simulating map. Left: data points in
the input space zk ∈ Z, k ∈ K, points larger than (k ∈ K+(z))
/ lesser than (k ∈ K−(z)) / incomparable to a given z ∈ Z are
represented with squares / circles / triangles, respectively. Right: data
points in the output space yk ∈ Rm, k ∈ K are surrounded by red
intervals representing the bounded disturbance, and the green interval
represents the minimal simulating map Sm(z) ⊆ Rm given by (3).
The light green area represents the approximation of the function f as
mentioned in Remark 3.

assumption. The second one can be shown as follows. There
exists a set Z0 ⊆ Z of measure zero such that, for all z ∈
Z \ Z0, for all S ∈ SD, Sm(z) ⊆ S(z). Also, there exists a
set Z ′

0 ⊆ Z of measure zero such that, for all z ∈ Z \ Z ′
0,

S′
m(z) = Sm(z). Hence, for all z ∈ Z \ (Z0 ∪ Z ′

0), for all
S ∈ SD, S′

m(z) ⊆ S(z). Because Z0 ∪Z ′
0 is of measure zero,

the second requirement of Definition 4 is satisfied, and S′
m is

a minimal simulating map.

Proposition 1 essentially states that minimal simulating
maps are uniquely determined up to a set of measure zero.
We can now formally state the problem under consideration
in this section:

Problem 1: Given the data D and the disturbance bounds
w, w ∈ Rm, compute Sm : Z ⇒ Rm

, a minimal simulating
map of D.

B. Computation of minimal simulating maps
In the following, we describe a solution to Problem 1. We

first establish a characterization of a minimal simulating map
and prove some of its properties. Then, a practical approach
is provided for computing a minimal simulating map.

1) Characterization and properties: The following theorem
provides an effective characterization of a minimal simulating
map:

Theorem 1: Let Sm : Z ⇒ Rm
be the map given for all

z ∈ Z by:

Sm(z) =

 ⋂
k∈K−(z)

{
y ∈ Rm ∣∣ yk +w −w ⪯ y

}
∩

 ⋂
k∈K+(z)

{
y ∈ Rm ∣∣ y ⪯ yk +w −w

} ,

(3)
where

K−(z) = {k ∈ K | zk ⪯ z}, K+(z) = {k ∈ K | z ⪯ zk}.
(4)

Then, Sm is a minimal simulating map of D.

Figure 2 shows the construction of the map Sm. Let us
remark that Theorem 1 also provides a constructive proof of
the existence of minimal simulating maps. It follows from (3)
that the minimal simulating map Sm is interval-valued. Indeed,
for all z ∈ Z, Sm(z) = [Sm(z), Sm(z)] with upper and lower
bounds Sm(z), Sm(z) given by

Sm(z) = inf
{
yk +w −w | k ∈ K+(z)

}
, (5)

Sm(z) = sup
{
yk +w −w | k ∈ K−(z)

}
. (6)

We now prove Theorem 1.
Proof: Let us first show that Sm ∈ SD. Let F̃ ∈ CD,

then there exists a monotone function f̃ : Z → Rm
such that,

F̃ (z) = f̃(z)+W . Let z ∈ Z, y ∈ F̃ (z), then, y ⪯ f̃(z)+w.
From the monotonicity of f̃ , we have f̃(z) ⪯ f̃(zk) for all
k ∈ K+(z). Therefore,

y ⪯ f̃(zk) +w, ∀k ∈ K+(z).

Moreover, F̃ ∈ CD implies yk ∈ F̃ (zk), for all k ∈ K.
Therefore, we have

f̃(zk) +w ⪯ yk, ∀k ∈ K.

Hence, we get from the inequalities above that

y ⪯ yk +w −w, ∀k ∈ K+(z).

Then, from (5), y ⪯ Sm(z). Similarly, it can be shown that
y ⪰ Sm(z). Therefore, we have y ∈ Sm(z); hence, Sm is a
simulating map of D.

Now, we prove minimality. For any arbitrary point included
in Sm we will build a consistent map containing this point.
Consider the set Z0 of measure zero, defined as

Z0 = {z ∈ Z | ∃i ∈ {1, . . . , n}, k ∈ K, zi = zik}. (7)

This set consists of the union of finitely many hyperplanes.
Each one of those hyperplanes is defined by one of the compo-
nents of a data point. According to Definition 4, minimality has
to hold almost everywhere. Then, let us consider z⋆ ∈ Z \Z0

and y⋆ ∈ Sm(z⋆). Let us define a partition of Z in 3 regions
defined by

Z1 = Z+(z⋆) \ Z−(z⋆), Z2 = Z+(z⋆) ∩ Z−(z⋆),

Z3 = Z \ (Z1 ∪ Z2),

where

Z−(z⋆) =

n⋂
i=1

{
z ∈ Z | zi > sup{zik | zik ≤ z⋆i, k ∈ K}

}
,

Z+(z⋆) =

n⋂
i=1

{
z ∈ Z | zi < inf{zik| zik ≥ z⋆i, k ∈ K}

}
.

A representation of the regions can be found in Figure 3. Let
us remark that by construction zk ∈ Z1 ∪ Z3 for all k ∈ K
and that z⋆ ∈ Z2 because z⋆ ∈ Z \ Z0.

Then, let us consider the map F ⋆ : Z ⇒ Rm
given for all

z ∈ Z by F ⋆(z) = f⋆(z)+W where f⋆ : Z → Rm
is defined

as follows

f⋆(z) =

Sm(z)−w if z ∈ Z1,

max(min(y⋆, Sm(z⋆)−w), Sm(z⋆)−w) if z ∈ Z2,

Sm(z)−w if z ∈ Z3.
(8)
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Fig. 3. Partition of Z used to define the function f⋆ in (8). The area
bounded from above by the yellow line represents the set Z+(z⋆).
The area bounded from below by the orange line represents the set
Z−(z⋆). The area Z1 in blue contains all the data points smaller than
z⋆. The area Z3 in red contains all the data points larger than z⋆ or
incomparable with z⋆. The area Z2 is colored in green.

In Figure 4, a representation, in the one-dimensional case, of
the maps F, F ⋆, and Sm can be found. Since z⋆ ∈ Z2 and
since y⋆ ∈ Sm(z⋆) = [Sm(z⋆), Sm(z⋆)], it follows from (8)
that y⋆ ∈ F ⋆(z⋆). We will now prove that F ⋆ ∈ CD.

We first prove that function f⋆ is monotone. Let z, z′ ∈ Z
such that z ⪯ z′. There are several possibilities for the position
of z and z′: i) z, z′ ∈ Z1, ii) z, z′ ∈ Z2, iii) z, z′ ∈ Z3,
iv) z ∈ Z1, z

′ ∈ Z2, v) z ∈ Z2, z
′ ∈ Z3, vi) z ∈ Z1, z

′ ∈ Z3.
We want to verify that f⋆(z) ⪯ f⋆(z′) in all those cases.

• Case (i): Since z ⪯ z′, we have K−(z) ⊆ K−(z′),
which implies from (6), Sm(z) ⪯ Sm(z′). Then, from
(8), f⋆(z) ⪯ f⋆(z′).

• Case (ii): From (8), we have f⋆(z) = f⋆(z′).
• Case (iii): Similar to case (i).
• Case (iv): It follows from the definition of Z2 that

K−(z′) = K−(z⋆). Then, since z ⪯ z′, we have
K−(z) ⊆ K−(z′) and thus K−(z) ⊆ K−(z⋆). Hence,
from (6), we get Sm(z) ⪯ Sm(z⋆). Since z ∈ Z1 and
z′ ∈ Z2 we get from (8),

f⋆(z) = Sm(z)−w ⪯ Sm(z⋆)−w ⪯ f⋆(z′).

• Case (v): Similar to case (iv).
• Case (vi): Since Sm ∈ SD and F ∈ CD, we get that

Sm(z) − w ⪯ f(z) and f(z′) ⪯ Sm(z′) − w. Since f
is monotone and z ⪯ z′, we get f(z) ⪯ f(z′). Finally,
since z ∈ Z1 and z′ ∈ Z3, we get from (8),

f⋆(z) = Sm(z)−w ⪯ Sm(z′)−w = f⋆(z′).

Hence, we established the monotonicity of function f⋆.
We now prove that the second requirement of Definition 2

is satisfied. Let us consider k ∈ K, we already know that
zk ∈ Z1 ∪ Z3. In the case where zk ∈ Z1, we have from (6)
and (8),

yk ⪯ Sm(zk)−w +w = f⋆(zk) +w.

Moreover, since Sm ∈ SD, we have

yk ⪰ Sm(zk) = f⋆(zk) +w.

Therefore, yk ∈ F ⋆(xk). A similar statement can be shown
when zk ∈ Z3. It follows that F ⋆ ∈ CD.

Disturbance

Fig. 4. Construction of the map F ⋆ according to (8).

Hence, we have proved that for all z⋆ ∈ Z \Z0 and for all
y⋆ ∈ Sm(z⋆), there exists a map F ⋆ ∈ CD such that y⋆ ∈
F ⋆(z⋆). Hence, for all map S ∈ SD, we have y⋆ ∈ S(z⋆).
Hence, Sm is a minimal simulating map.

We now show some useful properties of minimal simulating
maps. The first one states that the minimal simulating map
in (3) inherits the monotonicity property:

Proposition 2: The minimal simulating map Sm defined
in (3) is monotone.

Proof: Let z, z′ ∈ Z such that z ⪯ z′. Then,
K+(z′) ⊆ K+(z) and K−(z) ⊆ K−(z′) which give from
(5) and (6), Sm(z) ⪯ Sm(z′) and Sm(z) ⪯ Sm(z′). Then,
for all y ∈ Sm(z), y ⪯ Sm(z) ⪯ y′ with y′ = Sm(z′) ∈
Sm(z′). Similarly, we can show that for all y′ ∈ Sm(z′),
y′ ⪰ Sm(z′) ⪰ y with y = Sm(z) ∈ Sm(z). Therefore,
according to Definition 1, Sm is monotone.

The second result characterizes the minimal simulating map
obtained from the fusion of two data sets:

Proposition 3: Given two data sets D′,D′′, consider the
data set D = D′ ∪ D′′, and let Sm, S′

m, S′′
m be the minimal

simulating maps of D, D′, D′′ given by (3). Then, we have

∀z ∈ Z, Sm(z) = S′
m(z) ∩ S′′

m(z).

Proof: The data set D can be written as

D = {(zk,yk) | yk ∈ F (zk), k ∈ KD},

with KD = KD′ ∪ KD′′ where KD′ and KD′′ are the sets of
indices of D′ and D′′. Then, for all z ∈ Z, we have

K−
D(z) = K−

D′(z) ∪K−
D′′(z), K+

D(z) = K+
D′(z) ∪K+

D′′(z).

Substituting in (3), we can easily show that for all z ∈ Z that
Sm(z) = S′

m(z) ∩ S′′
m(z).

Proposition 3 has several implications. The first one is
that the computation of a minimal simulating map for large
data sets can be easily parallelized. Indeed, one can split
the data into multiple data sets, compute minimal simulating
maps for these data sets concurrently, and then compute
their intersection. The second implication is that pre-computed
minimal simulating maps can be easily refined when new
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Fig. 5. The figure shows the rectangular partition of the input set Z
based on the collected data points and an example of one of the discrete
variables q. All the points in yellow, aggregated in q, have the same
output.

data becomes available. Indeed, it is sufficient to compute a
minimal simulating map for the new data and to intersect with
the pre-computed one.

Remark 3: In this section, we provided a solution to Prob-
lem 1 for computing a minimal simulating map of D, which
provides a tight over-approximation of the map F . Note
that similar results can be obtained if we seek an over-
approximation of the function f as it can be shown that

∀z ∈ Z, f(z) ∈ [Sm(z)−w, Sm(z)−w],

which can be seen in Figure 2. If we want to calculate a single-
valued approximation of the function f , we can use a similar
approach to the one used in set membership technique [27]
and build an estimation of f using the calculated bounds on
the minimal simulating map

f(z) =
Sm(z)−w + Sm(z)−w

2
.

It will be apparent from what follows that this estimation is
piecewise constant and not continuous. Continuous estimation
of f included in the over-approximation map Sm is derived
in [22] using the class of multi-affine functions.

2) Computation: After characterizing minimal simulating
maps, we move to address how to compute one in practice.
Our approach and the used notations are illustrated in Figure 5,
where a six data points case is demonstrated.

For that purpose, we introduce a rectangular partition of
the input set Z, induced by the data D. For simplicity, let us
assume that Z is a closed interval of Rn

, i.e. Z = [α,α].
This is without loss of generality since it is always possible
to embed Z in such a set.

For each i ∈ {1, . . . , n}, we sort the ith components of
all the data points in the input space (i.e., zik, for k ∈ K),
so we have zi

k1
i
≤ · · · ≤ zi

k
|K|
i

. The sorted values are then

used to define the finite partitions (Zi
qi)qi∈Qi of [αi, αi] where

Qi = {0, . . . , |K|} and
Zi
0 = [αi, zi

k1
i
),

Zi
qi = [zi

kqi

i

, zi
ki

qi+1
), qi = 1, . . . , |K| − 1,

Zi
|K| = [zi

k
|K|
i

, αi].

Then, let us define Q = Q1×· · ·×Qn, and let the finite rect-
angular partition (Zq)q∈Q of Z be given for q = (q1, . . . , qn)
by Zq = Z1

q1 × · · · × Zn
qn .

Fig. 6. The figure shows the predefined partition of the input set Z.
The function ϕ maps all the points inside a cell (e.g. square in yellow) to
a discrete variable. The map σ is the minimal interval-valued simulating
map.

Lemma 1: Let Sm be the minimal simulating map of D
given by (3). Then, for all q ∈ Q, for all z, z′ ∈ intZq,
Sm(z) = Sm(z′).

Proof: Because the partition is defined using the com-
ponents of data points, we have, for all q ∈ Q, for all
z, z′ ∈ intZq, K−(z) = K−(z′) and K+(z) = K+(z′).
Subsequently, we obtain by (3), Sm(z) = Sm(z′).

Building on the property presented in Lemma 1, we can
introduce the new map σm : Q ⇒ Rm

defined as follows

∀q ∈ Q, σm(q) = Sm(z), for z ∈ intZq. (9)

We also define a quantization function ϕm : Z → Q associated
to the finite data-induced partition (Zq)q∈Q as follows

∀z ∈ Z, ∀q ∈ Q, ϕm(z) = q ⇐⇒ z ∈ Zq. (10)

Proposition 4: Let σm and ϕm be given by (9) and (10),
then σm ◦ ϕm is a minimal simulating map of D.

Proof: It follows directly from Lemma 1 and from the
definition of σm and ϕm that σm ◦ϕm = Sm a.e.. Then, let us
show that σm ◦ϕm is a simulation map. From the construction
of the partition (Zq)q∈Q, it follows that for all q ∈ Q, for all
z ∈ Zq, for all z′ ∈ intZq, K−(z′) ⊆ K−(z) and K+(z′) ⊆
K+(z). Hence, from (3), Sm(z) ⊆ Sm(z′). Then, it results
that Sm(z) ⊆ σm ◦ϕm(z), for all z ∈ Z. Since Sm ∈ SD, we
have that σm◦ϕm ∈ SD. Therefore, according to Proposition 1,
σm ◦ ϕm is a minimal simulating map of D.

Hence, computing the finite partition (Zq)q∈Q and the map
σm offers an effective way to compute a minimal simulating
map and store it. Let us remark that the number of elements in
Q is (|K|+1)n. Hence, it grows polynomially with the number
of data points |K| and exponentially with the dimension n of
the input space Z. Therefore, it is computationally prohibitive
to use this approach for large data sets, particularly with high-
dimensional input spaces. In the following, we tackle this
problem by fixing a partition a priori and by finding the best
simulating map on this partition.

C. Simulating maps on fixed partitions
Instead of relying on the data set D to partition Z, which

makes calculating the simulating map computationally ex-
pensive, we will assume that a rectangular partition of Z is
given a priori. In the following, we characterize the tightest
interval-valued simulating map on this partition. Our approach
is illustrated in Figure 6
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1) Construction: For each coordinate i ∈ {1, . . . , n}, let
be given finite partitions (Di

qi)qi∈Qi of [αi, αi] where Qi =

{0, . . . ,Ki} and
Di

0 = [αi, αi
1),

Di
qi = [αi

qi , α
i
qi+1), q

i = 1, . . . ,Ki − 1,

Di
Ki = [αi

Ki , α
i],

where αi < αi
1 < · · · < αi

Ki < αi. Note that the number of
partition elements Ki+1 can be different from one coordinate
to another. Then, let us define Q = Q1 × · · · × Qn, and let
the finite rectangular partition (Dq)q∈Q of Z be given for
q = (q1, . . . , qn) by Dq = D1

q1 × · · · ×Dn
qn .

Let us define the map σ : Q ⇒ Rm
given for all q ∈ Q by

σ(q) =

 ⋂
k∈K−(zq)

{y ∈ Rm| yk +w −w ⪯ y}


∩

 ⋂
k∈K+(zq)

{y ∈ Rm| y ⪯ yk +w −w}

 (11)

where zq = infDq, zq = supDq, and K−, K+ are defined
as in (4). From (5), (6) and (11), we get that σ is an interval-
valued map: for all q ∈ Q, σ(q) = [σ(q), σ(q)] with σ(q) =
Sm(zq) and σ(q) = Sm(zq).

We also consider a quantization function ϕ : Z → Q
associated to the finite partition (Dq)q∈Q and defined as

∀z ∈ Z, ∀q ∈ Q, ϕ(z) = q ⇐⇒ z ∈ Dq. (12)

Theorem 2: Let σ and ϕ be given by (11) and (12), then
the following properties hold:

1) σ ◦ ϕ ∈ SD (Simulation);
2) For any interval-valued map σ′ : Q ⇒ Rm

, such that
σ′ ◦ ϕ ∈ SD, it holds for all q ∈ Q, σ(q) ⊆ σ′(q)
(Minimality).

Proof: Let Sm be the minimal simulating map in (3).
Let us prove the simulation property. Let z ∈ Z, then zϕ(z) ⪯
z ⪯ zϕ(z), which yields

K−(zϕ(z)) ⊆ K−(z) and K+(zϕ(z)) ⊆ K+(z).

Hence, by (3) and (11), Sm(z) ⊆ σ ◦ ϕ(z). Since Sm ∈ SD,
we get σ ◦ ϕ ∈ SD.

Next, let us prove the minimality property. Let us consider
an interval-valued map σ′ : Q ⇒ Rm

such that σ′ ◦ ϕ ∈ SD,
and let q ∈ Q. From (4), it can be seen that there exists
a neighborhood Nq of zq such that for all z ∈ Nq with
z ⪯ zq it holds K+(z) = K+(zq), which yields by (3)
Sm(z) = Sm(zq). Then, let z⋆ ∈ (Nq ∩ Dq) \ Z0 with
Z0 the set of measure zero defined as in (7). Let us remark
that z⋆ ⪯ zq and hence Sm(z⋆) = Sm(zq). From the
proof of Theorem 1, we get that there exists F ⋆ ∈ CD such
that Sm(zq) = Sm(z⋆) ∈ F ⋆(z⋆). Then, σ′ ◦ ϕ ∈ SD
gives us that Sm(zq) ∈ σ′ ◦ ϕ(z⋆). Moreover, z⋆ ∈ Dq,
gives us that σ′ ◦ ϕ(z⋆) = σ′(q). Hence, Sm(zq) ∈ σ′(q).
Similarly, we can show that Sm(zq) ∈ σ′(q). Then since σ′

is interval-valued, we get that [Sm(zq), Sm(zq)] ⊆ σ′(q).
Then, σ(q) = [Sm(zq), Sm(zq)] gives us σ(q) ⊆ σ′(q).

It follows from Theorem 2 that it is possible to define a
notion of minimal simulating map of D relative to a given
partition (Dq)q∈Q of Z. It should be noticed that similar
results to Propositions 2 and 3 hold for the simulating map
σ ◦ ϕ. Finally, one can check that if the partition (Dq)q∈Q

of Z coincides with the data-induced partition defined in the
previous section, σ ◦ ϕ is minimal simulating map of D. The
difference between the maps σ◦ϕ and σm◦ϕ can be examined
by comparing Figure 5 and Figure 6.

Remark 4: For a given number of cells, typically smaller
than data-induced partition, choosing an optimal partition
(Dq)q∈Q is a complicated problem. However, it can be easily
shown that the optimal partition (achieving the minimal over-
approximation volume) is aligned with some of the data point
components. This makes it possible to rely on heuristics
to choose good yet sub-optimal partitions. For instance, a
possible approach would be to aggregate cells of the data-
induced partition where a lot of data is available.

2) Efficient computation: Given the partition (Dq)q∈Q of Z,
computing the simulating map defined in the previous section
amounts to computing the map σ : Q ⇒ Rm

given by (11).
A straightforward algorithm to compute σ is as follows. For
each q ∈ Q, we go through all the data points in D and
determine K−(zq) and K+(zq). Then, one gets σ(q) by (11).
That makes the overall complexity O(|K| × |Q|), i.e. bilinear
with respect to the number of data points and to the number
of the partition elements. In this section, we present a more
efficient approach to calculating σ.

For simplicity, we assume in the following that for all k ∈
K, zk ∈ int Z, i.e. that no data point lies on the boundary of
the input set. Then, since σ(q) = Sm(zq), it follows from (5)
that for all q ∈ Q such that qi = Ki, for some i ∈ {1, . . . , n},
σ(q) = (+∞, . . . ,+∞). Similarly, since σ(q) = Sm(zq), it
follows from (6) that for all for all q ∈ Q such that qi = 0,
for some i ∈ {1, . . . , n}, σ(q) = (−∞, . . . ,−∞).

Then, let us consider the following subsets of Q:

Q = {0, . . . ,K1 − 1} × · · · × {0, . . . ,Kn − 1},
Q = {1, . . . ,K1} × · · · × {1, . . . ,Kn}.

One needs to compute σ(q) and σ(q) for q ∈ Q and q ∈ Q,
respectively. For that purpose, let us first define the functions
σ0 : Q → Rm

and σ0 : Q → Rm
as follows:

σ0(q) = inf
{
yk +w −w | zk ∈ cl Dup(q)

}
, (13)

σ0(q) = sup
{
yk +w −w | zk ∈ cl Dlo(q)

}
, (14)

where up(q) = q + 1n, lo(q) = q − 1n, and 1n =
(1, . . . , 1). An illustration of the elements up(q) and lo(q)
can be seen in Figure 7. To compute σ0, σ0, we start by
initializing σ0(q) = (+∞, . . . ,+∞) for all q ∈ Q, and
σ0(q) = (−∞, . . . ,−∞) for all q ∈ Q. Then, we go through
all the points in the set D; for each entry (zk,yk) we find
all q such that zk ∈ cl Dq. Then, we update the value of
σ0(up(q)) and σ0(lo(q)) using (13) and (14). The partition is
stored and sorted component-wise, so to find q, we can do a
binary search for each component of zk. Therefore, computing
σ0, σ0 is done with a complexity O(|K| ×

∑
i log(K

i)) or
equivalently O(|K| × log(|Q|)).
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q

u ad(q)

u ad(q)

l ad(q)

l ad(q)

lo(q)

up(q)

σ

σ

Fig. 7. A representation of the sets up(q), u ad(q), lo(q), l ad(q) and
the order in which we calculate σ and σ.

We now present a result that will allow us to compute the
map σ sequentially.

Proposition 5: Let σ be the interval-valued map given by
(11), its upper and lower bounds σ, σ satisfy:

∀q ∈ Q, σ(q) = min (inf {σ(q′)| q′ ∈ u ad(q)} , σ0(q)) ,
(15)

∀q ∈ Q, σ(q) = max (sup {σ(q′)| q′ ∈ l ad(q)} , σ0(q)) ,
(16)

where

u ad(q) = {q′ ∈ Q| ∃k ∈ {1, . . . , n},q′ − q = ek},

l ad(q) = {q′ ∈ Q| ∃k ∈ {1, . . . , n},q− q′ = ek},

and ek ∈ Rn whose kth component is 1 and all others are 0.

An illustration of the sets u ad(q) and l ad(q) can be seen
in Figure 7.

Proof: We prove the property for the upper bound σ; the
proof for the lower bound σ follows similarly. Let q ∈ Q, it
can be seen that

K+(zq) =
( ⋃

q′∈u ad(q)

K+(zq′)
)
∪ {k ∈ K| zk ∈ Dup(q)} .

Then, since σ(q) = Sm(zq), (15) follows directly from (5)
and the equality above.

From Proposition 5, we can see that to compute σ we go
through all q ∈ Q sequentially in a decreasing order, starting
from q = (K1, . . . ,Kn) as represented by Figure 7. For σ
we start from q = (1, . . . , 1) and though all q ∈ Q in an
increasing order.

Proposition 6: The map σ can be computed with complex-
ity O(|K| × log(|Q|) + |Q|).

Proof: We already showed the complexity of computing
σ0 and σ0 is O(|K| × log(|Q|)). To compute σ we should
go through all the elements q ∈ Q twice, one in decreasing
order to compute σ and one in increasing order to compute
σ. Therefore, the complexity of computing σ is O(|K| ×
log(|Q|) + |Q|).

III. DATA-DRIVEN ABSTRACTION

In this section, we show that our approach presented in
the previous section can be used for data-driven modeling
of discrete-time dynamical systems. We show that simulating
maps computed from data can be used to define sound
finite state abstractions for dynamical systems with unknown
monotone dynamics. Then, we extend our approach to non-
monotone systems with bounded derivatives.

We consider a discrete-time dynamical system:

x(τ + 1) ∈ f(x(τ),u(τ)) + g(x(τ),u(τ)) +W (17)

where x(τ) ∈ X ⊆ Rnx and u(τ) ∈ U ⊆ Rnu denote the
state and the control input, g : X × U → Rnx is a known
function whereas f : X×U → Rnx is an unknown monotone
function with respect to z = (x,u), W = [w,w] ⊆ Rnx is a
bounded interval of disturbances with known bounds.

Let be given a set of data D ⊆ X ×U ×Rnx consisting of
transitions sampled from the system (17):

D =

{
(xk,uk,x

′
k)

∣∣∣∣ x′
k ∈ f(xk,uk) + g(xk,uk) +W,

k ∈ K

}
(18)

where K is a finite set of indices. Because g is known, we can
construct an auxiliary data set D′ as follows:

D′ = {(xk,uk,yk)| yk = x′
k − g(xk,uk), k ∈ K}.

The new auxiliary data set can be seen as a set of data
generated by a monotone map of the form (1).

Therefore, we can use the approach presented in the previ-
ous section to compute a simulating map S : X × U ⇒ Rnx

of data D′. Then, a data-driven model of system (17) can be
defined as follows

x(τ + 1) ∈ S(x(τ),u(τ)) + g(x(τ),u(τ)). (19)

In the following, we formally relate the behaviors of (17)
and (19).

A. Alternating simulation relation
Alternating simulation [33] is a formal relationship between

the behaviors of two systems that makes it possible to refine
a controller synthesized for one system in order to control the
other while preserving guarantees of correctness. Alternating
simulation relations are usually defined within the framework
of transition systems.

Definition 5: A transition system T is a tuple T =
(X,U,∆, Y,H), where X is a set of states, U is a set of
inputs, ∆ : X × U ⇒ X is a transition relation, Y is a set of
outputs, and H : X → Y is an output map.

An input u ∈ U is called enabled at x ∈ X if ∆(x,u) ̸= ∅.
The set of all inputs enabled at x is denoted enab∆(x).

We define transition systems Tsys = (X,U,∆sys, Y,H) and
Tdata = (X,U,∆sys, Y,H) associated to (17) and (19) where
the set of states X and inputs U are the same as in (17) and
(19). The transition relation ∆sys is defined as follows, for all
x ∈ X:

u ∈ enab∆sys
(x) ⇐⇒ f(x,u) + g(x,u) +W ⊆ X, (20)
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and

∀u ∈ enab∆sys(x), ∆sys(x,u) = f(x,u) + g(x,u) +W.
(21)

Similarly, the transition relation ∆data is defined as follows,
for all x ∈ X:

u ∈ enab∆data
(x) ⇐⇒ S(x,u) + g(x,u) ⊆ X, (22)

and

∀u ∈ enab∆data
(x), ∆data(x,u) = S(x,u) + g(x,u). (23)

Let us remark that (20) and (22) ensure that an input u is
enabled at state x only if it is guaranteed that the next state
of (17) and (19) belongs to the set of states X . The set of
outputs Y and the output map H are left unspecified. They
can be chosen arbitrarily but are assumed to be the same for
Tsys and Tdata. One can, for instance, choose Y = X and H
to be the identity map.

In order to relate formally the behaviors of Tsys and Tdata,
we recall the notion of alternating simulation relation [33]:

Definition 6: Let us consider two transition systems Ti =
(Xi, Ui,∆i, Yi, Hi) i = 1, 2, sharing the same sets of outputs
(Y1 = Y2 = Y ). A relation R ⊆ X1 × X2 is an alternating
simulation relation from T1 to T2 if the following conditions
are satisfied:

1) for all x1 ∈ X1, there exists x2 ∈ X2 such that
(x1,x2) ∈ R;

2) for all (x1,x2) ∈ R, H1(x1) = H2(x2);
3) for all (x1,x2) ∈ R, for all u1 ∈ enab∆1

(x1), there ex-
ists u2 ∈ enab∆2

(x2) such that for all x′
2 ∈ ∆2(x2,u2),

there exists x′
1 ∈ ∆1(x1,u1) satisfying (x′

1,x
′
2) ∈ R.

Then, we say that:
• T1 is alternatingly simulated by T2, denoted T1 ⪯AS T2,

if there exists an alternating simulation relation R from
T1 to T2;

• T1 is alternatingly bisimilar to T2, denoted T1
∼=AS T2,

if there exists a relation R such that R is an alternating
simulation relation from T1 to T2 and R−1 is an alter-
nating simulation relation from T2 to T1.

Proposition 7: Let S ∈ SD′ , then for any choice of set of
outputs Y and of output map H : X → Y , Tdata ⪯AS Tsys.

Proof: Let us show that

R = {(xdata,xsys) ∈ X ×X | xdata = xsys}

is an alternating simulation relation from Tdata to Tsys. The
first two conditions of alternating simulation follow directly
from the form of R and from the fact that Tsys and Tdata

have the same sets of states X and of outputs Y , and the
same output maps H .

Since S ∈ SD′ , it follows from Definition 3 that

∀x ∈ X,u ∈ U, f(x,u) +W ⊆ S(x,u).

Hence, S(x,u) + g(x,u) ⊆ X implies f(x,u) + g(x,u) +
W ⊆ X . Therefore, from (20) and (22), we have for all
x ∈ X , enab∆data

(x) ⊆ enab∆sys
(x). Moreover, from (21)

and (23), for all u ∈ enab∆data
(x), it holds ∆sys(x,u) ⊆

∆data(x,u).

Let us now show the third condition of alternating
simulation. Let us consider (xsys,xdata) ∈ R , then
xsys = xdata. Let udata ∈ enab∆data

(xdata), then for
usys = udata, we have usys ∈ enab∆sys

(xsys). More-
over, ∆sys(xsys,usys) ⊆ ∆data(xdata,udata). Therefore,
for all x′

sys ∈ ∆sys(xsys,usys), there exists x′
data ∈

∆data(xdata,udata) satisfying x′
sys = x′

data, and hence
(x′

sys,x
′
data) ∈ R.

From the previous result, it follows that the data-driven
model Tdata can be used to synthesize controllers that can
be refined into controllers for the partially unknown system
Tsys, with formal guarantees of correctness.

B. Symbolic abstraction
We now go one step further by computing symbolic ab-

stractions of Tdata. This will allow us to use discrete con-
troller synthesis techniques to control the system with formal
guarantees on the closed-loop behavior. Let us assume that
the sets of states and inputs X and U are closed intervals of
Rnx and Rnu and let (Xq)q∈Q, (Up)p∈P be given rectangular
partitions of X and U as defined for Z in Section II-C. We
define a quantization function ϕ : X×U → Q×P associated
to these finite partitions as follows,

∀(x,u) ∈ X × U, ∀(q,p) ∈ Q× P,

ϕ(x,u) = (q,p) ⇐⇒ x ∈ Xq, u ∈ Up. (24)

Then, we can use the approach presented in Section II-C to
compute a map σ : Q×P ⇒ Rnx such that σ◦ϕ is a simulating
map of D′.

Let us assume that for all (q,p) ∈ Q×P , we can compute
subsets G(q,p) ⊆ Rnx such that

∀x ∈ Xq, ∀ u ∈ Up, g(x,u) ∈ G(q,p). (25)

Such sets can be computed, for instance, using interval analy-
sis [14] or using approaches based on mixed monotonicity or
on growth bounds [23].

We define a symbolic transition system Tsymb =
(Q,P,∆symb, Y,Hsymb) where the set of states and inputs are
given by the partitions index sets Q and P , and the transition
relation ∆symb is defined as follows, for all q ∈ Q:

p ∈ enab∆symb
(q) ⇐⇒ σ(q,p) +G(q,p) ⊆ X, (26)

and

∀p ∈ enab∆symb
(q),

∆symb(q,p) =
{
q′ ∈ Q| (σ(q,p) +G(q,p)) ∩X ′

q ̸= ∅
}
.

(27)

We define the set of outputs to be Y = Q and the output map
Hsymb to be the identity map.

Theorem 3: Let S = σ ◦ ϕ ∈ SD′ , let Tsys and Tdata be
defined as Section III-A for the set of outputs Y = Q and the
output map H : X → Q, given by

∀x ∈ X, ∀q ∈ Q, H(x) = q ⇐⇒ x ∈ Xq. (28)

Then, the following relation holds:
1) Tsymb ⪯AS Tdata ⪯AS Tsys.
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2) If g = 0, then Tsymb
∼=AS Tdata.

Proof: The fact that Tdata ⪯AS Tsys follows directly
from Proposition 7. Then, let us show that

R = {(q,x) ∈ Q×X | x ∈ Xq}

is an alternating simulation relation from Tsymb to Tdata. Let
q ∈ Q and let x ∈ Xq, then (q,x) ∈ R and the first condition
of alternating simulation holds. Let (q,x) ∈ R, then x ∈ Xq,
which by (28) gives H(x) = q. Since Hsymb(q) = q, the
second condition of alternating simulation holds.

Let us now show the third condition of alternating simu-
lation. Let (q,x) ∈ R and p ∈ enab∆symb

(q), then choose
u ∈ Up. Since S = σ ◦ ϕ, we have S(x,u) = σ(q,p), and
by (25) we have g(x,u) ∈ G(q,p). Hence,

S(x,u) + g(x,u) ⊆ σ(q,p) +G(q,p). (29)

Then, it follows from (22) and (26) that u ∈ enab∆data
(x). Let

x′ ∈ ∆data(x,u), from (23) and (29), we get x′ ∈ σ(q,p) +
G(q,p). Let q′ ∈ Q such that x′ ∈ Xq′ , from (27), we get that
q′ ∈ ∆symb(q,p). Moreover, since x′ ∈ Xq′ , (q′,x′) ∈ R.
Hence, we proved that Tsymb ⪯AS Tdata.

Now, let us assume that for all x ∈ X , and u ∈ U ,
g(x,u) = 0. Then, (25) holds with G(q,p) = {0}, for all
q ∈ Q and p ∈ P . Let us show that in that case, R−1 is
an alternating simulation relation from Tdata to Tsymb. Let
x ∈ X , since (Xq)q∈Q is a partition of X , there exists
q ∈ Q such that x ∈ Xq. Hence, (x,q) ∈ R−1 and the
first condition of alternating simulation holds. The proof that
the second condition holds for R−1 is the same as for R.

Then, let us show the third condition of alternating simu-
lation. Let (x,q) ∈ R−1 and u ∈ enab∆data

(x), then there
exists p such that u ∈ Up. Since S = σ◦ϕ, we have S(x,u) =
σ(q,p). Moreover, since g(x,u) = 0 and G(q,p) = {0},
we get from (22) and (26) that p ∈ enab∆symb

(q). Let
q′ ∈ ∆symb(q,p), from (27) we get that σ(q,p) ∩Xq′ ̸= ∅.
Hence, S(x,u)∩Xq′ ̸= ∅. Then, let x′ ∈ S(x,u)∩Xq′ . From
(23), x′ ∈ ∆data(x,u). Moreover (x′,q′) ∈ R−1. Hence, we
proved that Tdata

∼=AS Tsymb.
Theorem 3 shows that the symbolic abstraction Tsymb can

be used to synthesize controllers for the data-driven system
Tdata and hence also for the partially unknown system Tsys.
Moreover, when Tsys is fully unknown and monotone (i.e.
when g = 0), then Theorem 3 shows that working with the
symbolic abstraction Tsymb does not bring any conservatism
compared to working with the data-driven model Tdata.

Remark 5: The fact that Tsymb has only a finite number of
state and input values allows us to use algorithmic techniques
to synthesize controllers for various specifications such as
safety, reachability, or attractivity [8] or even more complex
specifications expressed e.g. in linear temporal logic [1] or
using hybrid automata [32]. Due to the fact that there is an
alternating simulation relation between Tsys and Tsymb, the
synthesized controller can be refined such that the desired
closed-loop behavior of Tsys is guaranteed to be correct-by-
design (see e.g. [33] for more details on discrete controller
refinement).

C. Systems with bounded derivatives
We now show how our approach can be adapted to compute

data-driven models for systems of the form (17) where the
unknown dynamics f is not necessarily monotone but has
bounded derivatives with known upper and lower bounds. Our
construction is inspired by the approach presented in [34]
for computing decomposition functions of mixed-monotone
functions.

Let us assume that for all x ∈ X , u ∈ U :

∂f i

∂xj
(x,u) ∈ [aij , aij ], i, j ∈ {1, . . . , nx},

∂f i

∂uj
(x,u) ∈ [bij , bij ], i ∈ {1, . . . , nx}, j ∈ {1, . . . , nu}.

where the bounds aij , aij , bij , bij ∈ R are known. Let us
introduce the auxiliary matrices A−, A+ ∈ Rnx×nx and
B−, B+ ∈ Rnx×nu , where for all i, j ∈ {1, . . . , nx}

A−
ij =

{
aij if aij < 0,

0 otherwise,
A+

ij =

{
aij if aij > 0,

0 otherwise,

and for all i ∈ {1, . . . , nx}, for all j ∈ {1, . . . , nu}

B−
ij =

{
bij if bij < 0,

0 otherwise,
B+

ij =

{
bij if bij > 0,

0 otherwise.

Then, let the functions f−, f+ : X × U → Rnx and g−, g+ :
X × U → Rnu be defined for all x ∈ X , u ∈ U , by:

f−(x,u) = f(x,u)−A−x−B−u,

f+(x,u) = A+x−B+u− f(x,u),

g−(x,u) = g(x,u) +A−x+B−u,

g+(x,u) = g(x,u) +A+x+B+u.

Let us remark that g−, g+ are known, while f−, f+ are
unknown but monotone since it can be readily checked that
all their partial derivatives are nonnegative.

Given a data set D as in (18), we can define two auxiliary
data sets:

D− = {(xk,uk,y
−
k )| y

−
k = x′

k − g−(xk,uk), k ∈ K},
D+ = {(xk,uk,y

+
k )| y

+
k = g+(xk,uk)− x′

k, k ∈ K}.

We can use the approach presented in Section II to compute
simulating maps S−, S+ : X × U ⇒ Rnx of data D− and
D+, respectively.

Proposition 8: Let S− ∈ SD− and S+ ∈ SD+ , then let
S : X × U ⇒ Rnx be given for all x ∈ X , u ∈ U by:

S(x,u) =
(
g−(x,u) + S−(x,u)

)
∩
(
g+(x,u)− S+(x,u)

)
.

Then, it holds:

∀x ∈ X,u ∈ U, f(x,u) + g(x,u) +W ⊆ S(x,u).

Proof: Let x ∈ X , u ∈ U , from S− ∈ SD− , we have

f−(x,u) +W ⊆ S−(x,u).

Since f(x,u) + g(x,u) = f−(x,u) + g−(x,u), we get

f(x,u) + g(x,u) +W ⊆ g−(x,u) + S−(x,u).
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Similarly, we can show that

f(x,u) + g(x,u) +W ⊆ g+(x,u)− S+(x,u),

which leads to the result of the proposition.

From Proposition 8, a data-driven model of system (17) can
be defined as follows

x(τ + 1) ∈ S(x(τ),u(τ)). (30)

Following similar approaches to that described in Sections III-
A and III-B, one can define a data-driven transition system
Tdata and a symbolic abstraction Tsymb such that Tsymb ⪯AS
Tdata ⪯AS Tsys.

IV. DATA-DRIVEN VERIFICATION OF ASSUMPTIONS

In the previous sections, we made several assumptions on
the unknown map F : bounds on the disturbances and bounds
on the partial derivatives of the function f . It is sometimes
possible to derive such bounds a priori. For instance, in some
cases, the monotonicity of a function can be inferred from
principles of physics. However, there are many situations
where these bounds also need to be inferred from data. In this
section, we briefly present an approach to compute bounds on
the disturbances and on the partial derivatives of the function f
directly from data, with probabilistic guarantees. Our approach
is based on the scenario approach [3], a data-driven approach
to robust convex optimization.

Let us consider a map F : Z ⇒ Rm
where Z ⊆ Rn

and
such that for all z ∈ Z, F (z) = f(z)+W where f : Z → Rm

is a differentiable function with unknown lower and upper
bounds aij , aij on its partial derivatives ∂fi

∂zj and W , W ⊆
Rm is a bounded interval of disturbances with unknown lower
and upper bounds w,w. Let us remark that without loss of
generality, it is always possible to choose w = −w.

For all i ∈ {1, . . . ,m}, let ai = (ai1, . . . , ain) and
ai = (ai1, . . . , ain). Some bounds are consistent with our
assumptions if and only if they satisfy:

∀z,z′ ∈ Z, ∀y ∈ F (z),∀y′ ∈ F (z′),

yi − y′i ≤ ai · [z− z′]+ + ai · [z− z′]− + 2wi (31)

where [z]+ = max(z, 0) and [z]− = min(z, 0).
Let us assume that we are given a set of random data

generated by the map F :

D̃ = {(zk,yk, z
′
k,y

′
k) | yk ∈ F (zk),y

′
k ∈ F (z′k), k ∈ K̃}

where K̃ is a finite set of indices. We assume that the samples
in D̃ are independent and identically distributed. We aim
at computing bounds such that (31) holds with probabilistic
guarantees. This can be done using the scenario approach [3],
which essentially consists in computing bounds such that the
inequality in (31) holds at all points in D̃. However, to obtain
high confidence bounds, one needs to consider large data sets,
resulting in large linear programs that can be complicated to
solve in practice. For that reason, we present the following
two-step approach that allows us to deal with very large data
sets in practice. Let us partition the set of D̃ in two subsets
D̃′ and D̃′′ indexed by K̃′ and K̃′′ such that K̃ = K̃′ ∪ K̃′′. In

the first step, D̃′ will be used to estimate the bounds aij , aij .
In the second step, D̃′′ will be used to estimate the bound wi.
Typically, the number of samples in D̃′′ will be much larger
than that in D̃′.

We first consider the following linear program:
min

ai,ai,wi
ai ·

∑
k∈K̃′ [zk − z′k]

+ + ai ·
∑

k∈K̃′ [zk − z′k]
− + 2|K̃′|wi

s.t. yik − y′ik ≤ ai · [zk − z′k]
+

+ai · [zk − z′k]
− + 2wi, ∀k ∈ K̃′

ai ⪯ ai.

(32)

The constraints of (32) are chosen such that (31) holds at all
points in D̃′, while the cost is chosen so as to minimize the
average value of the right-hand side of (31). Let a⋆i ,a

⋆
i denote

the optimal values of ai,ai in (32). The optimal value of wi

is disregarded and estimated again in the second step.
Indeed, let us define

w⋆i =
1

2
max

{
yik − y′ik − a⋆i · [zk − z′k]

+

−a⋆i · [zk − z′k]
−

∣∣∣∣ k ∈ K̃′′
}
.

(33)
Let us remark that while (32) can be solved using a moderately
large data set D̃′, (33) can easily be estimated on very large
data sets. Moreover, we can provide probabilistic guarantees
on the estimated bounds:

Proposition 9: Let β ∈ (0, 1) be a confidence parameter
and let i ∈ {1, . . . ,m}, let a⋆i ,a

⋆
i and w⋆i be estimated bounds

using (32) and (33), respectively. Then, with probability at
least 1− β, it holds that

P(yi−y′i ≤ a⋆i ·[z−z′]++a⋆i ·[z−z′]−+2w⋆i) ≥ β
1

|K̃′′| . (34)

Proof: Consider the following robust linear program
min
wi

wi

s.t. yi − y′i ≤ a⋆
i · [z− z′]+ + a⋆

i · [z− z′]− + 2wi,

∀z, z′ ∈ Z, ∀y ∈ F (z), ∀y′ ∈ F (z′).
(35)

Following the scenario approach, we consider the following
associated scenario linear program:

min
wi

wi

s.t. yik − y′ik ≤ a⋆
i · [zk − z′k]

+

+a⋆
i · [zk − z′k]

− + 2wi, ∀k ∈ K̃′′.

(36)

It is easy to see that (33) provides the unique solution to (36).
Moreover, from the results in [3], we get that (34) holds for
the solution of (36).

Hence, we have provided a method to estimate bounds on
the disturbances and bounds on the partial derivatives. By
using a two-step approach, our method can be used with very
large data sets and can thus estimate the bounds with very
high confidence. Let us remark that the method can be used
to check if the system is monotone by checking if a⋆i ⪰ 0, for
all i ∈ {1, . . . ,m}.
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V. NUMERICAL EXAMPLES

In this section, we present three numerical examples. In
the first, we test the performance of the introduced over-
approximation. In the second, we study the case of a system
with an unknown monotone part. Finally, we finish by showing
the case of a system with bounded derivatives.

For all of the examples, we use interval domains, Z =
[α,α], α,α ∈ Rn

for the maps we are trying to over-
approximate. For i ∈ {1, . . . , n}, we define the finite partition
(Di

qi)qi∈Qi as follows, Qi = {0, . . . ,Ki} and
Di

0 = [αi, αi
1)

Di
qi = [ q

i−1
Ki−1 (α

i
Ki − αi

1) + αi
1,

qi

Ki−1 (α
i
Ki − αi

1) + αi
1),

qi = 1, . . . ,Ki − 1

Di
Ki = [αi

Ki , α
i]

For the three examples, we choose αi
1 = αi + c (αi − αi),

αi
Ki = αi − c (αi − αi), and c is a constant specific to each

example.

A. Over-approximating an unknown function

In the first example, we present a set of experiments
envisioned to test and visualize the algorithms introduced in
this paper for the over-approximation of set-valued maps.

To quantitatively measure the performance of the over-
approximation, we can check the execution time and the con-
servatism in the resulting over-approximation. We calculate the
conservatism of the over-approximation using the following
performance criterion

µ(D, Q) =

∑
q∈Q′

(vol(Zq)× σ(q))∑
q∈Q′

(vol(Zq)× vol(W ))

where

Q′ =
{
q ∈ Q

∣∣ −∞ < σi(q), σi(q) < ∞,∀i ∈ {1, . . . , n}
}
.

The denominator of µ represents the volume of the graph
of the unknown map for the part of space where we can
find an over-approximation, whereas the numerator represents
the volume of our over-approximation. µ can take its value
in the interval [1,∞), and the smaller its value is, the less
conservative the over-approximation is.

In this example, we consider a monotone set-valued map
F : [−π, π]× [−π, π] ⇒ R given by

F (z) = {2 (sin z1 + sin z2 + z1 + z2) +w | w ∈ [−0.1, 0.1]}
(37)

We use F to generate the sets of data D used in the subsequent
experiments. First, we visualized the over-approximation. We
sampled |K| = 106 data points. The parameters of the partition
are chosen as follows K1 = 30, K2 = 30, c = 0.01.
Figure 8 shows the undisturbed function in solid and the
over-approximation calculated from data. We see how the
undisturbed function is included in the over-approximation.

Fig. 8. Map F (z) with w = 0 everywhere is represented in solid. The
upper and lower bounds of the over-approximation are represented in
transparency
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Fig. 9. Line in blue represents the average time of execution with
respect to the number of data points, with bars representing the standard
deviation. Line in orange shows the relation between the number of
points and the performance criterion µ(D, Q).

1) The effect of changing the number of data points: To study
the effect of changing the number of data points, we chose
and fixed a partition, K1 = 100, K2 = 100, c = 0.01. Then,
for an increasing number of data points, we calculated the
over-approximation of the map F and measured the execution
time and the performance criterion. For each number of
data points, we redo the experiment a hundred times using
different randomly generated data sets. The results of this
statistical study of changing the number of data points are
shown in Figure 9. We can see from the figure the linear
relation between the number of data points and the execution
time as predicted in Proposition 6. We also see how the
conservatism in the calculated over-approximation decreases
with the increase in the number of data points. Note that even if
the number of points increases toward infinity, the performance
criterion µ will not reach one because we are using a fixed
partition. For µ to reach one, both the number of data points
and the number of partition elements should go to infinity.

2) The effect of changing the size of the partition: In the sec-
ond experiment, we fixed the number of data points |K| = 106,
and changed the size of the partition. For each size considered,
the partition is chosen such that K1 = K2, and c = 0.01.
We also redo the calculation for each size a hundred times
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Fig. 10. Line in blue represents the average time of execution with
respect to the number of cells in the partitions, with bars representing the
standard deviation. Line in orange represents the performance criterion
µ(D, Q) with respect to the number of cells in the partitions.

using different randomly sampled data sets. Figure 10 shows
the results of the experiment. Time of execution increases
logarithmically when |Q| the number of the partition elements
is small. Then, the relation becomes linear for big values of
|Q|. This behavior can be justified by the complexity relation
introduced in Proposition 6. Similar to the first experiment,
the performance criterion decreases with the increase in the
number of partition elements.

3) Comparison with the state-of-the-art robust models: We
have already shown both theoretically in Proposition 6 and
experimentally the computational complexity of calculating
the introduced data-driven model. Let us compare with the set
membership approaches in [27] and [4], where an optimization
problem is used to find the model. The complexity of this ap-
proach grows polynomially with the number of data points. In
contrast, our approach scales linearly. The maximum reported
number of data points used in [27] is in the tens of thousands.
The number of points used is less in [4]. As can be seen,
the introduced approach in this paper can handle orders of
magnitude more data points. The same can be said about [30],
where a Mixed Integer Linear Programming (MILP) problem
is used to find the model, and the reported number of data
points used in the case study is 400.

B. Cruise control problem
The second example showcases a system that can be seen

as a sum of a known function and an unknown monotone
function. We find the abstraction representing the system.
Then, we use this abstraction to synthesize a safety controller.

Let us consider two vehicles moving in one lane on an
infinite straight road. The leader is uncontrollable (vehicle 2),
whereas the follower is controllable (vehicle 1). A discrete-
time model of this setup is given by equations:

d(k + 1) = d(k) + (vf (k)− vl(l))T0

vf (k + 1) = vf (k) + γ(u(k), vf (k))T0

vl(k + 1) = vl(k) + w(k)T0

(38)

Here u is the control input, and d is the signed distance
between the vehicles. vl, vf are the velocities of the leader and
follower, respectively. The function γ represents the follower

Fig. 11. Controllable set of the symbolic controller enforcing the
assume-guarantee contract (39) for system (38)

vehicle acceleration caused by the control input and the fric-
tion forces acting upon it. The term w(k) ∈ [W,W ] accounts
for uncertainty in the leader velocity and is considered as a
disturbance. Model (38) can be seen as the sum of a known
part, which can be inferred from the physics of the system,
and an unknown or hard-to-model part, namely the function
γ(u(k), vf (k))T0. We are also able to study the monotonicity
of the function γ(u(k), vf (k))T0 starting from the physics of
the system. The acceleration of the car will increase with the
increase of the input, and the friction forces will increase with
the increase of the velocity. Therefore, by making the change
of variable v′f = −vf we can apply the algorithm introduced
in this work to find an abstraction of the system.

Function γ is given as follows

γ(u, v) = u−M−1
C (f0 + f1v + f2v

2).

The vector of parameters f = (f0, f1, f2) ∈ R3
+ describes road

friction and vehicle aerodynamics whose numerical values
are taken from [26]: f0 = 51 N, f1 = 1.2567 Ns/m,
f2 = 0.4342Ns2/m2. For the car mass, we chose MC =
1370 kg. Other numerical values related to the model are X =
[−50,−5] × [0, 30] × [5, 25], U = [−3, 3], T0 = 0.7 s, W =
−W = 2 m/s2. To build the abstraction we fixed a partition
K1

x = 50, K2
x = 50, K3

x = 50, K1
u = 50, c = 0.005, and

sampled a set containing |K| = 106 data points. Finding the
over-approximation of the unknown monotone part was done
in 0.633s.

To show the usefulness of the calculated abstraction, we
use it to synthesize a safety controller. In this example, the
leader’s vehicle is uncontrollable. Therefore, we considered a
specification given as an assume-guarantee contract:

∀k ∈ N vl(k) ∈ [vl, vl] =⇒ (39)

∀k ∈ N, vf (k) ∈ [vf , vf ] ∧ d(k) ∈ [d, d].

If the velocity of the leader remains within the bounds [vl, vl],
then the velocity of the follower and the distance between
the two vehicles should remain within the bounds [vf , vf ]

and [d, d], respectively. The synthesis of symbolic controllers
enforcing assume-guarantee contracts such as (39) has been



14 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

considered in [31]. For this example, we chose d = α1
1,

d = α1
K1 , vf = α2

1, vf = α2
K2 , vl = α3

1, vf = α3
K3 . The

controllable set of the resulting symbolic controller is shown
in Figure 11.

C. Lorenz system
In the last example, we study the Lorenz system, a system

with bounded derivatives. We first compute the bounds on the
disturbance and on the derivatives of the function representing
the system from the data. Then, we find a data-driven abstrac-
tion that we use to synthesize a controller for the system.
The controlled Lorenz system has three states and one input.
We built the abstraction using a large number of points and
a partition with a large number of elements, and we showed
that we could do it efficiently.

The discrete-time controlled Lorenz system is described by
the following model

x(k + 1) = x(k) + σ(x(k)− y(k) + w1(k))T0

y(k + 1) = y(k) + (ρ x(k)− x(k)z(k)−
y(k) + u(k) + w2(k))T0

z(k + 1) = z(k) + (x(k)y(k)− β z(k) + w3(k))T0

(40)

For the particular parameter values of σ = 10, β = 8
3 , ρ = 28

the system behaves chaotically [19].
We studied the system on the sets X = [−10, 10] ×

[−10, 10] × [−10, 10], U = [−200, 200], w = [0.5, 0.5, 0.5].
The discretization time was chosen to be T0 = 0.01s. First,
we used the algorithm described in Section IV to calculate the
bounds on the disturbance and on the derivatives. In the first
step, we used 5 ∗ 104 data points sampled randomly. In the
second step, we sampled 106 data points. The results of the
calculated bounds on Jacobian matrices and the disturbance
are shown below. Subscript D refers to matrices calculated
from data, while their unsubscripted counterparts are the actual
matrices we are estimating. The results are rounded to the third
significant digit.

J
x
=

[
0.9 0.1 0
0.38 0.99 0.1
0.1 0.1 0.973

]
, J

x

D =

[
0.9 0.1 1.64∗10−6

0.377 0.99 9.46∗10−2

9.09∗10−2 9.31∗10−2 0.975

]
Jx =

[
0.9 0.1 0
0.18 0.99 −0.1
−0.1 −0.1 0.973

]
,

Jx
D =

[
0.9 0.1 −2.1∗10−7

0.185 0.989 −9.27∗10−2

−9.3∗10−2 −9.2∗10−2 0.97

]
J
u
=

[
0

0.01
0

]
, J

u

D =

[
−1.9∗10−7

9.95∗10−3

2.88∗10−6

]
Ju =

[
0

0.01
0

]
, Ju

D =

[
−1.9∗10−7

9.95∗10−3

4.58∗10−5

]
w∗T0 =

[
0.005
0.005
0.005

]
,wD ∗ T0 =

[
0.005

5.85∗10−2

5.76∗10−2

]
The execution time of the first step is 12.4s, whereas the
execution time for the second step is 0.5s. From the results, we
can see that all values but the disturbances added to the second
and third states are similar to the actual values. The second
and third values of the disturbance are more conservative. If
we choose β = 10−6, then according to Proposition 9, with
a probability at least 1 − β, it holds that the probability of

Fig. 12. The maximal controlled invariant of (40) calculated using the
data-driven abstraction

finding two points violating the calculated bounds is less than
2 ∗ 10−5.

We used these values to build the data-driven abstraction.
We sampled 108 data points. We choose the parameters of the
partition as follows K1

x = 100, K2
x = 100, K3

x = 100, K1
u =

100, c = 0.05. The execution time to reach the abstraction was
929.2 s. To test the validity of the calculated abstraction, we
used it to find the maximal safe controlled invariant of the
system. Given a safe set Xs ⊆ X , a safe controlled invariant
Is is a set included in the safe set Is ⊆ Xs, and that can
be rendered invariant using a suitable controller. Using the
finite-state abstraction, we calculated earlier, we can apply an
iterative algorithm to find the maximal safe controlled invariant
[33]. We chose the safe set to be Xs = X . The resulting
maximal control invariant is represented in Figure 12.

VI. CONCLUSION

In this work, data-driven over-approximation of monotone
maps has been introduced. We have proved that the introduced
over-approximating maps are minimal. We have also studied
the case of over-approximating a monotone map on a fixed
partition. We have developed an efficient algorithm to find
those maps and then used this data-driven over-approximation
to build models for partially unknown systems, where the
unknown part is monotone. Using the data-driven models,
symbolic abstractions of the system are calculated, which
then can be used to synthesize discrete correct-by-design con-
trollers. We have extended our method to study systems with
bounded derivatives and introduced a procedure to calculate
those bounds from data. In the numerical examples part, we
have shown that the time to calculate the over-approximation
grows linearly with the number of data points and sub-linearly
with the number of elements in the partition. We have also
shown the validity of the calculated abstraction by synthesizing
safety controllers. In the future, we want to refine and improve
the over-approximation using data collected online. We also
want to safely explore unknown parts of the state space from
which we do not have data points.

REFERENCES

[1] C. Belta, B. Yordanov, and E. A. Gol. Formal methods for discrete-time
dynamical systems. Springer, 2017.



AUTHOR et al.:PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 15

[2] S. L. Brunton and J. N. Kutz. Data-driven science and engineering: Ma-
chine learning, dynamical systems, and control. Cambridge University
Press, 2022.

[3] M. C. Campi and S. Garatti. The exact feasibility of randomized
solutions of uncertain convex programs. SIAM Journal on Optimization,
19(3):1211–1230, 2008.

[4] M. Canale, L. Fagiano, and M. Signorile. Nonlinear model predictive
control from data: a set membership approach. International Journal of
Robust and Nonlinear Control, 24(1):123–139, 2014.

[5] R. Coppola, A. Peruffo, and M. Mazo Jr. Data-driven abstractions for
verification of deterministic systems. arXiv preprint arXiv:2211.01793,
2022.

[6] A. Devonport, A. Saoud, and M. Arcak. Symbolic abstractions from
data: a PAC learning approach. In IEEE Conference on Decision and
Control, pages 599–604, 2021.

[7] A. Girard. Controller synthesis for safety and reachability via approxi-
mate bisimulation. Automatica, 48(5):947–953, 2012.

[8] A. Girard and A. Eqtami. Least-violating symbolic controller synthesis
for safety, reachability and attractivity specifications. Automatica, 127,
2021.

[9] A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic
models for incrementally stable switched systems. IEEE Transactions
on Automatic Control, 55(1):116–126, 2009.

[10] K. Hashimoto, A. Saoud, M. Kishida, T. Ushio, and D. Dimarogonas.
Learning-based symbolic abstractions for nonlinear control systems.
arXiv preprint arXiv:2004.01879, 2020.

[11] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger. Learning-
based model predictive control: Toward safe learning in control. Annual
Review of Control, Robotics, and Autonomous Systems, 3:269–296,
2020.

[12] Z.-S. Hou and Z. Wang. From model-based control to data-driven
control: Survey, classification and perspective. Information Sciences,
235:3–35, 2013.

[13] E. Ivanova, A. Saoud, and A. Girard. Lazy controller synthesis for mono-
tone transition systems and directed safety specifications. Automatica,
135:109993, 2022.

[14] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied interval analysis,
2001. Springer, 2001.

[15] Y. Kawano, B. Besselink, J. M. A. Scherpen, and M. Cao. Data-driven
model reduction of monotone systems by nonlinear DC gains. IEEE
Transactions on Automatic Control, 65(5):2094–2106, 2020.

[16] M. Kazemi, R. Majumdar, M. Salamati, S. Soudjani, and B. Wood-
ing. Data-driven abstraction-based control synthesis. arXiv preprint
arXiv:2206.08069, 2022.

[17] M. Khajenejad, Z. Jin, and S. Z. Yong. Interval observers for simulta-
neous state and model estimation of partially known nonlinear systems.
In American Control Conference, pages 2848–2854, 2021.

[18] A. Lavaei and E. Frazzoli. Data-driven synthesis of symbolic abstrac-
tions with guaranteed confidence. IEEE Control Systems Letters, 7:253–
258, 2022.

[19] E. N. Lorenz. Deterministic nonperiodic flow. Journal of atmospheric
sciences, 20(2):130–141, 1963.

[20] A. Makdesi, A. Girard, and L. Fribourg. Data-driven abstraction of
monotone systems. In Learning for Dynamics and Control, pages 803–
814. PMLR, 2021.

[21] A. Makdesi, A. Girard, and L. Fribourg. Efficient data-driven abstraction
of monotone systems with disturbances. IFAC-PapersOnLine, 54(5):49–
54, 2021.

[22] A. Makdesi, A. Girard, and L. Fribourg. Safe learning-based model
predictive control using the compatible models approach. European
Journal of Control, page 100849, 2023.

[23] P.-J. Meyer, A. Devonport, and M. Arcak. Interval reachability analysis:
Bounding trajectories of uncertain systems with boxes for control and
verification. Springer Nature, 2021.

[24] P.-J. Meyer, A. Girard, and E. Witrant. Safety control with performance
guarantees of cooperative systems using compositional abstractions.
IFAC-PapersOnLine, 48(27):317–322, 2015.

[25] M. Milani Fard, K. Canini, A. Cotter, J. Pfeifer, and M. Gupta. Fast
and flexible monotonic functions with ensembles of lattices. Advances
in neural information processing systems, 29, 2016.

[26] P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A. D. Ames, J. W. Grizzle,
N. Ozay, H. Peng, and P. Tabuada. Correct-by-construction adaptive
cruise control: Two approaches. IEEE Transactions on Control Systems
Technology, 24(4):1294–1307, 2015.

[27] C. Novara and M. Milanese. Set membership identification of nonlinear
systems. In IEEE Conference on Decision and Control, volume 3, pages
2831–2836, 2000.

[28] G. Pola and M. D. Di Benedetto. Control of cyber-physical-systems
with logic specifications: a formal methods approach. Annual Reviews
in Control, 47:178–192, 2019.

[29] G. Pola, T. Masciulli, E. De Santis, and M. D. Di Benedetto. Data-
driven controller synthesis for abstract systems with regular language
specifications. Automatica, 134:109903, 2021.

[30] S. Sadraddini and C. Belta. Formal guarantees in data-driven model
identification and control synthesis. In International Conference on
Hybrid Systems: Computation and Control, pages 147–156, 2018.

[31] A. Saoud, A. Girard, and L. Fribourg. Contract-based design of symbolic
controllers for safety in distributed multiperiodic sampled-data systems.
IEEE Transactions on Automatic Control, 66(3):1055–1070, 2020.

[32] V. Sinyakov and A. Girard. Formal controller synthesis from specifica-
tions given by discrete-time hybrid automata. Automatica, 131, 2021.

[33] P. Tabuada. Verification and control of hybrid systems: A symbolic
approach. Springer Science & Business Media, 2009.

[34] L. Yang, O. Mickelin, and N. Ozay. On sufficient conditions for mixed
monotonicity. IEEE Transactions on Automatic Control, 64(12):5080–
5085, 2019.

[35] M. Zamani, G. Pola, M. Mazo, and P. Tabuada. Symbolic models
for nonlinear control systems without stability assumptions. IEEE
Transactions on Automatic Control, 57(7):1804–1809, 2011.

[36] D. Zonetti, A. Saoud, A. Girard, and L. Fribourg. Decentralized
monotonicity-based voltage control of dc microgrids with zip loads.
IFAC-PapersOnLine, 52(20):139–144, 2019.

Anas Makdesi received the B.Sc. degree in
Electronic Systems Engineering from the Higher
Institute for Applied Sciences and Technology
(HIAST), Damascus, Syria, in 2017, and the
M.Sc. degree in Control, Signal, and Image Pro-
cessing in 2020 from Paris Saclay University,
Paris, France, where he is currently working
toward the Ph.D. degree in Control System en-
gineering. His research interests include data-
driven approaches for cyber-physical systems
and their applications in robotics.

Antoine Girard is a Senior Researcher at CNRS
and a member of the Laboratory of Signals
and Systems. He received the Ph.D. degree in
applied mathematics from Grenoble Institute of
Technology, in 2004. From 2004 to 2006, he
held postdoctoral positions at University of Penn-
sylvania and Université Grenoble-Alpes. From
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