

« Iodine vapor Photonic Microcell »

<u>C. Goïcoechéa</u>^{1,2}, T. Billotte¹, J. Jouin³, P. Thomas³, D. Naik², F. Gérôme^{1,2}, B. Debord^{1,2}, F. Benabid^{1,2}

¹ GPPMM group, Xlim Research Institute, CNRS UMR 7252, University of Limoges, Limoges, France
 ² Glophotonics, 123 avenue Albert Thomas 87060 Limoges, France
 ³ IRCER UMR CNRS 7315, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges, France

GLOphotonics

TELECOM

QUANTUM TECHNOLOGY

Fiber photonics

- Design and fabrication of PCF
- Fiber components

Atom optics & Laser metrology

Atomic optical / microwaves clocks - Coherent

Gas nonlinear optics

Frequency conversion

- Ultra-broad comb generation
- Pulse compression & High field photonics

Plasma photonics

- UV-DUV lasers
- Micro-confined plasma dynamics

GLOphotonics SAS 123 avenue Albert Thomas | 07000 Limoges Cedex | FRANCE glophotonics.fr | contact@GLOphotonics.fr

Visit us on booth 1159 !

Frequency standards

Navigation positioning

Stable laser & **Microwave source**

Atomic clocks & Sensors

Telecommunication & Data networks

Quantum information & Computing

High performance : Optical clocks !

Fractional frequency stability : $\frac{\delta v}{v} = \sim 10^{-19}$

Performance vs Practicality : Miniaturisation trend

[1] S. Knappe et al. Applied PI [2] F. Benabid et al. Nature 43 [3] W Yang, et al. Nature Phot [4] M.Graf et al., Opt. Lett. 43,	hysics Letters 85 (9) (2004) 4 (7032) (2004) onics 1 (6) (2007) (2018)				
Cell architecture	Macroscopic glass cell	Silicon cell	HC-PCF	Planar waveguide	Multi-pass cell
Technology	Glass blowing	MEMS	Fiber photonic	CMOS-compatible	Opto-mechanics
Footprint	~100 – 1000 mm de long by ~100mm wide	Millimetric (low end)	Micrometrical	Micrometrical	Millimetric (High end)
Optical integration	Free-space	Free space	Guided scheme	Guided scheme	Free-space
Performances	Low interaction length (poor SNR)	Low interaction length (poor SNR)	Ultra-long interaction length (very high SNR)	Intermediate interaction length (poor SNR)	Intermediate interaction length (high SNR)
	Collisional / lifetime limited linewidth	Collisional / transit-time limited linewidth	Transit-time / wall- collisional limited linewidth	Transit-time /wall- collisional limited linewidth	Collisional / lifetime limited linewidth

What is a PMC?

Pros:

- Very high interaction length, high
- Easily integrated to any optical setup
- « Plug & Play »
- Mechanically resistant

- Confined medium High wall-
- Short transit-time

Challenges:

- Extension to all reference species
- Industrial scalability
- Connectibility and insertion loss

GLOphotonics

Talk outline

Vapor choice : lodine

- lodine: state of the art
- Spectroscopic & chemical properties

Fabrication & Characterisation of Iodine PMC

- Assembly platform
- PMC loading process
- Real time spectroscopic monitoring and characterisation
- PMC performances

Iodine hyperfine structure resolution

- Saturable Absorption Spectroscopy (SAS)
- Hyperfine structure of the lodine B-X spectrum
- Proof of concept : P(33)6-3 hyperfine structure resolution

Iodine : State of the art & Spectrum properties

F. Riehle et al. 2018 Metrologia 55 188

- State of the art : Microwaves up to UV
- Iodine : Green-red visible spectrum
- Recommended molecule for the realization of the meter (BIPM)

H. Salami et al. Journal of Molecular Spectroscopy 2005 vol.233, 1, p157-159

Iodine spectroscopy : Applications

« Guiding star » laser

DB. Calia, et al. The Messenger 139 (2010): 12-19.

High spectral resolution LIDAR

N. Wang, et al. J.Quant. Spectr. Radi. Transfer 261 (2021): 107513.

Frequency laser stabilization

J. Barbarat, et al. International Conference on Space Optics—ICSO 2018. Vol. 11180.

Optical frequency references (BIPM/CIPM)

Nd-Yag Laser 2x frequency R(56)32-0

Yb Laser 2x frequency R(73)46-0

Chemical characteristics

Notable chemical properties :

- Highly reactive with Oxygen and Hydrogen atoms
- Highly corosive to metals (due to the first point)

$I_2 - Al$ reaction

Complete video : https://www.youtube.com/watch?v=RcIM2S2YIBg

- Conventional stainless steel / Aluminium vacuum system are not appropriate
- Glass manifold are the common solution for this issue
- <u>Alternative</u> loading process is needed for I2-PMC production scaling

Typical glass-manifold for I2 cell-loading

Source: NPL

GLOphotonics

Talk outline

Vapor choice : lodine

- lodine: state of the art
- Spectroscopic & chemical properties

Fabrication & Characterisation of Iodine PMC

- Assembly platform
- PMC loading process
- Real time spectroscopic monitoring and characterisation
- PMC performances

lodine hyperfine structure resolution

- Saturable Absorption Spectroscopy (SAS)
- Hyperfine structure of the lodine B-X spectrum
- Proof of concept : P(33)6-3 hyperfine structure resolution

PMC assembly platform

Vacuum system

- ✓ Iodine reactivity & corosiveness proof
- ✓ Iodine vapor-filling the HC-PCF

Optical system

✓ Spectroscopic monitoring

Splicing machine

 ✓ Contaminant-free encapsulation

PMC Fabrication – System presentation

Optimized HC-PCF for Iodine spectral range

All fiber are Inhibited-Coupling HC-PCF

PMC fabrication – Vapor filling process

4) Waiting for lodine Vapor to fill the Half-PMC

PMC fabrication – Spectroscopic Monitoring

PMC fabrication – Final PMC closing

T. Billotte et al., Opt. Lett. 46, 456-459 (2021)

PMC fabrication – PMC terminations

Patchcord-like stand-alone PMC FC/APC connectorized

- Contamination free hermetic sealing
- Easily integrable device
- « Plug & Play »
- Mechanically resistant

Iodine PMC - Performances

Relative frequency (from P(33) 6-3 line) (GHz)

Iodine PMC - Performances

Contrast

Contrast in the range of 55-75% (compared to 8% for macroscopic cell)

Life-span / Durability

No degradation in the signal of PMC#2 since its sealing in 11/2017

Integration

 FC-connector. Insertion loss in the range of 3-4dB

GLOphotonics

Talk outline

Vapor choice : lodine

- lodine: state of the art
- Spectroscopic & chemical properties

Fabrication & Characterisation of Iodine PMC

- Assembly platform
- PMC loading process
- Real time spectroscopic monitoring and characterisation
- PMC performances

Iodine hyperfine structure resolution

- Saturable Absorption Spectroscopy (SAS)
- Hyperfine structure of the lodine B-X spectrum
- Proof of concept : P(33)6-3 hyperfine structure resolution

lodine hyperfine structure

15 & 21 hyperfine narrow-linewidth transitions

Symmetric spin wavefunction Antisymmetric spin wavefunction

Saturable absorption spectroscopy (SAS)

Resolution of the P(33)6-3 hyperfine line structure

Estimated broadening sources (MHz)					
Lifetime	0.160				
Power broadening	19 - 27				
Transit-time $(\Delta v = (2/\pi t_{tr})1.51\sqrt{\eta})$	2.5 - 6				
Inter-Molecule collisions	<0.012				
Wall-molecule collisions $(T_w \approx (V/A) (2\sqrt{\pi})/\nu)$	0.6				

GLOphotonics

Talk outline

Vapor choice : lodine

- lodine: state of the art
- Spectroscopic & chemical properties

Fabrication & Characterisation of Iodine PMC

- Assembly platform
- PMC loading process
- Real time spectroscopic monitoring and characterisation
- PMC performances

lodine hyperfine structure resolution

- Saturable Absorption Spectroscopy (SAS)
- Hyperfine structure of the lodine B-X spectrum
- Proof of concept : P(33)6-3 hyperfine structure resolution

Conclusion & Prospects

Conclusion :

- New process for Iodine PMC loading and assembly
- Fabricated I2-PMC with demonstrated life-span >4 years
- FC-connector PMC & insertion loss of 3-4dB
- Observation of lockin-free SAS at room temperature
- Resolution of P(33)6-3 (633nm) of the 21 hyperfine lines

Future goals & ideas :

- Improving insertion loss of the final splice process
- Laser Stabilization
- Improving PMC quality :
 - Optimizing excitation for <u>transit-time limited linewidth</u>
 - Optimizing vapor pressure for <u>extending transit-time</u>
- Improving insertion loss : AR coating
- Extending the technology to alkaline vapors :
 Li, Na, K, Rb, Cs, Fr (High reactivity to surfaces)

Thank you for your attention

Acknowledgment

GLO is thankful to Toptica for collaboration and support

GPPMM acknowledges funding support from ANR and RA region

you can visit us on **booth 1159**!