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Incentive Fees with a Moving Benchmark and Portfolio Selection  

under Loss Aversion 

 
 

 

Abstract 

This paper studies, in a unified and dynamic framework, the impact of fund managers compensation 

(symmetric and asymmetric fees including a penalty component) as well as their investment in the 

fund when managers exhibit a loss aversion utility function. Contrary to the vast majority of the 

existing literature, the benchmark portfolio, relative to which a fund’s performance is measured, is 

risky. The optimal portfolio value comprises a call option and a term resembling the optimal value 

when the benchmark is riskless. The proportion invested in the risky security is a speculative position, 

while the fraction invested in the benchmark contains both a hedging addend and a speculative 

element. Our model and simulations show that (i) a risky benchmark substantially modifies the 

manager’s allocation compared to a riskless benchmark; (ii) optimal positions are less risky when the 

manager is compensated by symmetric fees or faces a penalty; (iii) a relatively large manager’s stake 

(30%) in the fund considerably reduces her risk-taking behaviour and results in an almost identical 

terminal portfolio value for the different fees schemes; (iv) optimal weights significantly react to 

different parameter values; (v) these results may have important implications on regulation.  
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Résumé 

L’objectif de cet article est d’étudier, dans un cadre unifié et dynamique, l’impact de la rémunération 

des gestionnaires de fonds (commission de performance symétrique ou non-symétrique avec 

potentiellement un malus), ainsi que leur propre investissement dans le fond lorsqu’ils sont 

caractérisés par une fonction d’utilité de type « aversion aux pertes ». Contrairement à la littérature 

existante, la performance du fond est appréciée par rapport à une référence (un indice, par exemple) 

risquée. Les principales conclusions de notre modèle et de nos simulations sont les suivantes : (i) une 

référence risquée modifie sensiblement l’allocation d’actifs ; (ii) les proportions optimales sont moins 

risquées dans le cas d’une commission de performance symétrique ; (iii) la détention par le 

gestionnaire d’une part relativement importante (30%) du fonds altère son comportement risqué et 

permet d’obtenir une valeur terminale du portefeuille quasi-identique quel que soit le type de 

rémunération ; (iv) les proportions optimales sont sensibles aux variations des valeurs des paramètres ; 

(v) ces résultats peuvent avoir des conséquences sur la régulation.  
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In most developed countries, a substantial part of portfolios invested in financial markets are 

managed by institutional investors, typically mutual funds, insurance companies, pension funds and 

hedge funds. Recent decades have witnessed a tremendous increase in the assets under management by 

institutional investors - in 2019, these assets amounted to USD 52 trillion representing 58% of the 

global market (see Boston Consulting Group 2020 Report). In view of the size of this industry and its 

implications for investors, managers and regulators, one of the most important aspects of delegated 

portfolio management consists in examining the implications of the fee structures and the fund 

managers’ attitude toward the risk on asset allocation decisions. Moreover, since portfolio managers 

are rewarded for performance relative to a benchmark, delegation and benchmarking are closely 

related (see, for example, Leippold and Rohner, 2011). The objective of active portfolio managers is to 

overperform a relevant benchmark. Ma et al. (2019) documented that for 79% of active US. open-end 

mutual funds, managers compensation is directly related to fund performance and 78% “disclose the 

benchmark used to evaluate performance”. 

The goal of this paper is to study the impact of different performance-based fee structures as 

well as manager’s personal stake in the fund on portfolio management in the setting of prospect 

theory, in an unified and dynamic framework in relation to regulation in force. In stark contrast to the 

vast majority of relevant literature, but in accordance with market practice, the benchmark portfolio 

evolves randomly over time. Indeed, the benchmark plays an important role in portfolio management 

since managers’ performance is compared to the performance of a benchmark, which evolves 

randomly over time. Basak et al. (2006) demonstrated that the over or underperformance of a portfolio 

depends on the manager’s risk aversion and the choice of the benchmark. Moreover, for instance, 

Servaes and Sigurdsson (2020) reported that “seventy percent of the (European) funds have a 

stochastic benchmark against which performance is measured, generally a stock index” and showed 

that performance fees funds perform poorly when the benchmark is not stochastic or when it does not 

reflect funds’ assets nature. In addition, the design of performance-based fees depends on the 

benchmark (see, among others, Admati and Pfleiderer, 1997; Dybvig et al., 2009; Lioui and Poncet, 

2013; Cvitanic and Xing, 2017). It would be therefore of great interest in the portfolio choice problem 
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to take not only the distribution of the portfolio into account, but also that of the benchmark as well as 

their relationship. 

The compensation of portfolio managers often includes incentive fees, which depend on their 

performance relative to some relevant benchmark portfolio representing the nature of the assets held 

by the manager. In a so-called asymmetric fee contract, managers receive a performance bonus, a call 

option, for exceeding a benchmark (the strike price) without being penalized for poor performance. To 

this bonus an analogous underperformance penalty, with a fee rate smaller than that of the bonus, may 

be added (see Golec and Starks, 2002; Cuoco and Kaniel, 2011; Buraschi et al., 2014; Barucci et al., 

2021), which is equivalent to a put option. In the United States, the 1970 Amendment to the 

Investment Advisers Act of 1940 prohibited the use of asymmetric fees in the mutual fund industry1. 

In contrast, in the European Union both symmetric (or fulcrum) and asymmetric fees were permitted 

under the UCITS (Undertakings for Collective Investment in Transferable Securities) directive. 

Following a controversial and intense debate2, more recently in November 2020, the European 

Securities and Markets Authority (ESMA) published the official translations of the guidelines on 

performance fees in UCITS and certain types of AIFs (Alternative Investment Funds) imposing 

symmetric fees to fund managers. However, asymmetric fees are widely used in the hedge fund industry 

(see Ackermann et al., 1999; Elton et al., 2003; Goetzmann et al., 2003, Agarwal et al., 2004; Ben-

David et al., 2020), by pension funds (Cuoco and Kaniel, 2011) and by European mutual funds as well 

(Ma et al., 2019; Servaes and Sigurdsson, 2020). Another practice characterizing funds management is 

that managers often invest a fraction of their personal wealth in the fund they manage. Since 2004, the 

SEC (Securities and Exchange Commission) has made it compulsory for fund managers to disclose 

their ownership in a fund. These regulations have a common objective, to align managers and 

investors interests, and are supposed to influence managers’ risk-taking.  

The widespread conviction that such a convex fees schedule makes a manager more willing to 

bear risks is only partially founded. Ross (2004) questioned this common wisdom and showed that 

                                                 
1 According to this amendment only symmetric fees are permitted: The fund manager is equally rewarded or 
penalized for overperforming or underperforming the benchmark respectively.   
2 See Starks, 1987; Grinblatt and Titman, 1989; Golec and Starks, 2002; Ou-Yang, 2003; Agarwal et al., 2007; 
Zou, 2017; Cvitanic and Xing, 2018. 
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further conditions on the utility function are required before concluding about the effect of asymmetric 

compensation schemes on manager’s attitude toward the risk. It follows that it is of key importance to 

understand how incentive fees impact managers’ investment strategy by paying particular attention to 

managers’ utility function. To take into account the results of empirical studies having shown the 

failures of the neoclassical theory concerning the decision of rational individuals having to choose 

among risky gambles, Kahneman and Tversky (1979) and Tversky and Kahneman (1992) elaborated 

an alternative theory of choice under risk, known as the prospect theory. In the framework of this 

theory, experimental studies have shown, in particular, that individuals maximize their objective 

function in terms of gains and losses both measured relative to some reference point as opposed to 

final wealth in the traditional theory. Moreover, they are risk averse when they face gains, while risk-

seeking when they face losses (asymmetric risk preferences) resulting in a concave-convex value 

function (the so-called S-shaped function). Recent empirical studies have found strong evidence that 

professional traders and investors are loss-averse (Coval and Shumway, 2005; Haigh and List, 2005; 

Hwang and Satchell, 2010; Lee and Veld-Merkoulova, 2016) and prospect theory implies an optimal 

portfolio composition different to that of the classical utility function (Berkelaar et al., 2004; Levy and 

Levy, 2004; Zarrow and Zhao, 2006; Di Giorgi and Legg, 2012; Fulga, 2016; Bilsen et al., 2020; Choi 

et al., 2021).  

 More specifically, the main objective of this study is to develop a partial equilibrium model in 

order to address, in a continuous-time context, the issue of deriving optimal asset allocation for a 

manager, exhibiting loss aversion, (i) compensated by asymmetric and symmetric fees when the 

funds’ performance may be compared to both a risky and a riskless benchmark and (ii) owning a part 

of the fund under management. Thus, with regard to the relevant literature, we integrate in our study 

the main types of fee structures employed by portfolio managers, whose performance may also be 

assessed relative to a risky benchmark. Then we examine how these features impact fund managers’ 

portfolio composition when they exhibit risk-aversion and risk-seeking.  

  A few papers examine incentive fees in a portfolio choice dynamic setting. In the traditional 

expected utility setting, Carpenter (2000) studied the optimal investment choice of a fund manager 

who is compensated with a call-option contract. According to Ross’s (2004) analysis, she found that 
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when the portfolio value is below the benchmark, the manager will try to increase the risk of the 

fund’s value. If, in contrast, the value of the portfolio lies above the benchmark, the manager 

moderates portfolio’s volatility in order to lock in her (his) gains, owing to her (his) risk aversion. In 

the same spirit, Panageas and Westerfield (2009) showed that the risk-seeking managers behaviour 

relies on both option-like compensation and finite investment horizons. Higher risk increases current 

option prices embedded in manager’s remuneration but may reduce anticipated future option values 

since it also increases the probability that fund asset values will decrease in the future while the strike 

price will remain unchanged. In line with the above mentioned paper, Guasoni and Obloj (2011) found 

that incentive schemes are ineffective in increasing risk-taking for risk-neutral managers, but they lead 

very risk-averse managers to bear more risk. By investigating the impact of fund flows on fees and 

portfolio decisions (see, for instance, Hugonnier and Kaniel, 2010), Barucci and Marazzina (2016) 

concluded that performance-based fees result in a more risky manager behaviour3. Cuoco and Kaniel 

(2011) pursued another goal by analyzing the implications that performance-based fees may have on 

asset prices and volatilities from a general equilibrium standpoint.  

In contrast to these papers, Kouwenberg and Ziemba (2007), opted for the prospect theory and 

obtained two main results for asymmetric fees including a performance bonus: (i) Loss-averse 

managers become more risk-seeking with higher incentive fees; (ii) this behaviour is, however, 

tempered when the manager invests a large part of her (his) wealth in the fund. Zou (2017) reached the 

same conclusions4. He and Kou (2018) considered a fund manager who invests her (his) own capital in 

the fund and receives a specific remuneration known as the first-loss scheme. Under this scheme, fund 

managers invest typically 10% of their own capital in the fund to cover first-loss. In return, they 

receive higher performance fees, typically 40%. They found that the first-loss scheme (10% first-loss 

capital and 30% performance fee) provides better results in terms of utility improvement for both 

managers and investors, and fund risk reduction than the traditional scheme (10% internal capital and 

20% performance fee).   

                                                 
3 Nicolosi et al. (2018) extended this framework by incorporating mean-reverting prices of risk and volatility.  
4 For an application to defined contribution pension plans, see Dong et al. (2021).  
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 The above mentioned papers did not investigate different compensation schemes 

simultaneously and assumed that the benchmark is constant or deterministic (a riskless asset, for 

instance)5 with two notable exceptions. Cuoco and Kaniel (2011) who considered, however, a 

benchmark consisting of the same assets as the portfolio under management (see also Berkelaar et al., 

2004). Basak et al. (2007) studied optimal asset allocation of fund receiving a convex flow scheme 

relative to a risky benchmark and found a relationship between portfolio’s volatility and the manager’s 

attitude towards the risk.  

 Our model and simulations show that performance-based fees and the nature of the benchmark 

have a considerable impact on the manager’s portfolio composition not only from a quantitative point 

of view, but also with relation to her (his) attitude towards the risk. In the case of a risky benchmark, 

the optimal portfolio value at any date comprises a term resembling the optimal value when the 

benchmark is riskless and a call option on the benchmark depending on the probability that this latter 

may be greater or lower than the fund value. It follows that the manager takes a speculative position in 

the risky security and a position in the risky benchmark, which contains both a hedging addend and a 

speculative element. The two positions behave in an opposite manner. In line with the existing 

literature, in the region of losses, asymmetric fees encourage managers to bear more risk than 

symmetric fees. The presence of a penalty dampens the asymmetric fees effect. The manager’s own 

investment in the fund plays a crucial role. Based on our simulations, a stake as high as 30% not only 

mitigates manager risk-taking behaviour, but, more importantly, results in an optimal wealth almost 

identical for symmetric and asymmetric fees (penalty included). To meet regulators’ considerations, 

for funds having a low value, a high manager stake could achieve the same objectives as different fee 

structures, while for large funds a combination of fees and a low stake could be an alternative. We also 

investigate the reaction of the optimal proportions to the value of the parameters in the case of a risky 

benchmark for different compensation schemes. Thus, simulations show that these proportions 

significantly respond to different values of the correlation coefficient, the volatilities and prices of risk 

of the risky asset and the risky benchmark.  

                                                 
5 Note that Carpenter (2000) also examines the case of a particular stochastic benchmark, the growth optimal 
portfolio.  
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    The remainder of the paper is organized as follows. In Section 1, the economic framework is 

described and the fund manager’s optimization problem is formulated. Section 2 is devoted to the 

derivation of the optimal final wealth. The optimal weights invested in the risky security and the risky 

benchmark are derived in Section 3. Section 4 offers some concluding remarks and suggests some 

potential future extensions.  

 

1. The Economy 

The uncertainty in a frictionless continuous-time economy is represented by a complete 

probability space (Ω, F, P) with a standard filtration [ ]{ }TttFF ,0:)( ∈= , a finite time period [0, T] 

and two independent standard Brownian motions, (t)z and )( εtzB , defined on ( )F,Ω . 

 The investment opportunities are represented by a riskless asset, rtet )0()( ββ = - with 

0)0( >β  and a constant interest rate, r - and two risky assets, B(t) and S(t), which satisfy the 

following stochastic differential equations (SDEs hereafter): 

( ) [ ])(1)(
)(

)( 2 tdztdzdtr
tS

tdS
BSSS ερρσθσ −+++=  (1) 

( ) )(
)(

)(
tdzdtr

tB

tdB
BBBB σθσ ++=  (2) 

with initial conditions S(0) > 0 and B(0) > 0. iθ  and iσ , for i = S, B, represent the constant market 

price of risk and the constant, strictly positive, instantaneous volatility of the risky assets respectively. 

ρ stands for the correlation coefficient and BSSB σρσσ = represents the covariance between the 

instantaneous returns of two risky assets )(/)( and )(/)( tBtdBtStdS .  

 Because of high information and transaction costs, for example, an investor delegates 

investment decisions to a fund manager who acts on the investor’s behalf. As we shall show shortly, 

the manager is compensated on the basis of her (his) portfolio performance relative to that of a 

prespecified benchmark, say risky asset B(t), which is supposed to be a sufficiently diversified 

portfolio so that it carries only the market risk. (S)he invests in the riskless asset, in the risky security 

S(t) and in the benchmark. For tractability, we assume that withdrawals or injections of funds by the 
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investor are not permitted. )(tSπ  and )(tBπ  denote the proportion of the portfolio invested in the 

benchmark and in the risky asset S(t) respectively. { }Tttt BS ≤≤0:)( ),( ππ  is an admissible, self-

financing trading strategy6 such that wealth under management, at any date t, evolves according to:  

[ ] )()'()'(
)(

)(
tdztdttr

tW

tdW σπσθπ ++=  (3) 

with the initial condition W(0)>0. [ ])()()( ' ttt BS πππ = , 
















−
−

=

B

BS

θ
ρ
ρθθ

θ 21 , 












 −=
0

1 2

B

SS

σ
σρρσσ  

and 







=

)(

)(
)(

tdz

tdz
tdz B

ε

.  

A manager receives a compensation for her (his) management activities from the investor. The 

fees charged by the manager depend on the terminal value of the wealth under management, W(T), and 

on the terminal value of the benchmark, B(T). The latter may, in general, be constant, a riskless asset 

or a risky portfolio (an index). The fees, denoted by ))(),(( TBTWF , are received at the end of the 

investment period and are of the form: 

[ ] [ ]++ −−−+= )()()()()())(),(( 21 TWTBcTBTWcTbWTBTWF  (4) 

where ,2 1for  , and ,icb i =  are constants specified in advance, and ],0max[ yy =+ . If 021 >> cc , fees 

are asymmetric containing an underperformance penalty component. If 02 =c , the latter vanishes. 

Finally, if 21 cc = , fees are symmetric. 10 ,10 ≤≤<≤ icb , 10 <+< icb  so that the fees are an 

increasing function of W(T) and a decreasing function of B(T). Since the manager can invest in the 

benchmark portfolio, fees are strictly positive and the manager’s compensation cannot exceed the 

terminal wealth. When (T)W(T) B< , in order to have strictly positive fees, 

)((T)
cb

c
W(T)

2

2 TWB ≡
+

>  for 1cb0 2 <+< . 

Incentive fees contain three components: a term proportional to the terminal value of the fund, 

a performance adjustment component, which depends on the managed portfolio’s performance relative 

to that of a benchmark portfolio and an underperformance element. The performance term can then be 

                                                 
6 See Cox and Huang (1989) for the conditions that an admissible trading strategy must satisfy.  



 

10 
 

viewed as a European call option that gives a manager the right to exchange a fraction of her (his) 

portfolio for the benchmark portfolio, while the penalty addend is a European put option.  

The fund manager may invest a part of her (his) own wealth in the fund that (s)he manages 

(see Hodder and Jackwerth, 2007; Khorana et al., 2007; Kouwenberg and Ziemba, 2007). A 

proportion a, with 10 <≤ a , of the fund (resp. 1-a) is owned by the manager (resp. the investor). The 

manager’s portfolio terminal value, )(TWm , is: 

[ ] [ ] )()()()1()()()1()()1()(               

))0()0()(()()1()()(

21 TYTWTBcaTBTWcaTbWaTaW

aWWTTFaTaWTW mm

+−−−−−+−+

=−+−+=
++

β
(5) 

where )0(mW  is the initial value of the manager’s wealth. ))0()0()(()( aWWTTY m −= β  represents 

the wealth that the manager invests on her (his) own. If 0)0( == mWa  then the manager is 

assumed not to have personal wealth and therefore maximizes her (his) expected utility, which is a 

function of her (his) management fees. 

Traditionally, in the asset allocation problem rational investors are supposed to be risk-averse 

and their utility is a monotone strictly increasing concave function of their lifetime consumption 

and/or terminal wealth. Based on experiments, Kahneman and Tversky (1979) found that the 

economic agents’ behaviour does not conform to this risk assumption and proposed the prospect 

theory. In the framework of this theory, the utility function differs from the traditional one by three 

properties. First, wealth is measured relative to a given reference point. Second, the utility function is 

concave for gains and convex for losses reflecting the fact that individuals are risk-averse in the 

domain of gains, while risk-seeking in the domain of losses. Third, as investors are more sensitive to 

losses than to gains, the utility function is steeper for losses than for gains. These properties result in 

an S-shaped utility function.  

This utility function is more involved than the traditional one since it is both concave and 

convex and has a kink at the reference point, )(TΘ . Moreover, the specification of the latter depends 

on the situation faced by an economic agent. The reference point is a neutral outcome below which an 

agent will perceive all outcomes as losses and above it as gains. In the context of incentive fees, if the 

terminal value of the wealth under management is greater than the benchmark value, the manager 



 

11 
 

earns performance fees, which is considered as a gain. In contrast, a value of the wealth lower than the 

benchmark value is experienced as a loss since the proportional component is reduced by the penalty 

term. According to Kouwenberg and Ziemba (2007), we assume that the reference point is the terminal 

fund value when the manager just performs the benchmark ( )()( TBTW = ): 

)()())1(()( TYTBbaaT +−+=Θ . It is easy to show that )()( TTWm Θ≥  is equivalent to 

)()( TBTW ≥ . 

Following De Giorgi et al. (2004) and Köberling and Wakker (2005), the manager’s value 

function is a CARA (Constant Absolute Risk Aversion) utility function of the form: 

( ){ }
( ){ }[ ] (T)W(T)  if

(T)W(T) if
       

1)()(exp

)()(exp1
))(),((

2

11

B

B

TBTW

TBTW
TBTWU

i ≤
>





−−
−−−

=
γαλ

γα
  (6) 

for i = 1,2, where  10 << iγ and 21  γγ >  are the curvature parameters, λ > 1 is the loss aversion 

coefficient, ))(1( 11 cbaa +−+=α  and ))(1( ii cbaa +−+=α . If 021 ≠≠ cc , then 

))(1( 22 cbaa +−+=α . If 02 =c  ))1(( 2 baa −+=α , the underperformance penalty component 

disappears. If 21 cc =  ( )21 αα = , fees are symmetric.  

 To determine asset allocation, the fund manager maximizes the expected utility of her (his) 

terminal value of fees. The market described above is dynamically complete since the number of 

sources of risk is equal to that of the traded risky securities. Under the martingale approach pioneered 

by Karatzas et al. (1987) and Cox and Huang (1989; 1991), the static problem is written as:  

 
{ }

[ ]t
TW

FTBTWU ))(),((max
)(

Ε  (7) 

s.t. 







Ε=

)(
)(

)0()0(
TG

TW
GW  

 0)( ≥TW  

where [ ]tF⋅Ε  denotes the expectation conditional on the information, Ft, available at time t, and 

( )












−
+−++







 +== )(
1

)(
2

1
exp)0(

)(

)(
)(

2

2 tztztrG
t

t
tG SB

BBG ε
ρ

θρθθσ
ξ
β

, with )0()0( β=G  and  
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2

22
2

1

2

ρ
θθρθθσ

−
+−= SBSB

G . It represents the numéraire or optimal growth portfolio such that the value of 

any admissible portfolio relative to this numéraire is a martingale under P (see Long, 1990; Merton, 

1990; Bajeux-Besnainou and Portait, 1997). )(tξ  is the Radon-Nikodym derivative of the so-called, 

unique, risk-neutral probability measure Q equivalent to the historical probability P , such that the 

relative price (with respect to the savings account chosen as numéraire), of any risky security is a Q-

martingale (see Harrison and Pliska, 1981). The first constraint is the usual budget constraint binding 

at the optimum, while the second is a solvency constraint imposed on the manager in order to follow a 

trading strategy, which avoids a negative terminal value of the portfolio under management (see 

Nguyen and Portait, 2002).  

 

2. The terminal value of the optimal portfolio 

In this section, we determine the optimal terminal wealth by distinguishing asymmetric fees 

(with and without a penalty) and symmetric fees. We also provide an illustration to show how the 

terminal wealth behaves in favourable and in unfavourable states of the world.  

As indicated above, the optimal portfolio policy may be determined by using the martingale 

approach. However, unlike standard concave maximization problems, the objective function is neither 

a concave function nor continuously differentiable at )()( TBTW = , not only because of the optional 

feature of the fee schedule but also due to the shape of the manager’s objective function. The 

martingale approach cannot therefore be directly applied to solve this optimization problem. Berkelaar 

et al. (2004) used a method, first proposed by Basak and Shapiro (2001), to take into account non-

concave and non-differentiable utility functions, to a loss aversion value function. In this paper, we 

privilege this technique to tackle our optimization problem. Proposition 3.1 establishes the optimal 

solution. 

 

PROPOSITION 2.1. Given the economic framework described above, the optimal terminal wealth of a 

manager with a CARA prospect utility function (6) is: 
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(T) G(T) if

(T) G(T) if      

0
)(

1
)(

)(
1111

*

G

GTG
LnTB

TW

≤
>




























−= γα

η
γα  (8) 

where (B(T))(T) GG ≡ is a solution to the equation 0B(T))(T),( =Gf  such that, for i = 1, 2: 

[ ] 01
1

)(11))(,(
1111

)(2 =






























−+−−+= −

xx
LnTBeTBxf TBi

η
γα
η

γα
λ γα  (9) 

i) Asymmetric fees: If, in the exponential in f(x), 0 ,0 21 >= cc  ( 021 == cc ), the 

underperformance penalty is positive (null) ; 

ii)  Symmetric fees: In the exponential in f(x), 21 cc = . 

0≥η  is the Lagrangian associated with the static program solving: 







=

)(

)(
)0()0(

*

TG

TW
EW β  

Proof. See Appendix A. 

When the benchmark is a riskless asset, B(T) is replaced by )(Tβ . The manager’s terminal 

wealth is either equal to the positive part of an expression involving the benchmark and the optimal 

growth portfolio at date T in some states of the nature or equal to zero otherwise. It is worth pointing 

out that, in contrast to other models, the final wealth evolves randomly over time as a function not 

only of the optimal growth portfolio but also of the risky benchmark. (T) G(T) G>  represents the 

states in which the numéraire portfolio is above a critical value. In other words, this inequality 

represents the states in which each manager receives a compensation for performance that exceeds the 

benchmark or, put differently, the states in which the call option included in her (his) fees can be 

exercised. The inclusion in the fees of an underperformance penalty does not have an impact on the 

portfolio’s terminal value, but rather on the threshold (T)G , which is a solution to the equation 

B(T))(T),(Gf .  

To get more insights into the behavior of optimal wealth and optimal demands (see next 

Section), we provide various simulations represented in Figures 1 to 14. Table 1 summarizes the 

values of the parameters used in our simulations. There are three kinds of parameters. First, for the 

loss aversion utility function, Tversky and Kahneman (1992) estimated the parameters as λ = 2.25 and 
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γ1 = γ2 = 0.88. Köberling and Wakker (2005) demonstrated, however, that for CARA utility functions 

to satisfy some desirable properties, γ1 > γ2. This is why we opt for γ1 = 0.9 and  γ2 = 0.8. Secondly, the 

choice of fee parameter values is in accordance with market practices. In a typical asymmetric 

compensation scheme b = 2%, c1 = 20%7 and as the penalty component is lower than the performance 

element, we choose c2 = 4%. When fees are symmetric, the funds charge different fees for 

over/underperformance relative to the benchmark. A typical fulcrum scheme is c1 = c2 =10%. Finally, 

the risk-return characteristics over a one year investment horizon of the Amundi European Equity 

Value Fund having as benchmark the MSCI (Morgan Stalney Capital International) Europe Value 

Equity serves as a reference to determine their return, volatility correlation coefficient and risk-prices 

(Sharpe ratios).   

[Insert Table 1 about here] 

 Figure 1 depicts the evolution of the optimal terminal wealth, W(T), as a function of the 

optimal growth portfolio, G(T), of a loss-averse manager compensated with asymmetric fees (with and 

without a penalty) and with symmetric fees when the benchmark is risky. In good states of the world, 

W(T) is, as expected, an increasing function of G(T). In bad states, however, W(T) jumps to zero. This 

pattern is similar to that found in other papers (see, for instance, Berkelaar et al., 2004).  

[Insert Figure 1 about here] 

Including in the fees an underperformance penalty results in a lower critical value )(TG . This 

latter is at the lowest when fees are symmetric. As a consequence, this increases the spectrum of states 

in which the terminal wealth becomes positive. Similar results are obtained for a riskless benchmark.  

 

3. The fund manager’s optimal asset allocation 

In order to determine the manager’s intermediate optimal wealth and proportions invested in 

the risky asset, two benchmarks serve as examples to illustrate the manager’s portfolio decisions: a 

riskless and a risky benchmark. We derive expressions for the manager’s optimal wealth and portfolio 

strategies at any time t < T for asymmetric and symmetric fees. 

                                                 
7 Agarwal et al. (2000), for hedge funds, and Servaes and Sigurdsson (2020), for mutual funds, found a 
performance fee percentage with a median of 20%. 
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For a loss-aversion utility function, given the expression of B(T))(T),(Gf ,  (B(t))(t) GG ≡  is 

a function of the benchmark. To derive tractable solutions, we assume that (t)G  obeys the following 

equation:  

)()()(
)(

)(
tdztt

tG

tGd
BGG

σµ +=   

The expectation and volatility of the instantaneous return of (t)G  are also functions of B(t): 

))(()( and ))(()( tBttBt
GGGG

σσµµ ≡≡ . This equation serves for notations only in the rest of the paper 

since there is not an analytical solution to the equation B(T))(T),(Gf . 

 

PROPOSITION. 3.1. For a manager characterized by a utility function (6), at any date t, Tt ≤≤0 : 

a) The optimal wealth is given by 
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b) The optimal proportions invested in the risky security and the risky benchmark can be written 

respectively: 
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N(.) and n(.) denote the standard normal cumulative distribution and density functions respectively.  

Proof. See Appendix B.   

 

COROLLARY. 3.1. In the case of a riskless benchmark, )()( ttB β= , the optimal wealth and 

proportion become respectively: 
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i) Asymmetric fees: If, in the first exponential in f(x), 0 ,0 21 >= cc  ( 021 == cc ), the 

underperformance penalty is positive (null) , 

ii)  Symmetric fees: In the first exponential f(x), 21 cc = , 
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Proof. Equations (13) and (14) can directly be derived from Proposition 4.1. 

 The manager’s optimal wealth at time t (Eq. 10), in the case of a risky benchmark, may be 

decomposed into two components. The first one is the price of a call option, having a maturity T, 

written on the benchmark with an exercise price equal to )0(BerT . This term appears due to the 

stochastic character of the benchmark. It should be noted, however, that the price of the option is 

derived in terms of the probability that (T) G(T) G> ( (T) G(T) G≤ ) in favourable (unfavourable) 

states, that is, when the portfolio’s final value overperforms (underperforms) the benchmark. By 

comparing Equations (10) and (13), it can be seen that the second component has a similar, although 

more involved, expression to that of the optimal wealth when the benchmark is the riskless asset. This 

term contains two addends. The first one is a cash-or-nothing call option, which pays a cash amount 

)0(BerT (or )0(βrTe ) in favourable states, and nothing otherwise. The second addend is an adjustment 

term depending on the predetermined fees parameters b and ci, i =1, 2, and associated with the optimal 

growth portfolio, which is a function of the prices of risk reflecting risk preferences.  

    Equation (11) shows that the optimal proportion invested in the risky security comprises a part 

invested in the benchmark and an addend resembling the proportion when the riskless asset serves as 

the benchmark (Eq. 14). As a function of the excess returns of the risky security and the risky 

benchmark, this position is a speculative position. It depends on the difference between Sharpe ratios 

associated with the risky security and the risky benchmark multiplied by the correlation coefficient 

between the two assets, which is reasonably supposed to be positive. For a given correlation 

coefficient, the higher the former ratio and the lower the latter, ceteris paribus, the higher the weight 

invested in the risky security, and vice versa. A lower correlation coefficient amplifies this difference. 

Indeed, since the manager’s objective is to beat the benchmark, the greater this difference, the higher 

the probability that the terminal portfolio value will exceed the benchmark value. The contrary 
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prevails for the benchmark. Unlike (t)π*
S , the fraction invested in the benchmark contains a hedging 

and a speculative term. The fund manager not only forms her (his) anticipations about the future 

evolution of the benchmark but also, to achieve her (his) objective, (s)he engages in a hedging 

procedure against adverse fluctuations in the benchmark.       

[Insert Figure 2 about here] 

When the option in the fees is deeply in the money (G(t) tends to infinity), the optimal wealth 

tends to infinity. In contrast, in bad states of the world (G(t) goes to zero), the optimal wealth tends to 

zero to satisfy the solvency constraint. As shown in Figure 2, the behavior of the wealth at any date t is 

in accordance with Propositions 3.1. The same conclusions are derived for a riskless benchmark 

(Corollary 3.1).  

 [Insert Figure 3 about here]                 [Insert Figure 4 about here]   

In the case of a risky benchmark, the optimal weight of the risky security, (t)π*
S , exhibits a 

humped shape (see Figure 3)  and (t)π*
SR

 has a similar pattern (Figure not reproduced) (see also 

Berkelaar et al., 2004; Kouwenberg and Ziemba, 2007; Buraschi et al., 2014). In contrast, the 

proportion invested in the benchmark, (t)π*
B , evolves in an opposite way (see Figure 4). They reach a 

peak or a trough (maximum or minimum) respectively when the fund value is close to the benchmark 

value because the uncertainty of being in the region of losses or in the region of gains is the highest. 

Moreover, as a function of G(t), they evolve distinctly for different fee structures. The dividing point, 

(T)G , separating those two regions, shifts toward the right hand side from symmetric to asymmetric 

fees as do optimal proportions making it more risky to do better than the benchmark. In bad states, 

when the benchmark exceeds wealth value, asymmetric fees induce high variations, as a function of 

G(t), in the proportions invested in the risky asset and the benchmark. If managers are, however, 

totally (symmetric fees) or partially (asymmetric fees with a penalty) penalized for underperformance, 

they enter in less fluctuating positions expecting to increase the value of the portfolio and to avoid 

such a painful situation. In good states, weights are decreasing functions of G(T) and for exceptionally 

advantageous situations, optimal weights converge to a steady state close to zero. Indeed, for high 
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values of wealth, in the region of gains, fund managers decrease their investment in the two risky 

assets to lock in a profit.  

[Insert Figure 5 about here]  [Insert Figure 6 about here] 

 Another important feature of our model is related to manager’s ownership in the fund. To 

study its impact, we consider four different values: a = 0% (pictured in Figure 5), 10%, 20% and 30% 

(pictured in Figure 6). When the manager does not invest in the fund, symmetric fees offer a better 

“insurance” against unfavourable states than asymmetric fees with or without a penalty. In good states, 

however, the portfolio’s terminal value with symmetric fees is lower than the value of the other 

schemes. An a = 10% drive the manager to bear less risk and as it increases and reaches the value of 

30%, fund value is almost the same whatever the scheme and the states of the nature. To moderate a 

risk-taking behavior, a relatively high stake in the fund (30% in our case) produces a better effect than 

different compensation schemes. Kouwenberg and Ziemba (2007) and Zou (2017) reached a similar 

conclusion.  

[Insert Figure 7 about here]  [Insert Figure 8 about here] 

 We also examine the impact of different parameter values on the optimal weights (t)π*
S  and 

(t)π*
B in the case of a risky benchmark for both asymmetric fees (with and without a penalty) and for 

symmetric fees. To save space, we reproduce the figures when this impact is significant and for 

representative cases. For  the correlation coefficient, we choose three values: ρ = -0.5, ρ = 0 and ρ = 

0.82. As an example, Figures 7 and 8 picture this impact for asymmetric fees with a penalty. For the 

other compensation schemes, the optimal proportions exhibit similar shapes. For positive values of ρ, 

when ρ decreases to 0, the optimal proportions invested in the risky asset also decrease. However, for 

negative values of ρ, (t)π*
S  for ρ = -0.5 lie between those for ρ = 0 and ρ = 0.82. Indeed, (t)π*

S  

crucially depends on the term )1/()( 2ρρθθ −− BS , which deceases for ρ > 0 and increases for ρ < 0. In 

contrast, as expected, when ρ declines and passes through 0 to become negative the sign of (t)π*
B  

reverses and become positive.  

[Insert Figure 9 about here]  [Insert Figure 10 about here] 

[Insert Figure 11 about here]  [Insert Figure 12 about here] 



 

20 
 

[Insert Figure 13 about here]  [Insert Figure 14 about here] 

 To study the role of the volatilities of the risky asset and the risky benchmark, they take the 

following values: 35.0 and 262.0 ,16.0 === SSS σσσ , and 3.0 and 235.0 ,13.0 === BBB σσσ . Sσ  

and Bσ  heavily influence (t)π*
S  and (t)π*

B  respectively. Since there is an inverse relation between 

volatilities and optimal proportions, the lower the volatility the higher in absolute values (t)π*
S  and 

(t)π*
B  (see Figures 9 and 10 for asymmetric fees as an example). Prices of risk, BS θθ  and , strongly 

affect optimal weights, and their effect is more pronounced for symmetric fees. This is why we 

reproduce the figures for those fees. An increasing Sθ  results in higher, in absolute values, (t)π*
S  and 

(t)π*
B  (see Figures 11 and 12). Unlike Sθ , Bθ  has the opposite effect (see Figures 13 and 14).  

  

4. Conclusion 

We examined the impact of performance-based fees on asset allocation by a manager investing 

a fraction of her (his) own wealth in the fund and exhibiting a loss aversion utility function. The 

performance of the portfolio under management is assessed relative to a risky benchmark and the fees 

scheme comprises symmetric and asymmetric fees with a performance bonus as well as an 

underperformance penalty. These features turn out to be very important when determining optimal 

demands and studying managers’ risk-taking behavior. A riskless benchmark (rarely used in practice) 

implies an artificially higher optimal intermediate portfolio value compared to a risky benchmark, 

which is effectively used. In addition, portfolio choice is substantially modified, since the manager 

takes a position in the risky security and the benchmark. Those positions are very volatile when the 

manager underperforms the benchmark and is compensated by asymmetric fees. However, this risk-

taking behavior is considerably reduced by symmetric fees and, especially, when the manager’s stake 

in the fund is relatively high (for example, 30%). Those results may be insightful to regulators and 

contribute to the debate on managers’ compensation. 

 One important question related to delegated portfolio management deals with the design of 

incentive contracts and the agency problems arising between investors and managers (see Admati and 
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Pfleiderer, 1997; Ou-Yang, 2003; Dybvig et al., 2009; Lioui and Poncet, 2013; Cvitanić and Xing, 

2018). This question may be examined within the framework of the prospect theory by focusing the 

analysis on the fee schedule and the nature of the benchmark. Cuoco and Daniel (2011) have studied, 

in a general equilibrium setting, the influence of managers’ fees structure on asset prices. Their 

analysis may be extended to the managers’ behavior vis-à-vis the risk and different fee compensations. 

Finally, liquidity concerns impose restrictions on risky assets trading limiting manager’s portfolio 

choice when, in particular, (s)he faces losses. How can illiquidity modify manager’s asset allocation 

when maximizing incentive fees?  
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Appendix A: Proof of Proposition 2.1. 

The utility function is a S-Shaped function having a concave and a convex part. We denote 

2,1 ,))(( * =iTWU ii  the corresponding utility functions, where )(* TWi  is the optimal terminal wealth. 

))(( *
11 TWU represents the concave part and the Lagrange technique can be applied: 
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where η  denotes the Langrange multiplier associated with the optimization problem.   

 ))(( *
22 TWU  is the convex part of the utility function. It follows that )(*

2 TW  is located at one of 

the two boundaries 0)(*
2 =TW  or to )()(*

2 TBTW = . To determine the global maximum, we compare 

the local maxima )(*
1 TW  and )(*

2 TW . Consider the function: 

   







−−−=

)(
)(

))((
)(
)(

))(())(),((
*

2*
22

*
1*

11 TG

TW
TWU

TG

TW
TWUTBTGf ηη  

If 0))(),(( ≥TBTGf , then )(*
1 TW  is the optimal solution.  

 Let us first compare )(*
1 TW  and )()(*

2 TBTW = .  

















−−=

)(
1

)(
1))(),((

1111
1 TG

Ln
TG

THTGf
γα

η
γα

η
 

It can be shown that G(T) ,0))(),((1 ∀≥THTGf , and B(T) is not an optimal solution.  
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It can be shown that (T)GG(T) if 0))(),((1 ≤≤THTGf . Thus 0 is an optimal solution.  

Appendix B: Proof of Proposition 3.1 

a) To calculate the optimal wealth at any date t, Tt0 ≤≤ , from expression (8), we have:  
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From the expression of G(t), we get: 
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 We can now compute the expectations involved in equation (C.1). From the second 
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Calculating the above expectation and rearranging terms gives: 
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The first expectation in C.1 gives: 
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The probability measure P is defined by its Radon-Nikodym derivative with respect to P: 
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are, under P , standard Brownian motions, and: 
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 It remains to calculate the following expectation: 
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Result. Let x and y two random variables normally distributed, x∼ N(µx, σx
2) and y∼ N(µy, σy

2), with 

covariance yxyx σρσ=),cov( . Then for arbitrary positive numbers k and l we have: 
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 Substituting the expressions of the expectations into B.1 leads to equation (10) in the main 

text. 

 

b) The following derivatives with respect to G(t) and )(tG  are given, for i = 1, 2, by: 
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 Applying Itô’s lemma to the optimal wealth (equation 10) and rearranging terms gives: 
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The admissible wealth writes: 
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Identifying the diffusion terms of the admissible wealth and the optimal wealth yields 

equations (11) and (12). 
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r  Sσ  Bσ  Sθ  Bθ  ρ  W(0) B(0)   

0.005 0.262 0.235 0.32 0.19 0.82 1 1   

)0(β  b c1 c2 λ  1γ  2γ  T   

1 0.02 0.2 0.04 2.25 0.9 0.8 1   

 Table 1. Numerical values of the parameters. This table gathers the parameter values of the loss-aversion  
utility function (see Tversky and Kahneman, 1992 and Köberling and Wakker, 2005), the fee scheme in  
accordance with market practices and the risk-return characteristics of the fund (Amundi European Equity  
Value Fund) and the benchmark (MSCI Europe Value Equity). 

                  
 
  
 
 
 
 
 

                     
 
 
 
  
  
  
 
  
 
 
 
 
 
 
 
 
 
 

Figure 1. Optimal portfolio terminal value-Risky 
benchmark.  This figure plots the terminal wealth as 
a function of G(T) of a fund manager with loss 
aversion for a risky benchmark with asymmetric fees 
(solid line), asymmetric fees with a penalty (dashed 
line) and with symmetric fees (dashed-dotted line). 
The parameter values are given in Table 1.  

Figure 2. Optimal portfolio value at date t-
Risky benchmark. This figure plots the 
intermediate wealth at time t as a function of G(t) 
of a fund manager with loss aversion for a risky 
benchmark with asymmetric fees (solid line), 
asymmetric fees with a penalty (dashed line) and  
with symmetric fees (dashed-dotted line). The 
parameter values are given in Table 1.  

 

Figure 4. Optimal proportion invested in the 
risky risky benchmark - Risky benchmark. This 
figure plots πB(t) at time t as a function of G(t) of a 
fund manager with loss aversion for a risky 
benchmark with asymmetric fees (solid line), 
asymmetric fees with a penalty (dashed line) and 
with symmetric fees. The parameter values are 
given in Table 1.  

 

Figure 3. Optimal proportion invested in the 
risky asset - Risky benchmark. This figure plots 
πS(t) at time t as a function of G(t) of a fund manager 
with loss aversion for a risky benchmark with 
asymmetric fees (solid line), asymmetric fees with a 
penalty (dashed line) and symmetric fees (dotted 
line). The parameter values are given in Table 1.  
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Figure 5. Optimal portfolio’s terminal value. 
This figure plots the terminal portfolio’s value 
as a function of G(T) when fund manager’s 
investment in the fund is a = 0% for symmetric 
fees (bold line), asymmetric fees with a penalty 
(medium line) and asymmetric fees (thin line). 
The parameter values are given in Table 1.  

Figure 6. Optimal portfolio’s terminal value. 
This figure plots the terminal portfolio’s value 
as a function of G(T) when fund manager’s 
investment in the fund is a = 30% for 
symmetric fees (bold line), asymmetric fees 
with a penalty (medium line) and asymmetric 
fees (thin line). The parameter values are given 
in Table 1.  

Figure 7. Optimal proportion invested in the 
risky asset as a fnction of ρ - Risky benchmark. 
This figure plots πS(t) at time t as a function of G(t) 
of a fund manager with loss aversion for a risky 
benchmark with asymmetric fees with penalty when 
ρ = 0,82 (solid line), ρ = 0  (dashed line) and ρ = -0,5 
(dotted line). The other parameter values remain 
unchanged and are given in Table 1.  

Figure 8. Optimal proportion invested in the 
risky benchmark as a function of ρ - Risky 
benchmark. This figure plots πB(t) at time t as a 
function of G(t) of a fund manager with loss 
aversion for a risky benchmark with asymmetric fees 
with a penalty when ρ = 0,82 (solid line), ρ = 0  
(dashed line) and ρ = -0,5 (dotted line). The other 
parameter values remain unchanged and are given in 
Table 1.  

 

Figure 9. Optimal proportion invested in the 
risky asset as a function of σS - Risky benchmark. 
This figure plots πS(t) at time t as a function of G(t) 
of a fund manager with loss aversion for a risky 
benchmark with asymmetric fees when σS = 0,16 
(dotted line), σS = 0,262 (solid line) and σS = 0,35 
(dashed line). The other parameter values remain 
unchanged and are given in Table 1.  

Figure 10. Optimal proportion invested in the 
risky benchmark as a function of σB - Risky 
benchmark. This figure plots πB(t) at time t as a 
function of G(t) of a fund manager with loss 
aversion for a risky benchmark with asymmetric fees 
when σB = 0,13 (dotted line), σB = 0,235 (solid line) 
and σB = 0,3 (dashed line). The other parameter 
values remain unchanged and are given in Table 1.  
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Figure 11. Optimal proportion invested in the risky 
asset as a function of θS - Risky benchmark. This 
figure plots πS(t) at time t as a function of G(t) of a 
fund manager with loss aversion for a risky benchmark 
with symmetric fees when θS = 0,25 (dotted line), θS = 
0,32 (solid line) and θS = 0,40 (dashed line). The other 
parameter values remain unchanged and are given in 
Table 1.  

Figure 12. Optimal proportion invested in the risky 
benchmark as a function of θS - Risky benchmark. 
This figure plots πΒ(t) at time t as a function of G(t) of 
a fund manager with loss aversion for a risky 
benchmark with symmetric fees when θS = 0,25 
(dotted line), θS = 0,32 (solid line) and θS = 0,40 
(dashed line). The other parameter values remain 
unchanged and are given in Table 1.  

Figure 13. Optimal proportion invested in the risky 
asset as a function of θB - Risky benchmark. This 
figure plots πS(t) at time t as a function of G(t) of a 
fund manager with loss aversion for a risky benchmark 
with symmetric fees when θB = 0,13 (dotted line), θB = 
0,19 (solid line) and θB = 0,25 (dashed line). The other 
parameter values remain unchanged and are given in 
Table 1.  

Figure 14. Optimal proportion invested in the risky 
benchmark as a function of θB - Risky benchmark. 
This figure plots πB(t) at time t as a function of G(t) of 
a fund manager with loss aversion for a risky 
benchmark with symmetric fees when θB = 0,13 
(dotted line), θB = 0,19 (solid line) and θB = 0,25 
(dashed line). The other parameter values remain 
unchanged and are given in Table 1.  


