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Incentive Fees with a Moving Benchmark and Portfolb Selection

under Loss Aversion

Abstract

This paper studies, in a unified and dynamic frapr&wthe impact of fund managers compensation
(symmetric and asymmetric fees including a penedtsnponent) as well as their investment in the
fund when managers exhibit a loss aversion utililyction. Contrary to the vast majority of the
existing literature, the benchmark portfolio, ralatto which a fund’s performance is measured, is
risky. The optimal portfolio value comprises a agfition and a term resembling the optimal value
when the benchmark is riskless. The proportionsteain the risky security is a speculative positio
while the fraction invested in the benchmark comaboth a hedging addend and a speculative
element. Our model and simulations show that (isky benchmark substantially modifies the
manager’s allocation compared to a riskless bendhn(ig optimal positions are less risky when the
manager is compensated by symmetric fees or fapesalty; (iii) a relatively large manager’s stake
(30%) in the fund considerably reduces her riskaglbehaviour and results in an almost identical
terminal portfolio value for the different fees sahes; (iv) optimal weights significantly react to

different parameter values; (v) these results nawehmportant implications on regulation.



Résumé

L'objectif de cet article est d’étudier, dans ummeaunifié et dynamique, I'impact de la rémunénatio
des gestionnaires de fonds (commission de perfarenasymétrique ou non-symeétrique avec
potentiellement un malus), ainsi que leur proprgestissement dans le fond lorsqu'ils sont
caractérisés par une fonction d'utilité de typeversion aux pertes ». Contrairement a la littéeatur
existante, la performance du fond est appréciéagmport a une référence (un indice, par exemple)
risquée. Les principales conclusions de notre neodeéte nos simulations sont les suivantes : @) un
référence risquée modifie sensiblement 'allocatiGactifs ; (ii) les proportions optimales sont m®i
risquées dans le cas d'une commission de perfomnaymétrique ; (iii) la détention par le
gestionnaire d’'une part relativement importanteB@u fonds altere son comportement risqué et
permet d’'obtenir une valeur terminale du portefeudjuasi-identique quel que soit le type de
rémunération ; (iv) les proportions optimales ssesibles aux variations des valeurs des parameétres

(v) ces résultats peuvent avoir des conséquencds sdgulation.



In most developed countries, a substantial papooffolios invested in financial markets are
managed by institutional investors, typically muitfunds, insurance companies, pension funds and
hedge funds. Recent decades have witnessed a ttea®imcrease in the assets under management by
institutional investors - in 2019, these assetswnted to USD 52 trillion representing 58% of the
global market (see Boston Consulting Group 20200Rgpn view of the size of this industry and its
implications for investors, managers and regulator® of the most important aspects of delegated
portfolio management consists in examining the iogpions of the fee structures and the fund
managers’ attitude toward the risk on asset aliogalecisions. Moreover, since portfolio managers
are rewarded for performance relative to a benckmdelegation and benchmarking are closely
related (see, for example, Leippold and Rohner1R0lhe objective of active portfolio managersois t
overperform a relevant benchmark. Ma et al. (2@2umented that for 79% of active US. open-end
mutual funds, managers compensation is directtedlto fund performance and 78% “disclose the
benchmark used to evaluate performance”.

The goal of this paper is to study the impact dfedent performance-based fee structures as
well as manager’s personal stake in the fund onfgliar management in the setting of prospect
theory, in an unified and dynamic framework in tiela to regulation in force. In stark contrast be t
vast majority of relevant literature, but in acaande with market practice, the benchmark portfolio
evolves randomly over time. Indeed, the benchméakspan important role in portfolio management
since managers’ performance is compared to theoymeaince of a benchmark, which evolves
randomly over time. Basak et al. (2006) demondir#tiat the over or underperformance of a portfolio
depends on the manager’s risk aversion and theehdi the benchmark. Moreover, for instance,
Servaes and Sigurdsson (2020) reported that “sgveatcent of the (European) funds have a
stochastic benchmark against which performanceeasnred, generally a stock index” and showed
that performance fees funds perform poorly whenbirechmark is not stochastic or when it does not
reflect funds’ assets nature. In addition, the glesbf performance-based fees depends on the
benchmark (see, among others, Admati and Pfleid@8%97; Dybvig et al., 2009; Lioui and Poncet,

2013; Cvitanic and Xing, 2017). It would be therefof great interest in the portfolio choice prable



to take not only the distribution of the portfolito account, but also that of the benchmark as agel
their relationship.

The compensation of portfolio managers often inefuthcentive fees, which depend on their
performance relative to some relevant benchmarqgdiar representing the nature of the assets held
by the manager. In a so-called asymmetric fee aofjtmanagers receive a performance bonus, a call
option, for exceeding a benchmark (the strike pnigciehout being penalized for poor performance. To
this bonus an analogous underperformance penatty adee rate smaller than that of the bonus, may
be added (see Golec and Starks, 2002; Cuoco anelKa@11; Buraschi et al., 2014; Barucci et al.,
2021), which is equivalent to a put option. In tbaited States, the 1970 Amendment to the
Investment Advisers Act of 1940 prohibited the of@symmetric fees in the mutual fund industry
In contrast, in the European Union both symmeticfglcrum) and asymmetric fees were permitted
under the UCITS (Undertakings for Collective Inwvesht in Transferable Securities) directive.
Following a controversial and intense deBatmore recently in November 2020, the European
Securities and Markets Authority (ESMA) publishdt tofficial translations of the guidelines on
performance fees in UCITS and certain types of A(BR#ernative Investment Funds) imposing
symmetric fees to fund managers. However, asymaieteis are widely used in the hedge fund industry
(see Ackermann et al., 1999; Elton et al., 2003¢t@nann et al., 2003, Agarwal et al., 2004; Ben-
David et al., 2020), by pension funds (Cuoco andi&a2011) and by European mutual funds as well
(Ma et al., 2019; Servaes and Sigurdsson, 202@)th%&n practice characterizing funds management is
that managers often invest a fraction of their geas wealth in the fund they manage. Since 20G, th
SEC (Securities and Exchange Commission) has mazt@ripulsory for fund managers to disclose
their ownership in a fund. These regulations haveommon objective, to align managers and
investors interests, and are supposed to influera®agers’ risk-taking.

The widespread conviction that such a convex feleadiile makes a manager more willing to

bear risks is only partially founded. Ross (2004dggiioned this common wisdom and showed that

! According to this amendment only symmetric fees permitted: The fund manager is equally rewarded o
penalized for overperforming or underperforming bleechmark respectively.

2 See Starks, 1987; Grinblatt and Titman, 1989; Galed Starks, 2002; Ou-Yang, 2003; Agarwal et24lQ7;
Zou, 2017; Cvitanic and Xing, 2018.
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further conditions on the utility function are réal before concluding about the effect of asymioetr
compensation schemes on manager’s attitude towardgk. It follows that it is of key importance to
understand how incentive fees impact managers'sinvent strategy by paying particular attention to
managers’ utility function. To take into accoune thesults of empirical studies having shown the
failures of the neoclassical theory concerning dbeision of rational individuals having to choose
among risky gambles, Kahneman and Tversky (1978)Tarersky and Kahneman (1992) elaborated
an alternative theory of choice under risk, knoventlae prospect theory. In the framework of this
theory, experimental studies have shown, in pddicithat individuals maximize their objective
function in terms of gains and losses both meastetdive to some reference point as opposed to
final wealth in the traditional theory. Moreovehngy are risk averse when they face gains, while ris
seeking when they face losses (asymmetric riskepgates) resulting in a concave-convex value
function (the so-called S-shaped function). Re@gnpirical studies have found strong evidence that
professional traders and investors are loss-a€rseal and Shumway, 2005; Haigh and List, 2005;
Hwang and Satchell, 2010; Lee and Veld-Merkoul@@,6) and prospect theory implies an optimal
portfolio composition different to that of the ckésal utility function (Berkelaar et al., 2004; Lyeand
Levy, 2004; Zarrow and Zhao, 2006; Di Giorgi andye2012; Fulga, 2016; Bilsen et al., 2020; Choi
et al., 2021).

More specifically, the main objective of this spud to develop a partial equilibrium model in
order to address, in a continuous-time context,iskae of deriving optimal asset allocation for a
manager, exhibiting loss aversion, (i) compensdigdasymmetric and symmetric fees when the
funds’ performance may be compared to both a résigy a riskless benchmark and (ii) owning a part
of the fund under management. Thus, with regartheéorelevant literature, we integrate in our study
the main types of fee structures employed by pliotimanagers, whose performance may also be
assessed relative to a risky benchmark. Then wanieeahow these features impact fund managers’
portfolio composition when they exhibit risk-avensiand risk-seeking.

A few papers examine incentive fees in a poxfaloice dynamic setting. In the traditional
expected utility setting, Carpenter (2000) studieel optimal investment choice of a fund manager
who is compensated with a call-option contract. gkding to Ross’s (2004) analysis, she found that
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when the portfolio value is below the benchmarle thanager will try to increase the risk of the
fund’s value. If, in contrast, the value of the timio lies above the benchmark, the manager
moderates portfolio’s volatility in order to lock her (his) gains, owing to her (his) risk aversilm

the same spirit, Panageas and Westerfield (2008)egh that the risk-seeking managers behaviour
relies on both option-like compensation and fifmitgestment horizons. Higher risk increases current
option prices embedded in manager’'s remuneratianmay reduce anticipated future option values
since it also increases the probability that fussef values will decrease in the future while thi&es
price will remain unchanged. In line with the abawentioned paper, Guasoni and Obloj (2011) found
that incentive schemes are ineffective in incragsisk-taking for risk-neutral managers, but thesd
very risk-averse managers to bear more risk. Bgstigating the impact of fund flows on fees and
portfolio decisions (see, for instance, Hugonnied &aniel, 2010), Barucci and Marazzina (2016)
concluded that performance-based fees result ir@ nisky manager behaviduCuoco and Kaniel
(2011) pursued another goal by analyzing the imagibims that performance-based fees may have on
asset prices and volatilities from a general elailim standpoint.

In contrast to these papers, Kouwenberg and Zig@®@y7), opted for the prospect theory and
obtained two main results for asymmetric fees idiclg a performance bonus: (i) Loss-averse
managers become more risk-seeking with higher imezrfees; (i) this behaviour is, however,
tempered when the manager invests a large padraghis) wealth in the fund. Zou (2017) reached the
same conclusiofisHe and Kou (2018) considered a fund manager whests her (his) own capital in
the fund and receives a specific remuneration knasvthe first-loss scheme. Under this scheme, fund
managers invest typically 10% of their own capitalthe fund to cover first-loss. In return, they
receive higher performance fees, typically 40%.yTtoeind that the first-loss scheme (10% first-loss
capital and 30% performance fee) provides bettsult® in terms of utility improvement for both
managers and investors, and fund risk reduction the traditional scheme (10% internal capital and

20% performance fee).

% Nicolosi et al. (2018) extended this frameworkifiyorporating mean-reverting prices of risk andatidity.
* For an application to defined contribution pengitems, see Dong et al. (2021).
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The above mentioned papers did not investigatderdiit compensation schemes
simultaneously and assumed that the benchmarknstaat or deterministic (a riskless asset, for
instance) with two notable exceptions. Cuoco and Kaniel @0Who considered, however, a
benchmark consisting of the same assets as thelgotinder management (see also Berkelaar et al.,
2004). Basak et al. (2007) studied optimal asdetation of fund receiving a convex flow scheme
relative to a risky benchmark and found a relatigméetween portfolio’s volatility and the manager’
attitude towards the risk.

Our model and simulations show that performancetidees and the nature of the benchmark
have a considerable impact on the manager’s parttoimposition not only from a quantitative point
of view, but also with relation to her (his) attizitowards the risk. In the case of a risky benchma
the optimal portfolio value at any date compriseteian resembling the optimal value when the
benchmark is riskless and a call option on the hmack depending on the probability that this latter
may be greater or lower than the fund value. lbfe$ that the manager takes a speculative position
the risky security and a position in the risky demark, which contains both a hedging addend and a
speculative element. The two positions behave inopposite manner. In line with the existing
literature, in the region of losses, asymmetricsfemcourage managers to bear more risk than
symmetric fees. The presence of a penalty dampenasymmetric fees effect. The manager’s own
investment in the fund plays a crucial role. Basedur simulations, a stake as high as 30% not only
mitigates manager risk-taking behaviour, but, marportantly, results in an optimal wealth almost
identical for symmetric and asymmetric fees (pgnadtiuded). To meet regulators’ considerations,
for funds having a low value, a high manager stakdd achieve the same objectives as different fee
structures, while for large funds a combinatiorfieafs and a low stake could be an alternative. \&t al
investigate the reaction of the optimal proportitmshe value of the parameters in the case cfky ri
benchmark for different compensation schemes. Tisimplations show that these proportions
significantly respond to different values of theretation coefficient, the volatilities and pricesrisk

of the risky asset and the risky benchmark.

® Note that Carpenter (2000) also examines the chseparticular stochastic benchmark, the growttinegd
portfolio.



The remainder of the paper is organized as¥d! In Section 1, the economic framework is
described and the fund manager’s optimization mbis formulated. Section 2 is devoted to the
derivation of the optimal final wealth. The optinvegights invested in the risky security and thkyris
benchmark are derived in Section 3. Section 4 sffmme concluding remarks and suggests some

potential future extensions.

1. The Economy
The uncertainty in a frictionless continuous-timeomomy is represented by a complete

probability space(, F, P) with a standard filtratiorF ={F(t) :tD[O,T]}, a finite time period [0T]
and two independent standard Brownian motiags Jandz, , dgfined on(Q, F).

The investment opportunities are represented byiskess asset,3(t) = B(0)e"- with
L0)>0 and a constant interest rate- and two risky assetd8(t) and S(t) which satisfy the

following stochastic differential equations (SDEsdnfter):

% =(r +o f,)dt+a, [pdzB(t) +4f1- pzdzg(t)] (1)
dB(t
?i)) =(r + 0,6, )dt + o,dz,(t) 2)

with initial conditionsS(0) > 0OandB(0) > 0. § and g,, fori = S, B, represent the constant market
price of risk and the constant, strictly positirestantaneous volatility of the risky assets retipely.

p stands for the correlation coefficient amal, = po,o,represents the covariance between the
instantaneous returns of two risky ass#®f )/S ¢ JanddBt ER}/. ()

Because of high information and transaction cofis, example, an investor delegates
investment decisions to a fund manager who acthernnvestor's behalf. As we shall show shortly,
the manager is compensated on the basis of her ghitfolio performance relative to that of a
prespecified benchmark, say risky asBét), which is supposed to be a sufficiently diversifie
portfolio so that it carries only the market rig8)he invests in the riskless asset, in the rigigusty

S(t) and in the benchmark. For tractability, we asstna¢ withdrawals or injections of funds by the



investor are not permittedz,(t) and 7z, ¢ ) denote the proportion of the portfolio investedtlie
benchmark and in the risky asseft) respectively.{ﬂs(t),ﬂB (t):OstsT} is an admissible, self-

financing trading strate§ysuch that wealth under management, at anytdatelves according to:

‘i'NL(g) =[r + 7ty oBldt + 72ty o) 3)

Hs_pas 2
with the initial conditionW(0)>0. 7(t) =[m.(t) m@®)], 6=| Ji- 02 |, az(pas ! S’USJ
O-B

and dz(t) = [dzB(t)J .
dz,(t)
A manager receives a compensation for her (hisagement activities from the investor. The
fees charged by the manager depend on the terwdhad of the wealth under managem&M¢r), and
on the terminal value of the benchmaBT). The latter may, in general, be constant, a riskbesset

or a risky portfolio (an index). The fees, denotsdF (W (T),B(T)), are received at the end of the
investment period and are of the form:

F W (1), B(T)) =bW(T) + 6 [W(T) - BM)] - ¢,[BT) -w() @
wherebandc ,fori = 12, are constants specified in advance, ghé&max[ y Of £, >c, >0, fees
are asymmetric containing an underperformance pewamponent. Ifc, = 0 the latter vanishes.
Finally, if ¢ =c,, fees are symmetricO<b<10<c < ,10<b+c <1 so that the fees are an

increasing function oW(T) and a decreasing function BfT). Since the manager can invest in the
benchmark portfolio, fees are strictly positive ahé manager's compensation cannot exceed the

terminal wealth. When W(T)<B (T,) in order to have strictly positive fees,

C,
+C,

W(T)>b B(T) =W(T) for O<b+c, <1.

Incentive fees contain three components: a termpgstimnal to the terminal value of the fund,
a performance adjustment component, which depemdseomanaged portfolio’s performance relative

to that of a benchmark portfolio and an underpentorce element. The performance term can then be

5 See Cox and Huang (1989) for the conditions thatdanissible trading strategy must satisfy.
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viewed as a European call option that gives a mamtge right to exchange a fraction of her (his)
portfolio for the benchmark portfolio, while theraéty addend is a European put option.

The fund manager may invest a part of her (his) awealth in the fund that (s)he manages
(see Hodder and Jackwerth, 2007; Khorana et aly7;2&ouwenberg and Ziemba, 2007). A

proportiona, with 0<a<1, of the fund (respl-a) is owned by the manager (resp. the investor). The

manager’s portfolio terminalalue, W™(T) , is:

W?(T) =aw(T) + 1-a)F(T) + S(TM)W" (0) -aw(0)) =

. . (5)
aW(T) + (L— §bW(T) + (L- a)c,\W(T) - B(T)]" - (L- a)c,[B(T) ~W(T)]" +Y(T)

whereW™(0) is the initial value of the manager’'s wealT) = S(T)(\W™(0)-aW  (0ppresents

the wealth that the manager invests on her (hig).diva=W™"(0)=0 then he manager is

assumed not to have personal wealth and therefax@mizes her (his) expected utility, which is a
function of her (his) management fees.

Traditionally, in the asset allocation problem gatl investors are supposed to be risk-averse
and their utility is a monotone strictly increasingncave function of their lifetime consumption
and/or terminal wealth. Based on experiments, Kafame and Tversky (1979) found that the
economic agents’ behaviour does not conform to tisis assumption and proposed the prospect
theory. In the framework of this theory, the wjilfunction differs from the traditional one by thre
properties. First, wealth is measured relative givan reference point. Second, the utility funitie
concave for gains and convex for losses reflectivg fact that individuals are risk-averse in the
domain of gains, while risk-seeking in the domaiogses. Third, as investors are more sensitive to
losses than to gains, the utility function is stxefor losses than for gains. These propertiedtrasu
an S-shaped utility function.

This utility function is more involved than the ditional one since it is both concave and

convex and has a kink at the reference pdhf, . Mgreover, the specification of the latter depends

on the situation faced by an economic agent. Tfezarce point is a heutral outcome below which an
agent will perceive all outcomes as losses andalia®s gains. In the context of incentive feeshéf

terminal value of the wealth under management éatgr than the benchmark value, the manager
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earns performance fees, which is considered agalgaontrast, a value of the wealth lower thia@ t
benchmark value is experienced as a loss sincprtdportional component is reduced by the penalty
term. According to Kouwenberg and Ziemba (2007) asgume that the reference point is the terminal

fund value when the manager just performs the beadh W(T)=B(T)):
O =(a+@-ab)B(T)+Y(T). It is easy to show thatW"(T)=O(T) is equivalent to
W(T)=B(T).

Following De Giorgi et al. (2004) and Kdoberling adMdakker (2005), the manager’s value
function is a CARA (Constant Absolute Risk Aversiarility function of the form:

1-exd-ay,W(T)-BM))}  if W(T)>B(T)

Alexday,W() - BT} -1 if W(T)<B(T) ©

U (W(T),B(T)) ={

fori = 1,2, whereO<y, <1 and ), >y, are the curvature parameteAs> 1 is the loss aversion
coefficient, a,=a+@-a)(b+c) and a =a+(@-a)(b+c). If c#c,z0, then
a,=a+(1-a)b+c,). If c,=0 (a,=a+(@-a)b), the underperformance penalty component
disappears. It, =c, (a, =a,), fees are symmetric.

To determine asset allocation, the fund managedmizes the expected utility of her (his)
terminal value of fees. The market described abevdynamically complete since the number of
sources of risk is equal to that of the tradedyrisicurities. Under the martingale approach piader

by Karatzas et al. (1987) and Cox and Huang (12891), the static problem is written as:

maxEly W(T), BT)IF] ™

— W(T)
S.t. 0)=G(0)g —=
tW() ()E[G(T)}

W(T)=0

where E[EFFt] denotes the expectation conditional on the infeionaF,, available at time, and

(_ pHB + Hs)

G(t) =% -G (O)ex%(r +%a§jt 0,70+

Zg(t)}, with  G@O)=g©0)  and

11



o? = 052 —2pg:6, + 032
1-p?

G . It represents the numéraire or optimal growthfpbo such that the value of

any admissible portfolio relative to this numérasea martingale undd? (see Long, 1990; Merton,

1990; Bajeux-Besnainou and Portait, 1994(t) is the Radon-Nikodym derivative of the so-called,

unique, risk-neutral probability measu@equivalent to the historical probabiliy , such that the
relative price (with respect to the savings accalmisen as numéraire), of any risky security & a
martingale (see Harrison and Pliska, 1981). Tre# @ionstraint is the usual budget constraint bdin
at the optimum, while the second is a solvency twaim imposed on the manager in order to follow a
trading strategy, which avoids a negative termwelue of the portfolio under management (see

Nguyen and Portait, 2002).

2. The terminal value of the optimal portfolio

In this section, we determine the optimal termiwaklth by distinguishing asymmetric fees
(with and without a penalty) and symmetric fees. ®& provide an illustration to show how the
terminal wealth behaves in favourable and in uniisable states of the world.

As indicated above, the optimal portfolio policy yrlae determined by using the martingale
approach. However, unlike standard concave maxitioizgroblems, the objective function is neither

a concave function nor continuously differentiabtéV(T) =B (T ), not only because of the optional

feature of the fee schedule but also due to theeslwd the manager’'s objective function. The
martingale approach cannot therefore be directblieg to solve this optimization problem. Berkelaar
et al. (2004) used a method, first proposed by Basal Shapiro (2001), to take into account non-
concave and non-differentiable utility functions, & loss aversion value function. In this paper, we
privilege this technique to tackle our optimizatiproblem. Proposition 3.1 establishes the optimal

solution.

PROPOSITION 2.1. Given the economic framework dbedrabove, the optimal terminal wealth of a

manager with a CARA prospect utility function (6) i

12



_ 1 n _
W'(T) = {B(T) ay, Lr{alylG(T)J if G(T)>G(T) (8)

0 if G(T)<G(T)

where G (T) =G (B(T))is a solution to the equatioh(G (T),B(T)) =0 such that, for=1, 2:

f(x B(T)) =1+ AfL-e»e0] —[B(T) + al [1— Ln(LmQ =0 9)

171 al}/lx X

i) Asymmetric fees: If, in the exponential irf(x), ¢ =0,c,>0 (c =c,=0), the
underperformance penalty is positive (null) ;

i) Symmetric fees: In the exponentialf(r), ¢, = C,.

n 20 is the Lagrangian associated with the static @nogsolvingW (0) = 3(0) E{V(\;—(g))}

Proof. See Appendix A.

When the benchmark is a riskless asBél) is replaced byS T ) The manager’s terminal
wealth is either equal to the positive part of &apression involving the benchmark and the optimal
growth portfolio at datd in some states of the nature or equal to zerorwtbe. It is worth pointing
out that, in contrast to other models, the finabltre evolves randomly over time as a function not
only of the optimal growth portfolio but also ofethrisky benchmarkG(T)>G(T) represents the
states in which the numéraire portfolio is aboveriical value. In other words, this inequality
represents the states in which each manager recgigempensation for performance that exceeds the
benchmark or, put differently, the states in whibk call option included in her (his) fees can be
exercised. The inclusion in the fees of an undéopmiance penalty does not have an impact on the
portfolio’s terminal value, but rather on the threll G(T), which is a solution to the equation
f (G(T),B(T)).

To get more insights into the behavior of optimaalth and optimal demands (see next
Section), we provide various simulations representeFigures 1 to 14. Table 1 summarizes the
values of the parameters used in our simulatioherd are three kinds of parameters. First, for the

loss aversion utility function, Tversky and Kahnen{a992) estimated the parameterd as2.25 and

13



y1 =y, = 0.88. Koberling and Wakker (2005) demonstrakexyever, that for CARA utility functions
to satisfy some desirable propertigs? y,. This is why we opt fop; = 0.9 andy, = 0.8. Secondly, the
choice of fee parameter values is in accordancl wiarket practices. In a typical asymmetric
compensation scheniie= 2%, ¢, = 20% and as the penalty component is lower than thi@peance
element, we choose, = 4%. When fees are symmetric, the funds chardfereit fees for
over/underperformance relative to the benchmartypical fulcrum scheme is; = ¢, =10%. Finally,
the risk-return characteristics over a one yeaestment horizon of the Amundi European Equity
Value Fund having as benchmark the MSCI (MorganngyaCapital International) Europe Value
Equity serves as a reference to determine thairmevolatility correlation coefficient and riskipes
(Sharpe ratios).

[Insert Table 1 about here]

Figure 1 depicts the evolution of the optimal terah wealth, W(T), as a function of the
optimal growth portfolioG(T), of a loss-averse manager compensated with asyiarfeds (with and
without a penalty) and with symmetric fees whenlibachmark is risky. In good states of the world,
W(T)is, as expected, an increasing functioi&T). In bad states, howeval/(T) jumps to zero. This
pattern is similar to that found in other papeee(dor instance, Berkelaar et al., 2004).

[Insert Figure 1 about here]
Including in the fees an underperformance penalylts in a lower critical valu& (T) . This

latter is at the lowest when fees are symmetrica Asnsequence, this increases the spectrum e§stat

in which the terminal wealth becomes positive. &imiesults are obtained for a riskless benchmark.

3. The fund manager’s optimal asset allocation

In order to determine the manager’s intermediatemgb wealth and proportions invested in
the risky asset, two benchmarks serve as examplélidgtrate the manager’s portfolio decisions: a
riskless and a risky benchmark. We derive expresdior the manager’s optimal wealth and portfolio

strategies at any tinte< T for asymmetric and symmetric fees.

" Agarwal et al. (2000), for hedge funds, and Sesvaerd Sigurdsson (2020), for mutual funds, found a
performance fee percentage with a median of 20%.
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For a loss-aversion utility function, given the esgsion of f (G(T),B(T)), G(t)=G(B(t)) is
a function of the benchmark. To derive tractabletsms, we assume th& (t) obeys the following
equation:

% = 145 () + 05 (90, (1)

The expectation and volatility of the instantaneseturn of G(t) are also functions oB(t):
U (1) = 1 B €))ando (t) = o, (B(t)) . This equation serves for notations only in thet of the paper

since there is not an analytical solution to theagign f (G(T), B(T)).

PROPOSITION. 3.1. For a manager characterizeduiyfity function (6), at any date 0<t<T :

a) The optimal wealth is given by
W' (t) = B{ON(d,) - " (€"B(O))N(d,) + & {(e"B(O)N(d,) +
1 [[LnG(t) +(r —%aéJ(T _1)- Ln( a’7 BN(dZ) +o T tn(dz)} (10)

1J/1 171

b) The optimal proportions invested in the risky s@guand the risky benchmark can be written
respectively:

s — pbs
W ()1~ p*)osos (L. T)

(11)
al [aG_G(t,T)N(dZ) +(LnG(t)+(r —%JQJ(T 1) Ln( n ] —o AT tdan(dz)”

ny(t) = {BON(d)-e (€ BO)Nn(d,)+ e |(€"BO)n(d,) +

fren 171

o 1 Oy — PO — (1—p2)aa(t) e
mg(t) = W0 © {{N(d]) + TR n(dl)} B(t) + 270 om D)

[(03 = pB)o S TIN(,) + (6, - o9 - (1—p2)ae(t))(LnG(t)+ [r —%aéjﬁ -t)  (12)

- Ln( ’7 j —o T - tdan(dz)]}
aw,
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G 1 2 g.
Gm{r _Z%J(T ) =3(tT)+0,(6,(T - - (tT))

|
whered, = )
! o, :(tT)

d2 — d1 _ UB(HB(T _t) _ﬁg (t1T))
o, (tT)

, O(t,T)= j(,ue(u) - 6,0 (u) —%0’; (u)jdu , og(LT)= ]aa(u)du :

.
02 5 (tT) = [(o2 + 02 () - 26,0, (W))du,

t
N(.) and n(.) denote the standard normal cumulatis&ibution and density functions respectively.

Proof. See Appendix B.

COROLLARY. 3.1. In the case of a riskless benchmait) = S(t), the optimal wealth and

proportion become respectively:

W;(t)=e"(T‘“{e’T,B(O)N(d )+ 1 [(LnGR(t){r—EQSZJ(T—t)
oam 2

(13)
- Ln[ a’7 DN(d ) +0,T - tn(d )]}
—r(T-t)
E;R(t) =m{eﬂﬁ(0)n(d9 + arly [QS\IT - tN(d R) +
R S V1 (14)

(LnGR(t) +(r —%egj(T —t)- Ln[a” J—BS\/T —thJn(dR)} }

] Ln(G(%S)J +(r —éegj(r ~1)

whered = , (_ER is a solution to the equation:
" OAT -t

e — g
171 al}/lx

f(X)=1+/1[1—exr{—aiy2,8(T)}]—{B(o)e” +ai(1_ Ln[’?_Rm

i) Asymmetric fees: If, in the first exponential if(x), ¢, =0,c,>0 (c =c,=0), the
underperformance penalty is positive (null) ,

i) Symmetric fees: In the first exponenti@d), C, =¢,,
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and GR(t)=,B(O)exp{(r+%H§jt+6?szs(t)}. N, 20 is the Lagrangian associated with the static

. _ W, (T)
[ 0)=B(0)E| >—=]|.
program solvingiV, (0) = 5(0) [GR(T)}

Proof. Equations (13) and (14) can directly be derivedifferoposition 4.1.
The manager’s optimal wealth at timh€¢Eq. 10), in the case of a risky benchmark, may be

decomposed into two components. The first one éspttice of a call option, having a maturity
written on the benchmark with an exercise priceagéda €" B(0). This term appears due to the
stochastic character of the benchmark. It shoulahdted, however, that the price of the option is
derived in terms of the probability th&(T)>G(T) (G(T)< G(T)) in favourable (unfavourable)

states, that is, when the portfolio’s final valueeperforms (underperforms) the benchmark. By
comparing Equations (10) and (13), it can be skahthe second component has a similar, although
more involved, expression to that of the optimahitrewhen the benchmark is the riskless asset. This

term contains two addends. The first one is a castothing call option, which pays a cash amount
e"B(0) (or €7 B(0)) in favourable states, and nothing otherwise. §éwnd addend is an adjustment

term depending on the predetermined fees paraniteserdc;, i =1, 2, and associated with the optimal
growth portfolio, which is a function of the pricebrisk reflecting risk preferences.

Equation (11) shows that the optimal proporiiorested in the risky security comprises a part
invested in the benchmark and an addend resemibiemgroportion when the riskless asset serves as
the benchmark (Eq. 14). As a function of the exaegarns of the risky security and the risky
benchmark, this position is a speculative positlodepends on the difference between Sharpe ratios
associated with the risky security and the riskpdenark multiplied by the correlation coefficient
between the two assets, which is reasonably sugdptsebe positive. For a given correlation
coefficient, the higher the former ratio and thedo the latter, ceteris paribus, the higher theghiei
invested in the risky security, and vice versaodr correlation coefficient amplifies this diffewe.
Indeed, since the manager’s objective is to beabdnchmark, the greater this difference, the highe

the probability that the terminal portfolio valueillwexceed the benchmark value. The contrary
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prevails for the benchmark. Unlikeg(t), the fraction invested in the benchmark contaitedging

and a speculative term. The fund manager not omigng her (his) anticipations about the future
evolution of the benchmark but also, to achieve (s) objective, (s)he engages in a hedging
procedure against adverse fluctuations in the baadh

[Insert Figure 2 about here]

When the option in the fees is deeply in the maji&y) tends to infinity), the optimal wealth
tends to infinity. In contrast, in bad states & thorld G(t) goes to zero), the optimal wealth tends to
zero to satisfy the solvency constraint. As showhRigure 2, the behavior of the wealth at any déte
in accordance with Propositions 3.1. The same csimhs are derived for a riskless benchmark
(Corollary 3.1).

[Insert Figure 3 about here] [Indagure 4 about here]

In the case of a risky benchmark, the optimal weafhthe risky securityz((t), exhibits a
humped shape (see Figure 3) aﬁg(t) has a similar pattern (Figure not reproduced) @se

Berkelaar et al., 2004; Kouwenberg and Ziemba, 2@Iraschi et al., 2014). In contrast, the
proportion invested in the benchmarky(t), evolves in an opposite way (see Figure 4). Tleagh a

peak or a trough (maximum or minimum) respectiwehen the fund value is close to the benchmark
value because the uncertainty of being in the regfdlosses or in the region of gains is the highes

Moreover, as a function @(t), they evolve distinctly for different fee struatgr The dividing point,
§(T), separating those two regions, shifts toward itjiet hand side from symmetric to asymmetric

fees as do optimal proportions making it more rigkydo better than the benchmark. In bad states,
when the benchmark exceeds wealth value, asymniegfinduce high variations, as a function of
G(1), in the proportions invested in the risky assal #me benchmark. If managers are, however,
totally (symmetric fees) or partially (asymmetreae§ with a penalty) penalized for underperformance,
they enter in less fluctuating positions expectiogncrease the value of the portfolio and to avoid
such a painful situation. In good states, weightsdecreasing functions &f(T) and for exceptionally

advantageous situations, optimal weights conveoge steady state close to zero. Indeed, for high
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values of wealth, in the region of gains, fund nggra decrease their investment in the two risky
assets to lock in a profit.
[Insert Figure 5 about here] [Insert Figure 6 dbware]

Another important feature of our model is relatedmanager’'s ownership in the fund. To
study its impact, we consider four different vatuees 0% (pictured in Figure 5), 10%, 20% and 30%
(pictured in Figure 6). When the manager does matst in the fund, symmetric fees offer a better
“‘insurance” against unfavourable states than asynurfees with or without a penalty. In good states
however, the portfolio’s terminal value with symmetfees is lower than the value of the other
schemes. A = 10% drive the manager to bear less risk and iasreases and reaches the value of
30%, fund value is almost the same whatever thersehand the states of the nature. To moderate a
risk-taking behavior, a relatively high stake ie fiund (30% in our case) produces a better effest t
different compensation schemes. Kouwenberg and [Zaef@007) and Zou (2017) reached a similar
conclusion.

[Insert Figure 7 about here] [Insert Figure 8 alimre]

We also examine the impact of different parameédues on the optimal Weighbs*s(t) and

n;(t) in the case of a risky benchmark for both asymmédé®s (with and without a penalty) and for

symmetric fees. To save space, we reproduce theeBgwhen this impact is significant and for
representative cases. For the correlation coefficiwe choose three valugs= -0.5,p = 0 andp =
0.82. As an example, Figures 7 and 8 picture thjgact for asymmetric fees with a penalty. For the
other compensation schemes, the optimal proporeahgit similar shapes. For positive values pf

whenp decreases to 0, the optimal proportions investeatarrisky asset also decrease. However, for

negative values of, mt) for p = -0.5 lie between those far= 0 andp = 0.82. Indeedy(t)

crucially depends on the ter(#, — 06,) /(L- p°) , which deceases fpr> 0 and increases fpr< 0. In

contrast, as expected, wherdeclines and passes through 0 to become negativeign ofn;(t)

reverses and become positive.
[Insert Figure 9 about here] [Insert Figure 10wbere]

[Insert Figure 11 about here] [Insert Figure 18whhere]
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[Insert Figure 13 about here] [Insert Figure 1dwhhere]
To study the role of the volatilities of the riskgset and the risky benchmark, they take the

following values: o, = 016,05 = 0262ando, = 035, and g, = 013 g, = 0235ando, = 03. o4
and g, heavily influencery(t) and z(t) respectively. Since there is an inverse relatietwben
volatilities and optimal proportions, the lower thelatility the higher in absolute values*s(t) and

m(t) (see Figures 9 and 10 for asymmetric fees as amge). Prices of riskg; andg, , strongly
affect optimal weights, and their effect is mor@mounced for symmetric fees. This is why we

reproduce the figures for those fees. An increagingesults in higher, in absolute valuez%(t) and

n;(t) (see Figures 11 and 12). Unlikg, &, has the opposite effect (see Figures 13 and 14).

4. Conclusion

We examined the impact of performance-based feesset allocation by a manager investing
a fraction of her (his) own wealth in the fund aexhibiting a loss aversion utility function. The
performance of the portfolio under management sessed relative to a risky benchmark and the fees
scheme comprises symmetric and asymmetric fees witherformance bonus as well as an
underperformance penalty. These features turn @ietvery important when determining optimal
demands and studying managers’ risk-taking beha®igiskless benchmark (rarely used in practice)
implies an artificially higher optimal intermediaportfolio value compared to a risky benchmark,
which is effectively used. In addition, portfolitn@ice is substantially modified, since the manager
takes a position in the risky security and the bemark. Those positions are very volatile when the
manager underperforms the benchmark and is comigenbs asymmetric fees. However, this risk-
taking behavior is considerably reduced by symmdéés and, especially, when the manager’s stake
in the fund is relatively high (for example, 30%hose results may be insightful to regulators and
contribute to the debate on managers’ compensation.

One important question related to delegated patimanagement deals with the design of

incentive contracts and the agency problems arisétgyeen investors and managers (see Admati and
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Pfleiderer, 1997; Ou-Yang, 2003; Dybvig et al., 200ioui and Poncet, 2013; Cvitgnand Xing,
2018). This question may be examined within thenéaork of the prospect theory by focusing the
analysis on the fee schedule and the nature dighehmark. Cuoco and Daniel (2011) have studied,
in a general equilibrium setting, the influence ménagers’ fees structure on asset prices. Their
analysis may be extended to the managers’ behagi@r-vis the risk and different fee compensations.
Finally, liquidity concerns impose restrictions asky assets trading limiting manager’s portfolio
choice when, in particular, (s)he faces losses. idaw illiquidity modify manager’s asset allocation

when maximizing incentive fees?
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Appendix A: Proof of Proposition 2.1.

The utility function is a S-Shaped function haviagconcave and a convex part. We denote

U, (W’ (T)),i =12 the corresponding utility functions, whew (T) is the optimal terminal wealth.
U, (W, (T)) represents the concave part and the Lagrange teehoan be applied:

LW(T).77) = E[1-exd- y;((b+ ), (T) - B(T)))}] +/7[W(0) - E{%ﬂ

LW _ ¢ implies thatw(T)* = B(T) - — Ln{ 7 j
oW, (T) (b+o)y,  ((b+)yG(T)
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wheres7 denotes the Langrange multiplier associated waghoptimization problem.
U, (W, (T)) is the convex part of the utility function. It fols thatW, (T) is located at one of
the two boundarie¥V, (T) =0 or to W, (T) =B(T) . To determine the global maximum, we compare

the local maxima\, (T) andW, (T). Consider the function:

£ (G(T), B(T)) =U, MW, (T)) - r/"(‘;((TT)) {u W (T)) - "(‘;((TT))}

If f(G(T),B(T))=0, thenW, (T) is the optimal solution.

Let us first compar®V, (T) andW, (T) =B(T).

—q__ N _ n
f,(G(T),H(T)) =1 ) {1 Ln(a’l}/lG(T)H

It can be shown thaf, (G(T),H (T)) =2 0,JG(T), and B(T) is not an optimal solution.

CompareW, (T) andW, (T) =0.

. _ n __B(T) _
f,(G(T),H(T)) =1 —GMG(T){l Ln[alylG(T)ﬂ ”G(T) + A1-exp(- a y,B(T))]

It can be shown that, (G(T),H (T)) <0if G(T)< G(T) . Thus 0 is an optimal solution.

Appendix B: Proof of Proposition 3.1

a) To calculate the optimal wealth at any daegt<T, from expression (8), we have:

. e (1)
wo=g SOwm)|-e Sw a)lwem}}

G(t) "
] {G(T){ 7 (b’fC)V1 - (b+c);qG(T)j_1{G<T>aem}]

2 -1 n G(t)
W' (t) = E{ G(T) (T)]-{G(T)EG(T)}:| b+0)y, Ln((b+c)leE G(r)lG(T)>G(T)}
1 G(t)
+ (b+ C)y1 E|:G(|-) LnG(T)l{e(T)zG(T)}} (B.1)

From the expression of G(t), we get:
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G(t) _ _ o _ 6 -p8B,)
G(T)—ex% (r+ O'J(T t) — 8,2, (T —t) \/7 z,(T- t)}

(9§ — 2100503 + 9; )

where o} =
1=

and z, (T —t)andz, (T —t) are two Brownian motions such that:

z,(T-t)=z,(T) -z (t), ] =B,&. From G(T) dynamics, we have:

G(T)=G ¢ )exp{ [ (#G () —%aé(s)jdw [o5(9dz,(T - s)}

We can now compute the expectations involved imaggn (C.1). From the second

expectation we have:

G(t) — o (Tt 1, (‘95 - ,06'3)
E|:G(T) 1, G(T)zG(T)}:| =g E[exp{_ EJG (T-1)- HBZB (T-9- W Z, (T - t)}l{G(T)ZG(T)}]

Let P be a probability measure equivalenfPtsuch that:

Pl =expl - L2 () - 6,2, - E=L%);
dpP 2 1 1- p?
By virtue of Girsanov's theorem:
dz (t) = dz, (t) — 6,dt
dz, (t) = &z, (t) —Mdt

N1-p?

Under P :

G(M =Gt )eXp{(r —%Ué j(T —1) +6,Z,(T -1) +_(‘951‘_,I£;52’s ) Z(T —t)}

G(M=G¢ )exp{ [ (uG (9-6,0,(9 -0 (s)jds+ [os(3e,(T- s)}

Bayes formula implies that:

{80 | b

e—r(T—l) EP 1

iT(vg 9—-e0g (9)ss [ 1

(65=p), M;) (T—t)}>G(t)e e expl-ifﬂé(ﬂdwfﬂa(S’ZB(T—S)}

G(t)e'™H exp{—%aé (T-t)+6575 (T-t)+
1-p
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Calculating the above expectation and rearrangings gives:

e ™ET o o|=erTING,)

G(t) 1 L) ) 1
Ln[G(t)J (r ZJGJ(T H L(/JG(S) 0,0, (s) 2aG(s)jds
T 5 (LT)

o s(tT) =05 (T -1) +f o2 (9ds- 26’Bfag(9ds

whered, =

The first expectation in C.1 gives:

G(t) — 1, Hs _1005
E{G(T) BT a0y }‘ B(t)E[eXP{_EUG(T —1) =6,z (T - 1) _%AU _t)}

1
exp{(HBaB —Eaéja— ) +0,7,(T - )} {am=am)} ]

= B(t) E[exp{—%(aé +02 =206, )T ~t) - (6, - 0, )z, (T ~1)

A ,06?

The probability measur® is defined by its Radon-Nikodym derivative withpest to P:

Ll =enl-3fot +0i 20,6700, o) -0- G2 o _t)}

and the processes by Girsanov's theorem:

CEB t= dzs t)+ (63 - UB)dt
@, (t) = dz, (t)

are, underP , standard Brownian motions, and:

G(T) =Gt )eXP{(f -%aé + HBJBJ(T 1)+ 6,2, (T-1)+ _(esl-_ ﬁ;éz’s ) 2.(T - t)}

G(M)=G ¢ )exp{ f[ue (950929~ (6, - 03)o (s)]ds+ [[os (9, (T- s)}
Thanks to Bayes formula:

G(t) _ = )
E{ﬁ B(T )1{G(T>2G(T>}} =B(H)E [1{G(T)25(T)}]- B(t)N(d,)
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Ln(E(t)J + (r - ; o J(T -t) + o, J;T(HB -0y (s))ds— '[T (,uG (8) —6z0,(s) - ; o2 (s)jds

O, s (t,T)

0, [ 6 -0, (9)ds
o (tT)

It remains to calculate the following expectation:

G(t) — ATty P
E{G(T) LnG(T)l{G(T)zG(T)}}_e TUE LnG(T)l{G(T)z&T)}]

Result. Let x and y two random variables normally distrémitx/7N(y, &) andy//N(}, q,z), with

covariancecov(x, y) = po,o, . Then for arbitrary positive numberandl we have:
ElLnke'ly,..|= (Lnk+ 1,)N(d) + o, n(d)
wherel, is the indicator functiomnd Jf_y =Var(x-y).

This result gives:

1= g™ KLnG(t) +(r —% o g ](T —t)]N(dz) +0 VT -tn(d,)

e—r(T—t) EE [LnG(T)l{G(T)Za(T) ]

Substituting the expressions of the expectatiots B.1 leads to equation (10) in the main

text.

b) The following derivatives with respect®it) and G (t) are given, foi = 1, 2, by:

' _ n(di ) 7 - — n(di) ' — di n(di )
No(d)= Gt)o - (tLT)’ Na(d) G(t)o, ¢ (LT)’ s (d) Gt)o, - (tT)
ng(d|) - di n(di)

" GM)o,  (tT)

Applying Itd’s lemma to the optimal wealth (equatil0) and rearranging terms gives:
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dWF(t) 1 @-a0) €G-
wey AT (t){%“'(dj)+ a7 @}B(m a6

HBUG(;(LT) 3 E_ N i ~ -
[(@ 70" {qut) +[r zaé]“ ! L’EaM] %WQ]W¢)J]}14(t)

@-p9 { g™
+ t)+ _(t
T O+ [ERGINCD

+[ch(t) +[r —1oé]cr—t)—L{”]—%Jﬂdzlr(dz)}}d;@
2 ay
The admissible wealth writes:
AW _p, o .
—r= t)' of|dt + 7(t)' odz(t 3
W - odldt+ ot 3)
Identifying the diffusion terms of the admissiblesaith and the optimal wealth yields

equations (11) and (12).
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Table 1. Numerical values of the parametersThis table gathers the parameter values of thedwsgsion
utility function (see Tversky and Kahneman, 1998 Kiberling and Wakker, 2005), the fee scheme in
accordance with market practices and the risknetharacteristics of the fund (Amundi European Bqui
Value Fund) and the benchmark (MSCI Europe Valueiti#Q
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Figure 1. Optimal portfolio terminal value-Risky
benchmark. This figure plots the terminal wealth as
a function of G(T) of a fund manager with loss
aversion for a risky benchmark with asymmetric fees
(solid line), asymmetric fees with a penalty (dashe
line) and with symmetric fees (dashed-dotted line).
The parameter values are given in Tab

Risky
Benchmark

= = = = Risky
Benchmark-
Penalty
Risky
Benchmark-
Symmetric fees

G(®)

Figure 3. Optimal proportion invested in the
risky asset - Risky benchmark.This figure plots
ns(t) at timet as a function o6(t) of a fund manager
with loss aversion for a risky benchmark with
asymmetric fees (solid line), asymmetric fees waith
penalty (dashed line) and symmetric fees (dotted
line). The parameter values are given in Table 1.
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« =Risky Benchmark-
Symmetric fees
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Figure 2. Optimal portfolio value at date t-
Risky benchmark. This figure plots the
intermediate wealth at timieas a function of5(t)
of a fund manager with loss aversion for a risky
benchmark with asymmetric fees (solid line),
asymmetric fees with a penalty (dashed line) and
with symmetric fees (dashed-dotted line). The
parameter values are given in Table 1.

mg(t)

— Risky Benchmark

=== = Risky Benchmark-
Penalty

Risky Benchmark-
Symmetric fees

-6 - G(t)

Figure 4. Optimal proportion invested in the
risky risky benchmark - Risky benchmark. This
figure plotsng(t) at timet as a function 06(t) of a
fund manager with loss aversion for a risky
benchmark with asymmetric fees (solid line),
asymmetric fees with a penalty (dashed line) and
with symmetric fees. The parameter values are
given in Table 1.



W =

———Ammmeric kes whot paaty
Ammmaric ks wth peraky
Sy ctric tes

1.4 ) EE} z zz z4
BTy

Figure 5. Optimal portfolio’s terminal value.
This figure plots the terminal portfolio’'s value
as a function ofG(T) when fund manager’'s
investment in the fund ia = 0% for symmetric
fees (bold line), asymmetric fees with a penalty
(medium line) and asymmetric fees (thin line).
The parameter values are given in Table 1.

ms(t)

——— Asymmetic es wilio.x persity
Asymmetic Bes vk peraty
Symmstric fees

e 0E 1 12 1e 18 18 2 22 23
&m

Figure 6. Optimal portfolio’s terminal value.
This figure plots the terminal portfolio’s value
as a function ofG(T) when fund manager’s
investment in the fund isa = 30% for
symmetric fees (bold line), asymmetric fees
with a penalty (medium line) and asymmetric
fees (thin line). The parameter values are given
in Table 1.
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ng(t) 3 ]
Penalty 2 Penalty
p=0,82 p=0,82
= = = = Penalty o] = === Penalty
p=0 . p=0
Penalty Penalty
p=0,5 -2 p=-0,5
3
- G()
Figure 7. Optimal proportion invested in the Figure 8. Optimal proportion invested in the
risky asset as a fnction of - Risky benchmark. risky benchmark as a function of p - Risky
This figure plotsts(t) at timet as a function of(t) benchmark. This figure plotszs(f) at timet as a
of a fund manager with loss aversion for a risky function of G(f) of a fund manager with loss
benchmark with asymmetric fees with penalty when avirsmn for ? ”Sk%’ benchmark eNltlhdaTym)metnc fees
— ST - ; — ith a penalty wherp = 0,82 (solid line),y = 0
p = 0,82 (solid line)p = 0 (dashed line) ang= -0,5 wi 4 ! (
(dotted line). The other parameter values remain (dashed line) ang = -0,5 (dotted line). The other
unchanged anare given in Table ? parameter values remain unchanged and are given in
Table 1.
10 - 1z
wp(t) 10 - .
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Figure 9. Optimal proportion invested in the
risky asset as a function obs - Risky benchmark.
This figure plotsts(t) at timet as a function of5(t)

of a fund manager with loss aversion for a risky
benchmark with asymmetric fees whegs = 0,16
(dotted line),os = 0,262 (solid line) ands = 0,35
(dashed line). The other parameter values remain
unchanged and are given in Table 1.
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Figure 10. Optimal proportion invested in the
risky benchmark as a function of g - Risky
benchmark. This figure plotsng(t) at timet as a
function of G(t) of a fund manager with loss
aversion for a risky benchmark with asymmetric fees
whengg = 0,13 (dotted line)gs = 0,235 (solid line)
and og = 0,3 (dashed line). The other parameter
values remain unchanged and are given in Table 1.
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Figure 11. Optimal proportion invested in the risky
asset as a function of)s - Risky benchmark. This
figure plotsng(t) at timet as a function of5(t) of a
fund manager with loss aversion for a risky benatma
with symmetric fees whefs = 0,25 (dotted line)ds =
0,32 (solid line) ands = 0,40 (dashed line). The other
parameter values remain unchanged and are given in
Table 1.
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6 Symmetric
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5 A 0B=0.19
4 = === Symmetric
fees
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Figure 13. Optimal proportion invested in the risky
asset as a function ofg - Risky benchmark. This
figure plotszg(t) at timet as a function of5(t) of a
fund manager with loss aversion for a risky benatima
with symmetric fees whefls = 0,13 (dotted line}s =

0,19 (solid line) ands = 0,25 (dashed line). The other
parameter values remain unchanged and are given in
Table 1.
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Figure 12. Optimal proportion invested in the risky
benchmark as a function ofés - Risky benchmark.
This figure plotstg(t) at timet as a function o6(t) of

a fund manager with loss aversion for a risky
benchmark with symmetric fees whets = 0,25
(dotted line),0s = 0,32 (solid line) and¥s = 0,40
(dashed line). The other parameter values remain
unchanged anare given in Table !
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Figure 14. Optimal proportion invested in the risky
benchmark as a function offs - Risky benchmark.
This figure plotstg(t) at timet as a function o6(t) of

a fund manager with loss aversion for a risky
benchmark with symmetric fees whe®y = 0,13
(dotted line),0s = 0,19 (solid line) andlg = 0,25
(dashed line). The other parameter values remain
unchanged anare given in Table !



