Intermittent water transfer: A wettability model for porous media
 Florian Cajot, Philippe Beltrame

To cite this version:

Florian Cajot, Philippe Beltrame. Intermittent water transfer: A wettability model for porous media. ICTAM 2020+1: 25th International Congress of Theoretical and Applied Mechanics, Aug 2021, MILAN, Italy. UTAM, 25th International Congress of Theoretical and Applied Mechanics - Book of Abstracts. hal-03708849

HAL Id: hal-03708849

https://hal.science/hal-03708849

Submitted on 29 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Intermittent water transfer: A wettability model for porous media

Florian Cajot and Philippe Beltrame

- AVIGNON
 UNIVERSITÉ

INRAE, UMR EMMAH, Avignon, France / Avignon Université, INRAE, UMR EMMAH, Avignon, France

Introduction

In stratified soil, there are spontaneous preferential flows as fingering or intermittency (flow cycle). But the Darcy/Richards model can not modeled them. By adding wettability in our model, we are able to represent these phenomena.

Sililo \& Tellam

Wettability Wettability is the fluid capacity to be spread on/in a surface.

- Plan substrat Distinguish two cases:

Hydrophilic Hydrophobic

Contact angle is not easy to define in a porous medium with a dynamic
Adding repellency force $h_{\text {rep }}$ in the medium in competition with the attractive force $h_{\text {cap }}$. This approach is analogous of dis- and conjoining pressures to characterize the wettability (De Gennes)
$h_{\text {rep }}$ \rightarrow Cahn Hilliard equation (Beltrame \& Thiele)

- Modeling in porous media

Based on this concept, adding in Richards equation : repellency term $h_{\text {rep }}$ and regularize term which is longrange capillary effect

K(s) : hydraulic conductivity Genuchten/Mualem
$\Pi(\mathrm{s})$: competition of forces

$$
\Pi(\mathrm{s})=h_{c a p}(s)-h_{r e p}(s)
$$

g_{r} : gravity term
$\mathrm{T} \Delta \mathrm{s}$: surface tension /
long-range capillary effect Cueto \& Juanes
Under $\approx 5 \%$ of saturation, subcritical hydrophobicity can appear (Liu , Ju , Bachmann et al.)

- Governing equation

In a stratified medium, we must consider a contrast between each layers

$$
\begin{aligned}
\partial_{t} S= & -\nabla \cdot\left[f_{K}(Z) K(s) \nabla\left\{f_{\Pi}(Z) \Pi(\mathrm{S}, \mathrm{Z})+g_{\mathrm{r}} Z+T \Delta \mathrm{~s}\right\}\right] \\
f_{K} & : \text { conductivity contrast } \\
f_{\Pi} & : \text { hydraulic contrast }
\end{aligned}
$$

We considered a situation where the coarse sand conductivity contrast is 20 and the force competition contrast is -0.5

Results

The evolutive graph show a periodic behavior in the stratified medium

It can be seen from the 1D simulation that most of the water remains in the fine grain layer. With a contrast of forces between the two layers and gravity, intermittence in the coarsegrained layer can be seen.

Conclusion

Wettability in a stratified porous media allows to illustrate hydric specific flow, in particular intermittency, which can appear.
In our further work, we will focus on hydric transfer in hydrophobic porous media and fingering in 2D.

