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Abstract: Although Model Predictive Control (MPC) has proven its e�ciency in the process operation
and it is known for its high performance, it also su�ers from design limitation. One of the fundamental
issues for such an optimization-based technique is the di�culty to guarantee recursive feasibility in
the absence of terminal constraints, or alternatively, the complexity of design when a certain basin of
a�raction or a controlled invariant set needs to be certi�ed for the closed loop in the most general
nonlinear se�ing. Based on symbolic control techniques, this paper proposes a simple and guaranteed
solution for such problems. As a main result, a Symbolically guided Model Predictive Control scheme is
developed. �is controller is an improved version of the generic MPC approach such that the recursive
feasibility is guaranteed through appending time-varying terminal constraints, carefully designed
using the symbolic control approach, to the optimization problem of the original MPC formulation.

Keywords: Model predictive control; Symbolic control; Recursive feasibility; Controlled invariant set;
Terminal constraints; Non-linear systems

1. INTRODUCTION

Model Predictive Control (MPC) is well established in the con-
trol engineering studies as a model-based methodology able to
synthesize the control action based on the online solution of an
open loop optimal-control problem subjected to physical con-
straints (Mayne (2014); Maciejowski (2002)). �ese constraints
are de�ning safety regions in the state space or restrictions on
control variables modelling the saturation of actuators or lim-
itation in the available control energy. MPC becomes, nowa-
days, one of the most advanced control technique capable to
control multivariate plants and it has proven its e�ciency in
industrial processes, mainly for systems with slow dynamics,
as chemical processes (Qin and Badgwell (2003)).

Aside the practical computational problems related to the im-
plementation of such an optimization-based control, one of the
most important theoretical problems in MPC is the recursive
feasibility, which deals with the fundamental guarantee that
the nominal MPC closed-loop solutions have to remain within
a safe set for an inde�nite time. Unfortunately, although it
is absolutely recommended from a theoretical point of view
(Mayne and Falugi (2019)), it is not always easy to construct
anMPC controller which has an a priori guarantee of recursive
feasibility while maintaining the e�ciency of MPC.

�ere are few approaches in the literature that suggest a solu-
tion for this problem (Mayne et al. (2000)). In Chmielewski and
Manousiouthakis (1996), the approach focuses on solving the
problem by computing a large enough prediction horizonN of
the optimization problem while Sznaier and Damborg (1987)
? �is project has received funding from the H2020-EU.1.1. research and in-
novation programme(s) – ERC-2016-COG under grant agreement No 725144.

investigates the relationship between the sub-optimality and
the stability. More recent studies (Grüne and Pannek (2017))
have shown that choosing the length of the prediction horizon
to ensure stability is not a trivial task. Moreover, enlarging
the prediction horizon increases the complexity of the opti-
mization problem for MPC and requires more computational
power. Other suggested approaches (Lö�erg (2012)) append
the optimization problem by a maximal controlled invariant
terminal constraint set. Unfortunately, the construction of this
set is di�cult and non-guaranteed to preserve the controlled
invariance properties in a general nonlinear framework.

�e approach proposed in the present paper is to build on the
recent advances on symbolic control design (see e.g. Tabuada
(2009); Belta et al. (2017)). Symbolic control is an approach
to automatically synthesize certi�able controllers, for general
nonlinear systems, that handle state and input constraints and
various speci�cations such as safety, reachability or a�rac-
tivity (Girard and Eqtami (2021)). However, to obtain good
performance with symbolic control, one needs very �ne parti-
tions which are very costly from the computational viewpoint.
In this paper, we develop a novel MPC scheme that we call
Symbolically guided Model Predictive Control (SgMPC) where
time-varying terminal constraints are appended to classical
MPC formulation. �e time-varying constraints are carefully
designed using symbolic control techniques in such a way that
recursive feasibility of the SgMPC controller is guaranteed.
Time varying terminal constraints have already been consid-
ered in MPC, e.g in Limon et al. (2005); Kögel and Findeisen
(2013); Lazar and Te�eroo (2018). In these works, the sequence
of terminal constraint is �xed a priori and is chosen to be
either constant a�er some time or periodic. In comparison,



the sequence of terminal constraints in our approach is de-
termined dynamically at run-time using a designed feedback
mechanism. Finally, let us remark that while most of MPC
approaches addresses both safety and stability requirements,
in this paper we only deal with safety constraints and leave
stability properties for future research.

Paper Organization: �is paper is organized as follows. In
Section 2, we illustrate the main and general implemented
principle to enforce MPC recursive feasibility by time-varying
terminal constraints. �e design of suitable terminal con-
straints using symbolic control techniques is discussed in Sec-
tion 3. Section 4 presents possible re�nements improving the
approach presented in Section 3. Finally, Section 5 presents a
series of numerical experiments to illustrate the performance
and to validate the e�ciency of the SgMPC strategy.

Notations: N, Z, R and R+ denote the sets of natural, integer,
real and non-negative real numbers, respectively. Given a set
X we denote 2X to the set of subsets of X . �e empty set is
denoted by ∅. For x ∈ Rn, we denote by xi its i-th coordinate,
i = 1, . . . , n. We de�ne a partial order on Rn as follows: for
x, x

′ ∈ Rn x 4 x
′
if and only if xi ≤ x

′

i, for all i = 1, . . . , n.
Similarly, x ≺ x

′
if and only if xi < x

′

i, for all i = 1, . . . , n.
We denote [x, x

′
] = {y ∈ Rn | x 4 y 4 x

′} and [x, x
′
) =

{y ∈ Rn | x 4 y ≺ x′}. �en [x, x
′
] + [a, b] = [x+ a, x

′
+ b].

2. TIME-VARYING TERMINAL CONSTRAINTS FOR
RECURSIVE FEASIBILITY IN MPC

In this section, we revisit recursive feasibility in MPC and
describe the mechanisms to enforce them using time-varying
terminal constraints. We �rst present the problem under con-
sideration.�en, we establish conditions on the design of time-
varying terminal constraints, with the goal to provide theoret-
ical guarantees of recursive feasibility.

2.1 System dynamics

Constrained control design is investigated in the current work
for discrete-time nonlinear systems, assuming that all the sys-
tem’s states are measurable.�emodel of the system’s dynam-
ics is considered in the following form:

xt+1 = f(xt, ut) (1)
with state xt ∈ Rd and control input ut ∈ Rm, for time t ∈ N.
f : Rd × Rm → Rd is a known and generally nonlinear map,
such that f = (f1, f2, ..., fd)

T .

We employ the notation u = (u0, u1, ...), with ut ∈ Rm,
for a potentially in�nite control sequence and the notation
φ(t, x0,u) for the state reached at sampling instant t from the
initial state x0 and under the control sequence u. GivenN ≥ 1
as prediction horizon, a control sequence computed at sam-
pling instant t will be denoted as uN

t = (u0|t, ..., uN−1|t) ∈
Rm×N . Given state xt at sampling instant t, the associated pre-
dicted trajectory at t ∈ N is denoted xNt = (x0|t, x1|t, ..., xN |t)

where xk|t = φ(k, xt,uN
t ), for k = 0, . . . , N .

2.2 Model predictive control

Considering the control system (1), the core of anMPC scheme
relies on the resolution of an optimal control problem, at each

sampling instant t ∈ N. �is �nite-horizon optimization, over
the �nite prediction horizon N , takes the following form:

argmin
uN
t

JN (xt,uN
t ) =

N−1∑
k=0

`(xk|t, uk|t) + L(xN |t) (2)

subject to

 xk|t = φ(k, xt,uN
t ), k = 0, ..., N ;

xk|t ∈ X, uk|t ∈ U, k = 0, ..., N − 1;
xN |t ∈ Xt.

(3)

�e control constraint set is U ⊆ Rm, while the state con-
straint set X ⊆ Rd. Let us emphasize that in (2)-(3), the termi-
nal constraint set is time-varying and is described by the set
Xt ⊆ X. �e function ` : Rd ×Rm → R is called stage cost or
running cost, the function L : X→ R is called terminal cost.

De�nition 2.1. (Feasible control sequence) Given a state xt ∈
X and a terminal constraint set Xt ⊆ X, a �nite control sequence
uN
t = (u0|t, ..., uN−1|t), with its associated trajectory xNt =

(x0|t, ..., xN |t), is said to be feasible if:

xk|t ∈ X, uk|t ∈ U, ∀k = 0, ..., N − 1;
xN |t ∈ Xt.

We denote by Uf (xt,Xt) the set of all feasible control sequences
uN
t for state xt ∈ X and terminal constraint set Xt ⊆ X.

We assume in the following that U, X and Xt are compact sets
and that f , ` and L are continuous functions. �en, whenever
Uf (xt,Xt) 6= ∅, the optimization problem (2)-(3) admits at
least one minimizer, which is denoted by the optimal control
sequence

uN∗
t (xt,Xt) = (u∗0|t, ..., u

∗
N−1|t).

�en, the MPC control action fed to the system can be de-
scribed as a feedback law

µN (xt,Xt) = u∗0|t.

�e resolution of the optimization problem (2)-(3) is repeated
online, at each sampling instant leading to the following
closed-loop behavior

xt+1 = f(xt, µN (xt,Xt)). (4)
A fundamental problem in MPC is that of recursive feasibility.
�e optimization problem (2)-(3) is recursively feasible if it
can be shown that Uf (xt,Xt) 6= ∅ at each sampling instant,
resulting in awell-posed closed loop-system (4) satisfying both
state and input constraints at all time t ∈ N.

A classical way (see e.g. Mayne et al. (2000)) to enforce recur-
sive feasibility is to use a controlled invariant set XI ⊆ X
as terminal constraint set in (2)-(3), i.e., Xt = XI , for all
t ∈ N. �e larger XI (i.e. the closer to the maximal controlled
invariant set) the be�er since it provides more freedom in (2)-
(3) to optimize the performance cost. However, for nonlinear
systems and possibly non-convex state and input constraints,
large controlled invariant sets may be very complex and typ-
ically non-convex, rendering the optimization problem (2)-(3)
di�cult to solve online.

In the following, we propose an alternative approach that takes
advantage of the fact that time-varying terminal constraint
sets can be used in the MPC design in (2)-(3). Essentially, we
use a simple (e.g. convex) subset Xt ⊆ XI as terminal con-
straint. However, since Xt is generally not control invariant
itself, it needs to be adapted at each time step in order to ensure
recursive feasibility. In the following section, we present an



approach to design a suitable sequence of terminal constraint
sets ensuring recursive feasibility.

2.3 Construction principle for time-varying terminal constraints

Let us assume the existence of a possibly complex (i.e. non-
convex) controlled invariant setXI ⊆ X. Furthermore, assume
the existence of a set-valued map T : XI → 2XI and of a
controller C : XI → U such that

∀x ∈ XI , f(x,C(x)) ∈ T (x). (5)
Let us remark that a trivial choice for T and C is given by
T (x) = XI withC being a controller guaranteeing the closed-
loop invariance properties of XI . However, in the following,
we will be interested in maps T such that T (x) are simple,
typically convex, sets.

We nowdescribe the construction of the time-varying terminal
constraint sets for the optimization problem (2)-(3):

• At sampling instant t = 0, with initial state x0 ∈ XI , let
uN
0 = (C(x0|0), ..., C(xN−1|0)) (6)

where x0|0 = x0 and
xk+1|0 = f(xk|0, C(xk|0)), k = 0, . . . , N − 1.

Let the terminal constraint set at time t = 0 be de�ned
as:

X0 = T (xN−1|0). (7)
• For t ∈ N, consider the optimal control sequence at
sampling time t,

uN∗
t (xt,Xt) = (u∗0|t, ..., u

∗
N−1|t)

and the associated predicted trajectory
xN∗t = (x∗0|t, ..., x

∗
N |t).

Let
uN
t+1 = (u∗1|t, ..., u

∗
N−1|t, C(x

∗
N |t)) (8)

and let the terminal constraint set at time t+1 be de�ned
as:

Xt+1 = T (x∗N |t). (9)

For the sequence of terminal constraint sets constructed above,
we can show the following result:

�eorem 2.1. Let us assume that there exist a set-valued map
T : XI → 2XI and a controller C : XI → U satisfying the
conditions presented in (5) with XI ⊆ X. �en, for any initial
state x0 ∈ XI , with the time-varying terminal constraint sets
Xt selected according to (7) and (9):

• MPC optimization problem (2)-(3) is recursively feasible;
• the control sequences uN

t constructed based on (6) and (8)
are feasible at all sampling instants.

Proof. Let us consider an initial state x0 ∈ XI . Let the control
sequence uN

0 be given by (6) with its associated predicted
trajectory xN0 = (x0|0, ..., xN |0). �en, according to (5),

xk+1|0 ∈ T (xk|0) ⊆ XI ⊆ X, ∀k = 0, ..., N − 1.

Moreover, the terminal constraint given by (7) is satis�ed:
xN |0 ∈ T (xN−1|0) = X0. �erefore, it follows that the control
sequence uN

0 ∈ Uf (x0,X0).

Now, let t ∈ N, let us consider the control sequence uN
t+1

given by (8) with its associated predicted trajectory xNt+1 =
(x0|t+1, ..., xN |t+1). Obviously, xk|t+1 = x∗k+1|t, for all k =

0, . . . , N − 1. �erefore, from (2)-(3), xk|t+1 ∈ X and
xN−1|t+1 ∈ Xt ⊆ XI . �en, based on (5) it holds

xN |t+1 = f(xN−1|t+1, C(xN−1|t+1)) ∈ T (xN−1|t+1).

Remarking that from (9),
T (xN−1|t+1) = T (x∗N |t) = Xt+1,

we obtain that uN
t+1 ∈ Uf (xt+1,Xt+1).

From above, we see that the set of feasible control sequences
is non-empty at any time. Hence, recursive feasibility is guar-
anteed for the MPC optimization problem.

In this section, we proposed a framework for MPC with time-
varying terminal constraints and derived design principles
ensuring recursive feasibility. �e main problem considered
in the following sections is that of constructing the map T :
XI → 2XI and controller C : XI → U satisfying (5). �is is
done using symbolic control techniques.

3. SYNTHESIS OF TERMINAL CONSTRAINT SETS
BASED ON SYMBOLIC CONTROL

Symbolic control (see e.g. Tabuada (2009); Belta et al. (2017))
is a computational technique for synthesizing controllers for
nonlinear systems with state and input constraints. �e ap-
proach is based on the use of symbolic models, which are �nite
state / �nite input dynamical systems over-approximating the
dynamics of the systemwewant to control. Compared toMPC,
most of the computation is carried o�ine. Symbolic control is
particularly helpful for the computation of controlled invari-
ant. In this section, we show how one can use symbolic models
to design the map T and controller C satisfying (5).

3.1 Computation of symbolic models

We brie�y recall an approach to compute a symbolic model
of (1) similar to that presented in Reissig et al. (2016).

Discretization of states and inputs: Since X is assumed to
be compact there exists an interval RX = [x, x) such that
X ⊆ RX. We �rst start by considering a partition S0 of RX
such that each element s ∈ S0 is an interval of the form
s = [s, s). �en, we obtain a partition S of Rd de�ned as
follows S = S0 ∪ {Rd \ RX}. �e elements of S are referred
to as symbolic states. We also de�ne the quantizer σ : Rd → S
de�ned by

∀x ∈ Rd, σ(x) = s ⇐⇒ x ∈ s.
�e symbolic state constraint set S ⊆ S0 is de�ned as follows

S = {s ∈ S0| s ⊆ X}. (10)
We also consider a �nite subset of inputsU ⊆ U. �e elements
of U are referred to as symbolic inputs.

Computation of the symbolic transition relation: �e symbolic
model is a dynamical system with �nite sets of states and
inputs S and U , respectively. For an input u ∈ U and an
interval s ∈ S0, let us denote by f̂(s, u) an interval such
that f(s, u) ⊆ f̂(s, u). Such interval over-approximations can
be computed using interval reachability analysis (see e.g. the
various techniques described in Meyer et al. (2021)).



�e dynamics of the symbolic model is given by the transition
relation, which is a set-valued map F : S × U → 2S de�ned
for all s ∈ S0, u ∈ U by

F (s, u) = σ
(
f̂(s, u)

)
, (11)

and for s = Rd \RX, u ∈ U , by F (s, u) = S.

�en, the symbolic model is the dynamical system given by the
di�erence inclusion

st+1 ∈ F (st, ut) (12)
with st ∈ S, ut ∈ U , for time t ∈ N.

3.2 Symbolic design of terminal constraint sets

Let SI be the maximal robust controlled invariant set of (12)
contained in the symbolic state constraint set S, i.e. the largest
subset of S such that

∀s ∈ SI , ∃u ∈ U, such that F (s, u) ⊆ SI .
Since S andU are �nite sets, there exist algorithms to compute
SI in a �nite number of iterations (see e.g. Tabuada (2009);
Girard and Eqtami (2021)). �en, let us consider a symbolic
controller K : SI → U guaranteeing the closed-loop robust
invariance property of SI :

∀s ∈ SI , F (s,K(s)) ⊆ SI . (13)

Let us now de�ne the set
XI = σ−1(SI), (14)

and for all x ∈ XI ,
T (x) = f̂

(
σ(x),K(σ(x))

)
,

C(x) = K(σ(x)).
(15)

�en, the following result holds:
�eorem 3.1. Let XI , T and C be given by (14) and (15). �en,
XI is a controlled invariant set included in X. Moreover, for all
x ∈ XI , T (x) ⊆ XI , C(x) ∈ U and (5) holds.

Proof. Let x ∈ XI , then C(x) = K(σ(x)) ∈ U ⊆ U by
construction. From (15), (11), (13) and (14)

T (x) = f̂(σ(x),K(σ(x)))

⊆ σ−1 (F (σ(x),K(σ(x))))

⊆ σ−1 (SI) = XI .

Moreover, by (15)
f(x,C(x)) = f(x,K(σ(x))) ∈ f(σ(x),K(σ(x)))

f(σ(x),K(σ(x))) ⊆ f̂(σ(x),K(σ(x)) = T (x).

�us, (5) holds. From above, we get that for all x ∈ XI

f(x,C(x)) ∈ T (x) ⊆ XI .

Hence, XI is a controlled invariant set. Finally, since SI ⊆ S
and by (10), we get that

XI = σ−1(SI) ⊆ σ−1(S) ⊆ X.

Hence, it follows from�eorem 3.1, that T andC given by (15)
and synthesized using symbolic control techniques are suitable
for the design of time-varying terminal constraints in the MPC
problem (2)-(3).

Let us remark that one could also use the control invariant
XI in (14) as terminal constraint to ensure recursive feasibility

of (2)-(3). However, XI is de�ned as a union of (possibly
many) intervals. �en, this introduces some combinatorial
features to (2)-(3), which makes it very hard to solve online.
In comparison, the time-varying constraints given by the map
T in (15) are simple intervals and can be easily handled by o�-
the-shelf optimization so�ware.

Finally, it is important to remark that all computations de-
scribed in this section can be carried out o�ine and that T and
C can be easily stored as lookup tables. In the following, we
refer to this approach by Symbolically guided Model Predictive
Control (SgMPC).

4. FURTHER IMPROVEMENTS ON SgMPC

In this section, we report two improvements of the technique
described above. �e �rst one allows us to design larger ter-
minal constraint sets giving more freedom to optimize the
behavior.�e second one makes it possible to use the symbolic
model to optimize the controller C in view of the initialization
of the MPC problem (2)-(3).

4.1 Enlarged terminal constraint sets

We�rst show how to redesign themap T given by (15) in order
to provide more degrees of freedom for optimization. Consider
XI as in (14) and C as in (15). For all s ∈ SI , let

ρ(s) = max
{
ρ ≥ 0| f̂(s,K(s)) + ρ[−1,1] ⊆ XI

}
.

�en, let us de�ne the map, given for all x ∈ XI by
T ′(x) = T (x) + ρ(σ(x))[−1,1]. (16)

An illustration of themapT ′ can be seen in Fig.1. Let us remark
that by design, we have for all x ∈ XI

T (x) ⊆ T ′(x) ⊆ XI .

�e above inclusions, together with �eorem 3.1 lead to the
following result:
Corollary 4.1. Let XI , T ′ andC be given by (14), (16) and (15).
�en, for all x ∈ XI , T ′(x) ⊆ XI and (5) holds with T ′ and C .

Hence, using T ′ instead of T makes it possible to use more
relaxed terminal constraints, also under the form of intervals,
while still guaranteeing recursive feasibility. Moreover, similar
to T , the map T ′ can be computed o�ine and stored in a look-
up table.

XI

T (x)

T ′(x)

Figure 1. Illustration of the enlarged terminal constraint set
construction

4.2 Optimized symbolic controller

�ere is a lot of freedom in the design of the symbolic con-
troller K . Indeed, there are o�en many controllers satisfying
(13), i.e. enforcing the closed-loop robust invariance of SI . So
it is natural to consider optimizing over the set of possible
symbolic controllers.



In particular, symbolic control makes it possible to synthesize
controllers rendering SI robustly invariant, while minimizing
some receding horizon cost function such as the following:

N−1∑
k=0

ˆ̀(sk|t, uk|t) + L̂(sN |t)

where ˆ̀(s, u) = maxx∈s `(x, u) and L̂(s) = maxx∈s L(x).

�is optimization problem is solved in Meyer et al. (2015).
Let us remark that this problem can be seen as the symbolic
counterpart of (2)-(3). One major di�erence, though, is that
all the computations can be done o�ine for our symbolic
model (12). �en, we can use the optimized controller K
to design the state dependent terminal constraint and the
initial control sequence guess, that are utilized in SgMPC.
All the preceding results are still valid and the performance
of SgMPC is improved when it is guided by an optimized
symbolic controller (OSC).

5. NUMERICAL EXAMPLE

Let us consider a discrete-time non-linear system with the
state vector x ∈ R3 and control input vector u ∈ R2, such that
x= (x1, x2, x3)

T and u= (u1, u2)
T and the dynamics governed

by the following equations:
x1(t+ 1) = x1(t) + u1(t) cos(x3(t))

x2(t+ 1) = x2(t) + u1(t) sin(x3(t))

x3(t+ 1) = x3(t) + u2(t) (mod 2π)

(17)

�e trajectories represent the behaviour of a mobile cart with
(x1, x2) representing the 2D Cartesian coordinates in meter.
x3 represents the angular orientation of the velocity vector
around the x-direction in radians, u1 is the linear velocity
in m/s and u2 is the angular velocity in rd/s. Note that, by
convention we consider that the angle x3(t) ∈ [−π, π). �e
system is subjected to state and control input constraints, such
that the state constraint set is

X =

{
(x1, x2)

T ∈ R2

∣∣∣∣ x21 − x22 ≤ 4
4x22 − x21 ≤ 16

}
(18)

and the control input constraint set is
U = [0.2, 2]× [−1, 1]. (19)

For the optimization problem (2)-(3), the prediction horizon
was chosen to be N=20 and the stage cost

`(x, u)= 100||(x1, x2)T − xr||2 + ||u||2

where xr ∈ R2 is a reference position. �e terminal cost is set
to L(x) = 100||(x1, x2)T − xr||2. In order to construct the
symbolic abstraction we have chosen RX= [x, x) with

x = (−3.5,−2.6,−π)T , x = (3.5, 2.6, π)T .

�e following subsections compare the performance of OSC
(Optimized Symbolic Control), MPC, and SgMPC with en-
larged terminal constraints guided by OSC. For these simula-
tions, we used a symbolic model with 109200 symbolic states
and 40 symbolic inputs. Using symbolic control techniques, a
control invariant was computed and is shown in Figure 2.

In our �rst experiment, we consider a reference xr = (0.5, 0.5)
inside the constraint set. Figure 3 shows that the three behav-
iors are quite acceptable. �e reference is tracked correctly
by all controllers and all state and input constraints are sat-
is�ed. OSC is slightly less accurate than MPC and SgMPC in

Figure 2. Controlled invariant XI computed using symbolic
control techniques.

tracking.�e asymptotic performances ofMPC and SgMPC are
equivalent.�e transitory phase of MPC is shorter than that of
SgMPC.

In our second experiment, we consider a reference
xr = (

√
32/3,

√
20/3)

on the boundary of the constraint set. �e simulation results
are shown in Figure 4. First, it should be noticed that the
simulation of the system controlled by MPC stopped at t = 13
because the optimization became infeasible. In comparison,
both OSC and SgMPC are able to enforce the constraints
at all time. As for tracking the reference, one can see that
the trajectory controlled by OSC remains quite far from the
reference xr which is located in the top right corner of the
domain. In comparison, SgMPC is much more successful in
driving the system close to the reference. Hence, it appears
that SgMPC is an interesting alternative to MPC and OSC
since it makes it possible to combine high performances with
safety constraints. State and inputs signals are for SgMPC are
represented on Figure 5. One can check that the control signals
are periodic a�er some time.

6. CONCLUSION

�e recursive feasibility of NMPC has been revisited in the
light of the design enhancements which can be obtained
through the symbolic control design. As a main theoretic con-
tribution, we propose the use of time-varying terminal con-
straints to guarantee the controlled invariance of the feasible
set. From the methodological point of view, it is shown that
such time-varying constraints can be obtained from a symbolic
control. �e proposed Symbolically guided Model Predictive
Control scheme proves to provide a simple and guaranteed
solution for the complex control of nonlinear constrained dy-
namical systems. In the future, it is planned to extend this
approach to provide performance and stability guarantees.
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Grüne, L. and Pannek, J. (2017). Nonlinear model predic-
tive control. In Nonlinear model predictive control, 45–69.
Springer.
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