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Abstract

A domain decomposition technique combined with an enhanced geometry mapping
based on the use of NURBS is considered for solving parametrized models in complex
geometries (non simply connected) within the so-called proper generalized
decomposition (PGD) framework, enabling the expression of the solution in each
subdomain in a fully separated form, involving both the space and the model
parameters. NURBS allow a compact and powerful domain mapping into a fully
separated reference geometry, while the PGD allows recovering an affine structure of
the problem in the reference domain, facilitating the use of the standard PGD solver for
computing the parametric solution in each subdomain first, and then by enforcing the
interface transmission conditions, in the whole domain.
Keywords: Space separated representation, Domain decomposition, PGD, NURBS

Introduction
Proper generalized decomposition (PGD) is based on the use of separated representa-
tions, fact that alleviates the computational complexity when solving multidimensional
problems by reducing them to a sequence of lower dimensional problems. PGD was suc-
cessfully applied for addressing four problem typologies:

• Transientmodels canbedecomposed into a series of space and timeproblems, leading
to a non-incremental integrator where the solution history is computed simultane-
ously instead of incrementally as most of time integrators perform. The interested
reader can refer to [7] and the numerous references therein;

• Parametric models can be decomposed into a series of space, time and parameter
problems, enabling the calculation of the whole solution history for any value of the
parameters involved in the model and here assumed as model extra-coordinates, as
described in [8,10] and the numerous references therein;

• The solution of models defined in a degenerated domain (like plate, shells, beam, ...
geometries) where at least one of its characteristic dimensions is much smaller than
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the others, can be successfully accomplished within the separated representation
framework, where each dimension is treated sequentially, weakly coupled with the
others, reducing the 3D problem to a sequence of one-dimensional ones (or a series
of two and one dimensional problems) which alleviates the meshing issues usually
encountered when performing 3D analyses in this kind of domains [7].

• Problems defined in non-degenerated but non-separable domains that could become
separable in a domain decomposition framework.

This work concerns the fourth problem typology, that is, the one related to space-
separation with domain decomposition.
In the past it was claimed that this kind of decomposition works well when the domain

can be expressed from the cartesian product of one-dimensional domains, or a two-
dimensional and a one-dimensional ones as it is the case when addressing plates and
shell geometries, laminates or extruded profiles.More complex geometries, non-separable
in a direct way, can be separated by using appropriate mappings [2,13,14] or penalty
techniques [13], and thus, fully space-separated representation can be applied to reduce
the computational cost of solving 3D problems to the one characteristic of the solution of
2D or 1D problems.
However, the proposed mappings generality remains quite limited when the domain

shape complexity increases. In [1] we proposed a two levels discretization, the coarser to
parametrize the shape and the finest for approximating the problem solution, being the
main remaining challenges: (i) the accurate geometry parametrization, looking for itsmost
compact representation when that geometry is being considered as a model parameter (a
very valuable route in shape optimization); and (ii) the affine expression of the problem
defined in the reference (fully separable) domain to ensure the efficiency of the separated
representation constructor (PGD solver).
For alleviating the just referred issues domain decomposition techniques could be envis-

aged. Domain decomposition techniques have been widely employed in a diversity of
applications. Some techniques are based on the subdomains overlapping, other consider
non-overlaping coupling strategies. Among the overlapping-based strategies we canmen-
tion the classical Schwartz [27] or themore recent and versatileArlequin technique and its
variants [3–5]. Among the non-overlapping ones we can mention the mortar-based tech-
niques [6,23], the FETI strategy and its variants [11,12] and the LATIN-multiscale and
LATIN-multidomain approaches widely developed by Ladeveze and coauthors [18–21]
[22]. These works considered multi-domain coupled with space-time separated repre-
sentations, however in our knowledge, never separated representations involving either
space coordinates or parametric extra-coordinates were considered within the frame-
work of domain decomposition. Authors proposed different techniques based on domain
decomposition, within the Arlequin coupling paradigm [25] and within a more standard
decomposition (without overlapping) technique, assembling parametric patches [15].
Recently, in [16] we proposed a powerful mapping able to represent complex CAD

geometries (employing NURBS) and able to efficiently parametrize complex mappings
while recover efficiently an affine decomposition of the differential operators involved in
themodel. However, the presented technology only applied in simply connected domains,
that is, for example in 2D domains without holes.
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In the present work the technique proposed in [16] is extended for addressing non
simply connected domains. For that purpose, we consider the mapping proposed in [16]
in tandem with a domain decomposition technique, where the required continuity is
ensured at the patches interface level. The proposed technique will be applied in some
numerical experiments to prove its potential.

Geometrical mapping and domain decomposition
Touse the full potential of the PGD technique for solving parametric andhighdimensional
problemsdefined innon-regular geometries (non rectangular orhexahedral) it is necessary
tomap the problem from the non-regular physical domain,�x , into a regular (in the sense
of separable) computational domain, �ξ . A schematic geometric mapping is shown in
Fig. 1. It can be noticed that the geometric mapping should ensure a separable nature of
the problem. Recently, the authors have proposed a general and easily separable mapping
in conjunction with the NURBS basis functions [16] for the geometry description. This
technique makes possible using the PGD for solving parametric problems in 2D and 3D
non-separable domains.
This technique can be generalized for solving problems in non simply connected

domains as the one illustrated in Fig. 2 containing a hole, by transforming it into a simply-
connected domain. For that purpose, one could cut the domain creating a new boundary
connecting the inner and outer boundaries and then applying in it the continuity con-
straints when solving the problem, for guaranteeing the solution periodicity across this

Fig. 1 A schematic representation of the geometrical mapping: a Physical domain; b Computational domain

Fig. 2 Schematic representation of the conversion of a domain with an internal hole into a simply
connected computational domain (the two sided arrow shows the continuity constraint): a Physical domain;
b computational domain
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Fig. 3 Schematic representation of the multi-patch approach for a domain containing one internal hole: a
Patches in the physical domain; b Continuity constraints between adjacent patches; c Patches in the
computational domain

artificial boundary. More details regarding the enforcement of the continuity constraints
will be presented later in subsequent sections.
Although the abovementioned procedure could be used to convert any domainwith one

internal hole into a simply connected domain, the mapping could become very complex
in some cases affecting the solution efficiency. It also must be noted that in the case of
domains with many holes this technique needs more than a simple single cut, making
difficult the proposed procedure.
To overcome this difficulty, it is proposed in the currentwork to usemore than one com-

putational domain while applying the PGD in each computational domain (subdomain).
In this approach, the physical domain would be decomposed into some relatively sim-
ple subdomains or patches and then each patch mapped into a separable computational
domain.
To preserve the continuity of the solution on the subdomain interfaces, appropriate

continuity constraints must be applied between adjacent patches expressed in their com-
putational domains.
A schematic representation of this multi-patch technique is shown in Figs. 3 and 4 for

domains containing one and two internal holes, respectively. Such domain decomposi-
tion is possible for other topologies addressed later. Details concerning the continuity
enforcement between adjacent patches will be presented in the following sections.
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Fig. 4 A schematic representation of multi-patch approach for a domain containing two internal holes: a
Patches in the physical domain; b Continuity constraints between adjacent patches; c Patches in the
computational domain

Problem formulation
For the sake of simplicity and without loss of generality in the present work we evaluate
the proposed multi-domain technique by considering the nonlinear heat equation with a
temperature dependent thermal conductivity, expressed from:

∂

∂x

(
k(u)

∂u
∂x

)
+ ∂

∂y

(
k(u)

∂u
∂y

)
+ f = 0, (1)

where u is the unknown temperature field defined in physical domain �x , k(u) is the
temperature dependent thermal conductivity and f is the distributed heat source. The
nonlinear models will be addressed by using an adequate linearization. In the context of
the PGD addressed later, the simplest route consists in evaluating the nonlinear terms,
the conductivity in the present case, from the temperature field computed at the previous
iteration.
The physical domain, �x , results from the union of non-overlapping subdomains or

patches �s
x .

�x =
Np⋃
s=1

�s
x , (2)

where Np is the total number of patches.
The weighted residual form of Eq. (1) reads

B(w, u) = L(w) (3)
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where w and u are the test and trial functions respectively, and B and L the associated
bi-linear and linear forms.
The problem can be expressed in the variational form

I = 1
2
B(u, u) − L(u). (4)

The unknown field u(x) must be obtained in such a way that minimize the functional I
in Eq. (4). In the proposed multi-patch technique, a penalty method is used to enforce the
Dirichlet boundary conditions, by considering the extended variational form

Iα = 1
2
B(u, u) − L(u) + 1

2

∫
�D

α(u − ū)2d�, (5)

where ū is the prescribed value of the field on the Dirichlet boundary �D and α is the
associated penalty parameter. By minimizing the functional it results∫

�x
k̃

(
∂u∗

∂x
∂u
∂x

+ ∂u∗

∂y
∂u
∂y

)
d� +

∫
�D

αu∗ud� =
∫

�x
u∗fd� +

∫
�N

u∗q̄d� +
∫

�D

αu∗ūd�, (6)

where k̃ represents the conductivity linearization and q̄ is the prescribed heat flux on the
Neumann boundary �N . In Eq. (6), u∗ is the first variation of the field variable u.

Solution procedure
The use of NURBS enables the efficient description of general curves, surfaces and vol-
umes.According to thenotation introduced inAppendixA, themapping from thephysical
to the computational domain in the 2D case reads

x =
n∑

i=1

m∑
j=1

Rpq
ij (ξ)Ps

ij , x ∈ �s
x , ξ ∈ �s

ξ (7)

where are Rpq
ij (ξ) are the NURBS-based shape functions, Ps

ij refers to the control points
(the vertices of the so-called control net) related to the s-th patch in the physical domain.
Eq. (7) expresses the geometrical mapping, with ξ in the computational domain �s

ξ
to a

point x in physical domain �s
x .

The previous equation allows not only transforming the domain, but also transforming
the differential operators and computing the transformation Jacobian (see Appendix A).
Even if the computational domain inwhich the physical one ismapped, is fully separable

by construction, the differential operators are not, because of the fact that the just referred
shape functions involved in the geometry mapping are not separated. Thus, to obtain a
separated representation of a generic function g(x) into the computational domain, it
suffices looking for the separated form

g(ξ) ≈
NG∑
i=1

ND∏
j=1

MT
j (ξj)Gji, (8)

with M j(ξj) the vector of approximation functions involving the j-th coordinate and Gji
is the vector of coefficients of the i-th mode in the j-th coordinate direction. ND is the
total number of problem dimensions (in the present case ND = 2 if the problem is 2D
or ND > 2 when some problem parameters are considered as model extra-coordinates)
andNG is the number of modes needed for reaching the desired accuracy (as described in
Appendix B).
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Thus, the so-called Separated Approximate Representation –SAR– proceeds by enforc-
ing in a weak form the equality g(ξ) = g(x(ξ)) in �s

ξ
, with g(ξ) expressed in the separated

form (8), following the procedure deeply addressed in our former works [9,16], to finally
obtain the coefficients Gji.
This procedure, the just described SAR, is then applied for expressing both the Jacobian

and the differential operator transformation (see Appendix C), in an affine form, making
possible the application of the standard PGD procedure.
Thus, the separated representation of the temperature field u(ξ) in the computational

subdomain �s
ξ
reads at the n-enrichment (the dependence on the subdomain considered,

referred by the upper-script •s, is omitted for the sake of notational simplicity)

un(ξ) ≈
n−1∑
i=1

ND∏
j=1

MT
j U ji +

ND∏
j=1

MT
j U jn, (9)

where U jn, j = 1, 2, . . . , ND must be calculated from the problem weak form by using the
standard fixed-point alternated directions fixed point algorithm [9].
When updating the function concerned by the d-coordinate (in the present case d = 1

or d = 2), the test function reads:

u∗d(ξ) = MT
dU∗d

dn

ND∏
j = 1
j �= d

MT
j U jn, (10)

that allows updating coefficients Udn.
Nonlinear models can be addressed by computing nonlinear terms at the current solu-

tion (for instance un−1(ξ)) whose affine description can be recovered by applying again
the SAR. For additional details the interested reader can refer to [16].

Enforcing continuity constraints
As stated before, continuity constraints must be enforced between adjacent patches to
enforce the continuity of the field. The continuity constraints may be defined between
opposite sides of a single patch or between sides of adjacent patches. In the former case,
the standard fixed point iterative method involved in the PGD constructor, can be applied
for solving the resulting system of nonlinear algebraic equations.
Application of the continuity constraints between the adjacent edges of a multi-patch

topology is more complex and the standard fixed point iterative approach is not longer
applicable. In this case, a multi-action fixed point iterative approach is proposed in the
present work to solve the system of nonlinear algebraic equations. These techniques are
discussed in the following subsections.

Single patch PGDwith continuity constraints

As previously discussed a valuable approach to solve the problem in a domain containing
an internal hole consists of applying a cut line and transform the non simply connected
region into a simply connected one as shown schematically in Fig. 2.
A continuity constraint then should be enforce to ensure the continuity of the field

along that cut-line. In this approach, the problem can be solved using a single patch (one
computational domain). Consider, for instance, that the continuity constraint is defined
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between the edges parallel to ξ axis, that according to Eq. (9) implies some constraints to
be applied in the modes concerning the direction η.
In other words, when operating withMT

2 U2n, the constraint reads:

(
MT

2 U2n
) ∣∣∣∣

η=0
=

(
MT

2 U2n
) ∣∣∣∣

η=1
. (11)

When using standard piecewise linear functions for expressingM2, verifying the Kroe-
necker delta property, the previous constraint implies that the first and last degree of
freedom coincides. That is, inN2 nodes are used for approximating the modes involving
the η coordinate, the previous continuity constraint simply reads

U2n

∣∣∣∣
1

= U2n

∣∣∣∣
N2

, (12)

that can be directly enforced when looking for the coefficients U2n.

Multi-patch PGDwith continuity constraints

When more than one computational domain is considered, the continuity constraint
and fixed point iteration schema becomes more complex. To explain the basic idea and
the procedure, three sample topologies for computational domains are considered. More
complex cases are considered in subsequent sections.

First topology

For the first sample topology, consider the two patches shown in Fig. 5. There is a single
continuity constraint and is shown in that figure. Consider in the n-th enrichment step,
we would like to findU s

dn, where s is the patch number, and d is the space direction (d = 1
for ξ and d = 2 for η).
The continuity constraint (see Fig. 5) indicates that the unknown field at the edge BC

of patch 1 must be equal to the field at the edge BC of patch 2. Therefore, the modes
involving the η direction in patch 1 must be the same as the modes in this same direction
in patch 2. In addition, the value of the modes involving the ξ direction at the common
boundary must match. To make it more clear, refer to Fig. 6. This figure shows schematic
representation of modes in ξ and η directions for two patches 1 and 2. To satisfy the
continuity between two patches, Fig. 6a, b show that the modes of ξ should have same
value at the patches interface. On the other hand, Fig. 6c, d show that the modes of η

should be same function for both patches. Mathematically, the continuity constraint for

Fig. 5 First topology: multi-patch computational domains and a single continuity constraint



Kazemzadeh-Parsi et al. Adv. Model. and Simul. in Eng. Sci.            (2022) 9:2 Page 9 of 24

Fig. 6 Schematic representation of modes and continuity constraint for two patches of the first topology: (a,
b) modes in ξ direction; (c, d) modes in η direction

this sample topology is defined as:

Cont. Cons.
{(MT

1 U1
1n

)|ξ=1 = (MT
1 U2

1n
)|ξ=0 ⇒ U1

1n|N1 = U2
1n|1

MT
2 U1

2n = MT
2 U2

2n ⇒ U1
2n = U2

2n
(13)

The PGD system of algebraic equations regarding direction d of patch s at the n-th
enrichment step reads (see [16]):

K s
dnU s

dn = Rs
dn. (14)

To solve the equations and obtain the n-th enrichment modes, a modified fixed point
iteration approach is used here considering the continuity constraint given in Eq. (13).
This modified fixed point schema consists of the three steps:

1. Regarding the continuity constraint given in the first row of Eq. (13), the system to
be solved reads

[
K 1

1n 0
0 K 2

1n

] [
U1

1n
U2

1n

]
=

[
R1
1n

R2
1n

]
. (15)

2. Regarding the continuity constraint given in the second row of Eq. (13), the system
to be solved reads

[
K 1

2n

] [
U1

2n

]
=

[
R1
2n

]
. (16)
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Fig. 7 Second topology: multi-patch computational domains and continuity constraints

3. If other parameters are involved as extra-coordinates, that can be represented by a
generic d, d > 2, the associated degrees of freedom results from

[K 1
dn + K 2

dn
] [U1

dn
] = [R1

dn + R2
dn

]
. (17)

The Eqs. (15)–(17) are located in the inner loop of fixed point algorithm. It is clear that
the first row of Eq. (13) must be considered when solving Eq. (15) and it consists of simple
matrix operations. Each system of Eqs. in (15)–(17) is solved by a direct system solver.

Second topology

The second sample topology consists of three patches shown in Fig. 7. The continuity
constraints are also shown in that figure. Consider in the n-th enrichment step, we would
like to find U s

dn, where s is the patch number, and d is the space direction (d = 1 for ξ

and d = 2 for η).
The continuity constraint 1 (in reference to Fig. 7) indicates that the unknown field at

the edge BC of patch 1 must be equal to the field at the edge BC of patch 2. Therefore,
the modes involving the η direction in patch 1 must be the same as the ones in this same
direction in patch 2. In addition, the value of the modes involving the ξ direction at the
common boundary must match, i.e.:

Cont. Cons. 1 :
{(MT

1 U1
1n

)|ξ=1 = (MT
1 U2

1n
)|ξ=0 ⇒ U1

1n|N1 = U2
1n|1

MT
2 U1

2n = MT
2 U2

2n ⇒ U1
2n = U2

2n
(18)

The same rationale applies for enforcing the continuity constraint 2 (see Fig. 7). To
make it more clear, the modes involving ξ direction in patch 2 must be the same as the
modes in ξ direction in patch 3. And, the modes involving η direction must match at the
common interface of patches 2 and 3. That reads:

Cont. Cons. 2 :
{
MT

1 U2
1n = MT

1 U3
1n ⇒ U2

1n = U3
1n(MT

2 U2
2n

)|η=1 = (MT
2 U3

2n
)|η=0 ⇒ U2

2n|N2 = U3
2n|1

(19)

The PGD system of algebraic equations regarding direction d of patch s at the n-th
enrichment step reads

K s
dnU s

dn = Rs
dn. (20)
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The modified fixed point schema consists of the three steps:

1. Regarding the continuity constraint 1 given in Eq. (18), the system to be solved reads[
K 1

1n 0
0 K 2

1n + K 3
1n

] [
U1

1n
U2

1n

]
=

[
R1
1n

R2
1n + R3

1n

]
. (21)

2. Regarding the continuity constraint 2 given in Eq. (19), the system to be solved reads[
K 1

2n + K 2
2n 0

0 K 3
2n

] [
U1

2n
U3

2n

]
=

[
R1
2n + R2

2n
R3
2n

]
. (22)

3. If other parameters are involved as extra-coordinates, that can be represented by a
generic d, d > 2, the associated degrees of freedom results from

[K 1
dn + K 2

dn + K 3
dn

] [U1
dn

] = [R1
dn + R2

dn + R3
dn

]
. (23)

The systems of Eqs. (21)–(23) constitute the solution procedure. In other words, the
Eqs. (21)–(23) are placed in the inner loop of fixed point algorithm. Each system of Eqs.
in (21)–(23) is solved by a direct system solver but the whole process is iterative.

Third topology

For the third sample topology, we consider a computational domain composed of the four
patches shown in Fig. 8 that shows the four continuity constraints.
By using the notation that was used previously, the continuity of the filed along all

adjacent edges, the continuity constraints 1 to 4 are given in Table 1. Note that the
operator Flip(·) that appears in some terms of Table 1 acts on a vector, by reversing the
elements of the vector. It also acts in a similar way on the associatedmatrices. For example
concerning the second constraint, η increases in patch 2 while the associated coordinate,
ξ in patch 3 decreases.
Taking into account the usual PGD update given by Eq. (20) and the continuity con-

straints given in Table 1, the procedure reads:

Fig. 8 Second topology: multi-patch computational domains and continuity constraints
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Table 1 Continuity constraints in the second analyzed topology, whereN1 andN2 are the same in
all the subdomains

Continuity constraint Equations

1 U1
1n = U2

2n , U1
2n|1 = U2

1n|1
2 U2

2n = Flip(U3
1n) , U2

1n|N1 = U3
2n|1

3 U3
1n = U4

2n , U3
2n|N2 = U4

1n|N1

4 U4
2n = Flip(U1

1n) , U4
1n|1 = U1

2n|N2

1. Compute the less-constrained modes where only the constraints in the last column
of Table 1 are enforce in a direct manner,⎡

⎢⎢⎢⎣
K 2

1n 0 0 0
0 K 3

2n 0 0
0 0 K 4

1n 0
0 0 0 K 1

2n

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
U2

1n
U3

2n
U4

1n
U1

2n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
R2
1n

R3
2n

R4
1n

R1
2n

⎤
⎥⎥⎥⎦ . (24)

2. The most constrained modes are then calculated, in fact only one because the first
column in Table 1 implies that it propagates along all the connected patches. This
mode reads

[K 2
2n + Flip(K 3

1n) + Flip(K 4
2n) + K 1

1n
] [U2

2n
] =[R2

2n + Flip(R3
1n) + Flip(R4

2n) + R1
1n

]
. (25)

3. If other parameters are involved as extra-coordinates, that can be represented by a
generic d, d > 2, the associated degrees of freedom results from

[K 1
dn + K 2

dn + K 3
dn + K 4

dn
] [U1

dn
] = [R1

dn + R2
dn + R3

dn + R4
dn

]
. (26)

Similar to the previous topology, the systems of Eqs. (24)–(26) are placed in the inner
loop of fixed point algorithm. In each iteration of the fixed point procedure, the system of
Eqs. in (24)–(26) should be solved by a direct system solver.

Numerical examples
In this section some numerical examples are presented to evaluate the applicability and
potential of the proposed multi-patch separable PGD technique.

First case study

Thefirst numerical example concerns thePoissonproblem in a circular domain containing
an internal hole. The problem domain, its dimensions and the control net that is used
for representing the physical domain from NURBS are shown in Fig. 9. The domain is
transformed into a simply-connected domain by using a cut-line, the segment AC, shown
in Fig. 10(left).
The computational domain and the continuity constraint are shown in Fig. 10(right).

To construct the NURBS basis, the order of the B-Spline basis functions is of two con-
cerning the dimension ξ and one concerning η. The knot vectors κξ and κη (introduced
in Appendix A) are given by

κξ = [0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1]T , (27)

and
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Fig. 9 Physical domain related to the Poisson problem, with the dimensions and the control net related to
the NURBS-based geometry description

Fig. 10 Geometry mapping and the continuity constraint: a Physical domain; b Computational domain

κη = [0, 0, 1, 1]T , (28)

respectively.
Homogeneous Dirichlet boundary conditions are enforced on both boundaries, the

inner and outer, that is, on the boundaries ABA and CDC of the computational domain
depicted in Fig. 10.
The heat source f (x, y) in Eq. (1) reads:

f (x, y) = 4
5

(
4x2 + 4y2 − 4y + 1

) − 8. (29)

This particular choice leads to the exact solution

u(x, y) = −1
5
(x2 + y2 − 1)

(
x2 + (y − 1)2 − 9

)
. (30)

The separated representation of the physical coordinates x(ξ , η) and y(ξ , η) (according to
Appendix C) involve a single mode for the former and twomodes for the last, represented
in Figs. 11 and 12, for x and y, respectively.
The modes involved in the separated representation of the solution involved 41 nodes

for the modes affecting the ξ coordinate and 21 the ones concerning η.
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Fig. 11 Separated representation of x(ξ , η) involving a single mode

Fig. 12 Separated representation of y(ξ , η) involving two modes

Fig. 13 First five modes involved in the separated representation of u(ξ , η) related to the first case study

The first five modes involved in the separated representation of u(ξ , η) are shown in Fig.
13. The contours of the reconstructed field in the physical and computational domains
are shown in Fig. 14. The computed PGD solution is compared with exact one in Fig.
15 along the line x = 0 for 1 < y < 4, proving the excellent accuracy of the computed
solution.

Second case study

The second case study concerns a domaine containing two holes. The problem domain
is divided into 8 subdomains or patches. The dimensions of the physical domain and the
control nets related to the NURB representation of the geometry are shown in Fig. 16.
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Fig. 14 Contours of the reconstructed solution: a Physical domain; b Computational domain

Fig. 15 Comparison of the PGD results with exact one on x = 0 for 1 < y < 4

The patches in the physical and computational domains and the continuity constraints
are shown in Figs. 17 and 18, respectively. In the present numerical study all the patches
have the same structure, therefore, the same knot vectors are used for all patches, in
particular

κξ = [0, 0, 0, 1, 1, 1]T & κη = [0, 0, 1, 1]T . (31)

A nonzero Dirichlet boundary condition is enforced on the boundary of both internal
holes, with u = 100 and u = 10 on the left and right holes respectively, that will be
enforced by using the penalty technique discussed before. In the present case, a temper-
ature dependent thermal conductivity is considered, according to k(u) = 1 + 0.04u. No
thermal source is considered, i.e., f (x, y) = 0.
The 9 continuity constraints which are shown in Fig. 18 are expressed in detail in Table

2. These continuity constraints will be considered as previously discussed.
The three steps procedure previously described is here applied again, where the third

step does not apply because there are not extra-coordinates to be addressed:
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Fig. 16 Geometry and control net concerned by the second case study

Fig. 17 Patches in the physical domain and continuity constraints associated to the second case study

Fig. 18 Patches in the computational domain and continuity constraints associated to the second case
study
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Table 2 Continuity constraints to be enforced in the second use case, withN1 = N2 ≡ N for all
the subdomains

Continuity constraint Equations

1 U1
2n = U2

2n , U1
1n|N = U2

1n|1
2 U2

2n = U3
2n , U2

1n|N = U3
1n|1

3 U3
2n = U4

2n , U3
1n|N = U4

1n|1
4 U4

2n = U1
2n , U4

1n|N = U1
1n|1

5 U2
1n = Flip(U8

1n) , U2
2n|1 = U8

2n|1
6 U5

2n = U6
2n , U5

1n|N = U6
1n|1

7 U6
2n = U7

2n , U6
1n|N = U7

1n|1
8 U7

2n = U8
2n , U7

1n|N = U8
1n|1

9 U8
2n = U5

2n , U8
1n|N = U5

1n|1

1. Themodes that concerns each subdomain, with as only constraints the ones reported
in the last column of Table 2, leads to the system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K 1
1n 0 0 0 0 0 0
0 K 2

1n + Flip(K 8
1n) 0 0 0 0 0

0 0 K 3
1n 0 0 0 0

0 0 0 K 4
1n 0 0 0

0 0 0 0 K 5
1n 0 0

0 0 0 0 0 K 6
1n 0

0 0 0 0 0 0 K 7
1n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1
1n

U2
1n

U3
1n

U4
1n

U5
1n

U6
1n

U7
1n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1
1n

R2
1n + Flip(R8

1n)
R3
1n

R4
1n

R5
1n

R6
1n

R7
1n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (32)

2. The second step concerns the calculation of the modes that propagate throughout
different patches for ensuring the continuity (first column in Table 2). It is easy to
see that in the present case these modes verify the system[

K 1
2n + K 2

2n + K 3
2n + K 4

2n 0
0 K 5

2n + K 6
2n + K 7

2n + K 8
2n

] [
U1

2n
U8

2n

]
=

[
R1
2n + R2

2n + R3
2n + R4

2n
R5
2n + R6

2n + R7
2n + R8

2n

]
. (33)

In the present case study the 1D discretizations of modes involving the ξ and η coor-
dinates is done by using 21 nodes in each direction. The contours of the reconstructed
solution, in the physical u(x, y) and computational u(ξ , η) domains, are shown in Figs. 19
and 20, respectively.
The first six modes involved in the solution u(ξ , η), are shown for the eight patches in

Fig. 21. To evaluate the PGD results, the problem is also solved by using the finite element
method with linear quadrilateral elements. The solution on the upper edge of the domain,
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Fig. 19 Reconstructed solution in the physical domain in the second case study

Fig. 20 Reconstructed solution in the computational domain in the second case study

y = 3, is plotted in Fig. 22 for both PGD and finite element solutions, proving the excellent
accuracy of the PGD-based solution.

Third case study

In the last case studywe are including parameters asmodel extra-coordinates. In particular
the domain geometry is parameterized here and the field variable is not only a function
of coordinates ξ and η but also it is a function of few extra-parameters describing the
domain shape.
We solve the Laplace equation, in the domain shown in Fig. 23, where the internal hole

has a shape represented by the four digits NACA profile that involves three parameters
M, P and T [24]. Thus, the problem involves 5 coordinates, the space ones, ξ and η, and
the three extra-coordinates M, P and T , that within the PGD rationale, its solution will
reduce to a sequence of five one-dimensional problems.
The physical domain consists of the internal boundary (where a null normal gradient

is enforced) and an outer boundary (ellipse) on which the solution in enforced (Dirichlet
boundary condition), u(x, y) = x. A single computational domain (single patch) is used
here to map the physical domain. The geometry mapping and continuity constraint are
shown in Fig. 23. Both internal and external boundaries are described by using NURBS,
each involving 31 control points.
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Fig. 21 First six modes in the eight patches

Fig. 22 Comparison of the PGD and the finite element solutions on the upper edge of the domain, y = 3

The continuity constraint is very simple as previously discussed, it reduces to

U1n|1 = U1n|N1 (34)

The ranges of the parameters describing the shape are: M ∈ [0, 5]%, P ∈ [35, 50]% and
T ∈ [15, 30]%. The 1D discretization is done by using 11 nodes in each directions ξ , M,
P and T and 31 nodes in the η direction. The contours of the reconstructed solution,
u(ξ , η,M, P, T ), in the physical domain are shown in Fig. 24 for four different choices of
the parameters defining the internal shape. The first six modes involved in the solution
separated representation are shown in Fig. 25.

Conclusions
The present paper proposed a valuable methodology for addressing complex geometries
non simply connected, while enabling a fully separated representation with respect to the
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Fig. 23 Physical and computational domain related to the third case study

Fig. 24 Reconstructed solution for four choices of the internal shape

Fig. 25 Six first modes involved in the parametric separated representation of u(ξ , η, M, P, T )
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space coordinates as well as on some problem parameters, considered as model extra-
coordinates within the PGD rationale.
The proposed technique combines domain decomposition, a geometrical description

based on the use of NURBS and the use of the PGD for recovering an affine representation
after the mapping that transforms complex geometries into fully separated ones.
Model extra-coordinates can be easily included in the formalism, that only needs make

special care on the continuity enforcement across the subdomains interfaces.

Appendix A: NURBS-based geometry description
NURBS enables accurately representing the geometry of curves, surfaces and volumes,
being nowadays a usual technology employed in CAD. For the sake of completeness this
appendix revisits the main concepts involved in the NURBS construction. For additional
details refer to [26].
NURBS result from weighted combinations of B-spline functions. To define a set of n

B-spline functions of order p in a univariate parametric space ξ ∈ [0, 1], the knot vector
κξ is defined as follows.

κξ = [ξ1, ξ2, . . . , ξn+p+1]T . (35)

Denote Nap(ξ ) as the B-spline basis function of order p in the a-th knot span ξ ∈
[ξa, ξa+1]. The following recursive equations can be used to compute the univariate B-
spline basis function Nap(ξ ) [26]

Na0(ξ ) =
{
1 ξa ≤ ξ < ξa+1
0 otherwise

, for p = 0 (36)

Nap(ξ ) = ξ − ξa
ξa+p − ξa

Na(p−1) + ξa+p+1 − ξ

ξa+p+1 − ξa+1
N(a+1)(p−1) , for p > 0 (37)

A proper choice of the knot vector allows obtaining rich behavior of the basis functions
and enough flexibility to describe complex geometries. The NURBS basis functions can
be obtained using a rational weighted sum of the B-splines basis functions. With wi the
weight, the univariate NURBS basis function, Rp

i (ξ ) reads [26]

Rp
i (ξ ) = Nip(ξ )wi∑n

α=1Nαp(ξ )wα

. (38)

The bivariate NURBS basis functions Rpq
ij (ξ , η) in 2D domains can be obtained using

tensor product of univariate basis functions.

Rpq
ij (ξ) = Nip(ξ )Njq(η)wij∑n

α=1
∑m

β=1Nαp(ξ )Nβq(η)wαβ

. (39)

In the above equationp and q are the order of B-splines in directions ξ and η, respectively
and ξ = (ξ , η) is the coordinates vector in the computational domain. In this equation,
wij denotes the geometry related weight parameter. The knot vector κη applying in the
coordinates η read

κη = [η1, η2, . . . , ηm+q+1]T , η ∈ [0, 1], (40)

being n andm the number of basis functions in directions ξ and η respectively. Using the
NURBS basis functions just described, the bivariate physical domain �x can be described
from

x =
n∑

i=1

m∑
j=1

Rpq
ij (ξ)Pij , x ∈ �x , ξ ∈ �ξ , (41)
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where, P refers to the control points (the vertices of the so-called control net) in the
physical domain.
Equation (41) represent a one to one relation thatmaps any point ξ in the computational

domain �ξ to a point x in physical domain �x .
Now, using the notation (x, y) ≡ (x1, x2) and (ξ , η) ≡ (ξ1, ξ2), for facilitating themapping

description compactness, the terms involved in the transformation of the differential
operator from �x to �ξ read

∂x
∂ξa

=
n∑

i=1

m∑
j=1

∂Rpq
ij (ξ)
∂ξa

Pij , a, b = 1, 2. (42)

More details and derivations regarding basic concepts and computations of NURBS
basis functions and their derivatives could be found in [26]. Note that the geometric
mapping given in Eq. (41) and its derivatives in Eq. (42) leads to a non-separable mapping
in the sense of the PGD technique, compromising the effectiveness of the PGD solver. To
overcome this difficulty, we apply a Separated Approximate Representation (SAR) of the
Jacobian of the transformation [16], revisited in Appendix B.

Appendix B: Separated approximate representation (SAR)
Consider the generic function g(x) defined in the physical domain�x and its counterpart,
g(ξ), in the computational domain �ξ . A separated approximate representation of g(ξ) in
the computational domain �ξ reads

g(ξ) ≈
NG∑
i=1

ND∏
j=1

MT
j (ξj)Gji, (43)

where,M j(ξj) is the vector of approximation functions in term of j-th coordinate direction
and Gji is the vector of coefficients of the i-th mode in the j-th coordinate direction.
ND is the total number of problem dimensions (considering both geometric space and
parametric solution space) andNG is the number ofmodeswhich are used to represent the
separated representation of function g(ξ). Generally, any type of approximation functions
M j(ξj) could be used to approximate the modes in each direction but the piecewise linear
Lagrange interpolation functions (which are common in the FEM) are used here for
simplicity. More details and procedure for calculating the unknown coefficients vector
Gji was addressed in [9,16,17].

Appendix C: Separable geometry mapping (SGM)
The most appealing features of the PGD is reducing of a high dimensional problem to
a series of problems defined in lower dimensional spaces. As stated before, to apply this
method in non-regular geometries, one needs first to map the problem from the physical
domain,�x , into is counterpart, the so-called computational domain,�ξ . Themain issue,
as previously discussed, is thenon-separable expressionof the terms related to the Jacobian
of the coordinate transformation. The derivatives transform according to[

∂(·)/∂x
∂(·)/∂y

]
= h

[
∂(·)/∂ξ

∂(·)/∂η

]
, (44)

where h is the inverse of the Jacobian tensor, J .
The coordinate transformation (41) leads to non separable expressions in Eq. (44) that

compromise the PGD effectiveness. An alternative procedure consists in constructing a
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separated representation of the coordinates mapping, x(ξ), as follows:

x(ξ) =
NX∑
i=1

ND∏
j=1

MT
j X ji, (45)

and

y(ξ) =
NY∑
i=1

ND∏
j=1

MT
j Y ji, (46)

where,NX andNY are the number ofmodes required to reach the desired level of accuracy
in the SAR of x(ξ) and y(ξ), respectively. Using the same rationale, we can derive the SAR
of Jacobian determinant, |J (ξ)|, and the all 4 elements of the transformation derivatives
tensor, h(ξ), as follows:

|J | =
NJ∑
i=1

ND∏
j=1

MT
j J ji, (47)

and

hab(ξ) =
NHab∑
i=1

ND∏
j=1

MT
j Hab

ji , a, b = 1, 2. (48)

More details regarding separated geometry mapping and its performance in parametric
solution of field problems are given in [16].
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