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Reachability analysis of neural networks using
mixed monotonicity

Pierre-Jean Meyer

Abstract— This paper presents a new reachability anal-
ysis approach to compute interval over-approximations of
the output set of feedforward neural networks with input
uncertainty. We adapt to neural networks an existing mixed-
monotonicity method for the reachability analysis of dy-
namical systems and apply it to each partial network within
the main network. This ensures that the intersection of the
obtained results is the tightest interval over-approximation
of the output of each layer that can be obtained using
mixed-monotonicity on any partial network decomposition.
Unlike other tools in the literature focusing on small classes
of piecewise-affine or monotone activation functions, the
main strength of our approach is its generality: it can
handle neural networks with any Lipschitz-continuous acti-
vation function. In addition, the simplicity of our framework
allows users to very easily add unimplemented activation
functions, by simply providing the function, its derivative
and the global argmin and argmax of the derivative. Our
algorithm is compared to five other interval-based tools
(Interval Bound Propagation, RELUVAL, NEURIFY, VERINET,
CROWN) on both existing benchmarks and two sets of
small and large randomly generated networks for four ac-
tivation functions (ReLU, TanH, ELU, SiLU).

Index Terms— Neural network, uncertain systems

I. INTRODUCTION

ARTIFICIAL intelligence and particularly neural networks
are quickly spreading in various fields including safety-

critical applications such as autonomous driving [1]. With
it comes a growing need for replacing verification methods
based on statistical testing [2] by more formal methods able
to provide safety guarantees of the satisfaction of desired
properties on the output of the neural network [3]. Such
methods are also useful for the verification of a closed-loop
system with a neural network controller [4], [5].

When focusing on isolated neural networks, the rapidly
growing field of formal verification has been categorized into
three main types of objectives [3]: counter-example result to
find an input-output pair that violates the desired property;
adversarial result to determine the maximum allowed distur-
bance that can be applied to a nominal input while preserving
the properties of the nominal output; reachability result to
evaluate (exactly or through over-approximations) the set of all
output values reachable by the network when given a bounded
input set. While the first two types of results often rely on
solving optimization problems [3], [6], reachability results
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(which are considered in this paper) naturally lean toward
developing new reachability analysis approaches to be applied
layer by layer in the network. The current reachability methods
in the literature consider various set representations to over-
approximate the network’s output set with static intervals [5],
symbolic interval equations and linear relaxations of activa-
tion functions (RELUVAL [7], NEURIFY [8], VERINET [9],
CROWN [10]) or polyhedra and zonotopes in the tool libraries
NNV [11] and ERAN [12].

The main weakness of existing neural network verifiers
is that most of them are limited to a very small class of
activation functions. The large majority of verifiers only han-
dles piecewise-affine activation to focus on the most popular
ReLU function [7], [8], [13], [14]. A handful of tools cover
other popular activations, such as S-shaped functions sigmoid
and hyperbolic tangent [9], [11], [12]. Several other tools
claiming to handle general activation functions are either
implicitly restricted to monotone functions in their theory or
implementation [15], [16], or their claimed generality rather
refers to a mere compatibility with general activation functions
but they require the user to provide their own implementation
of how to handle these new functions [10].

Although ReLU or sigmoid networks often perform well,
the focus on these activation functions in the literature is
also strongly tied to the fact that most current optimization
and verification tools cannot handle more general activations.
Proposing a new approach to deal with these general activation
functions is thus an important step towards opening the field of
formal verification of neural networks to new non-monotone
activations that have already been shown to outperform clas-
sical ReLU or sigmoid networks (see e.g. Swish/SiLU [17],
Mish [18], PFLU and FPFLU [19]).

Contributions: This paper presents a novel method for
the reachability analysis of feedforward neural networks with
general activation functions. The proposed approach adapts the
existing mixed-monotonicity reachability method for dynam-
ical systems [20] to be applicable to neural networks so that
we can obtain an interval over-approximation of the set of all
the network’s outputs that can be reached from a given input
set. Since our reachability method is also applicable to any
partial network within the main neural network and always
returns a sound over-approximation of the last layer’s output
set, intersecting the interval over-approximations from several
partial networks ending at the same layer can only tighten the
approximation while preserving the soundness of the results.
To take full advantage of this, we propose an algorithm
that applies our new mixed-monotonicity reachability method



to all L(L + 1)/2 partial networks contained within the
considered L-layer network. This ensures that the resulting
interval over-approximation is the tightest output bound of
the network obtainable using mixed-monotonicity reachability
analysis on any partial network decomposition, at the cost of
a computational complexity of O(L2).

Mixed-monotonicity reachability analysis is applicable to
any system whose Jacobian matrix is bounded on any bounded
input set [20]. In the case of neural networks combining linear
transformations and nonlinear activation functions, the above
requirement implies that our approach is applicable to any
network with Lipschitz-continuous activation function. Since
extracting the bounds of the Jacobian matrix of a system (or
of the derivative of an activation function in our case) is
not always straightforward, for the sake of self-containment
of the paper we provide a method to automatically obtain
these bounds for a (still very general) sub-class of activa-
tion functions whose derivative can be defined as a 3-piece
piecewise-monotone function. Apart from the binary step and
Gaussian function, all activation functions we could find in
the literature (including all non-monotone functions reviewed
in [19]) belong to this class.

Although most of the tools cited above provide a two-part
verification framework for neural networks (one reachability
part to compute output bounds of the network, and one part
to iteratively refine the network’s domain until a definitive
answer can be given to the verification problem), this paper
focuses on providing a novel method for the first reachability
step only. The proposed approach can thus be seen either
as a preliminary step towards the development of a larger
verification framework for neural networks when combined
with an iterative splitting of the input domain, or as a stand-
alone tool for the reachability analysis of neural networks as is
used for example in the analysis of closed-loop systems with
a sample-and-hold neural network controller [5].

In summary, the main contributions of this paper are:

• a novel approach to soundly bound the output of neural
networks using mixed-monotonicity reachability;

• a method that is compatible with any Lipschitz-
continuous activation function;

• a framework that allows to easily add new activation
functions (the user only needs to provide the activa-
tion function, its derivative, and the global arg min and
arg max of the derivative).

The paper is organized as follows. Section II defines
the considered problem and provides useful preliminaries
for the main algorithm, such as the definition of mixed-
monotonicity reachability for a neural network, and how to
automatically obtain local bounds on the activation function
derivative. Section III presents the main algorithm applying
mixed-monotonicity reachability to all partial networks within
the given network. Finally, Section IV compares our novel
reachability approach to the bounding methods of 5 other
interval-based optimization-free tools [5], [7], [8], [9], [10]
on both existing benchmarks [21] and randomly generated
networks, to highlight the complementarity with these tools
and the cases when our approach outperforms them.

II. PRELIMINARIES

Given x, x ∈ Rn with x ≤ x, the interval [x, x] ⊆ Rn is
the set {x ∈ Rn | ∀i ∈ {1, . . . , n}, xi ≤ xi ≤ xi}.

A. Problem definition
Consider the L-layer feedforward neural network

x(i) = Φ(W (i)x(i−1) + b(i)), ∀i ∈ {1, . . . , L} (1)

where x(i) ∈ Rni is the output vector of layer i, x(0) and x(L)

being the input and output of the neural network, respectively.
We assume that the network is pre-trained and all weight
matrices W (i) ∈ Rni×ni−1 and bias vectors b(i) ∈ Rni

are known. The function Φ is defined as the componentwise
application of a scalar and Lipschitz-continuous activation
function. For simplicity of presentation, the activation function
Φ is assumed to be identical for all layers, but note that the
proposed approach in this paper is compatible with having
different activation functions for each layer (or even for each
node of the same layer). In the literature, the activation
function of the last layer is often omitted since a monotone
activation (the most commonly used) would only change the
output values but not their relative comparison (which is
considered for classification problems). Since our approach
introduces the ability to handle non-monotone activation, our
network definition (1) needs to allow for the activation of all
layers.

Some verification problems on neural networks aim to
measure the robustness of the network with respect to input
variations. Since the output set of the network cannot always
be computed exactly, we rely on over-approximating it by a
simpler set representation, such as an interval. We can then
solve the verification problem using this interval: if the desired
property is satisfied on the over-approximation, then it is
also satisfied on the real output set of the network. In this
paper, we focus on the problem of computing an interval over-
approximation of the output set of the network when its input
is taken in a known bounded set, as formalized below.

Problem 1: Given the L-layer neural network (1) and the
interval input set [x0, x0] ⊆ Rn0 , find an interval [xL, xL] ⊆
RnL over-approximating the output set of (1):

{x(L) | x(0) ∈ [x0, x0]} ⊆ [xL, xL].
Naturally, our secondary objective is to ensure that the

computed interval over-approximation is as tight as possible
in order to minimize the number of false negative results in
the subsequent verification process.

B. Mixed-monotonicity reachability
In this paper, we solve Problem 1 by iteratively computing

over-approximation intervals of the output of each layer,
until the last layer of the network is reached. These over-
approximations are obtained by adapting to neural networks
existing methods for reachability analysis of dynamical sys-
tems. More specifically, we rely on the mixed-monotonicity
approach in [20] to over-approximate the reachable set of any
discrete-time system x+ = f(x) with Lipschitz-continuous
vector field f : Rn → Rn. Since the neural network (1) is



instead defined as a function y = f(x) with input x = x(0) and
output y = x(L) of different dimensions, we present below the
generalization of the mixed-monotonicity method from [20] to
any Lipschitz-continuous function.

Consider the function y = f(x) with input x ∈ [x, x] ⊆
Rnx , output y ∈ Rny and Lipschitz-continuous function f :
Rnx → Rny . The Lipschitz-continuity assumption ensures that
the derivative f ′ (also called Jacobian matrix in the paper) is
bounded.

Proposition 2: Given an interval [J, J ] ⊆ Rny×nx bound-
ing the derivative f ′(x) for all x ∈ [x, x], denote the center of
the interval as J∗. For each output dimension i ∈ {1, . . . , ny},
define input vectors ξi, ξi ∈ Rnx and row vector αi ∈ R1×nx

such that for all j ∈ {1, . . . , nx},

(ξi
j
, ξij , α

i
j) =

{
(xj , xj ,min(0, J ij)) if J∗ij ≥ 0,

(xj , xj ,max(0, J ij)) if J∗ij ≤ 0.

Then for all x ∈ [x, x] and i ∈ {1, . . . , ny}, we have:

fi(x) ∈
[
fi(ξ

i)− αi(ξi − ξi), fi(ξi) + αi(ξi − ξi)
]
.

Intuitively, the output bounds are obtained by computing for
each output dimension the images for two diagonally opposite
vertices of the input interval, then expanding these bounds with
an error term when the bounds on the derivative f ′ spans both
negative and positive values. Proposition 2 can thus provide an
interval over-approximation of the output set of any function as
long as bounds on the derivative f ′ are known. Obtaining such
bounds for a neural network is made possible by computing
local bounds on the derivative of its activation functions, as
detailed in Section II-C.

C. Local bounds of activation functions
Proposition 2 can be applied to any neural network whose

activation functions are Lipschitz continuous since such func-
tions have a bounded derivative. However, to avoid requiring
the users to manually provide these bounds for each different
activation function they want to use, we instead provide a
framework to automatically and easily compute local bounds
for a very general class of functions describing most popular
activation functions and their derivatives.

Let R∞ = R∪{−∞,+∞} and consider the scalar function
ϕ : R∞ → R∞, where ϕ(x) ∈ {−∞,+∞} only when x ∈
{−∞,+∞}. In this paper, we focus on 3-piece piecewise-
monotone functions for which there exist z, z ∈ R∞ such that
ϕ is:
• non-increasing on (−∞, z] until reaching its global min-

imum minx∈R∞ ϕ(x) = ϕ(z);
• non-decreasing on [z, z] until reaching its global maxi-

mum maxx∈R∞ ϕ(x) = ϕ(z);
• and non-increasing on [z,+∞).

When z = −∞ (resp. z = +∞), the first (resp. last) monotone
segment is squeezed into a singleton at infinity and can thus
be ignored.

Although this description may appear restrictive, we should
note that the vast majority of activation functions as well
as their derivatives belong to this class of functions. In
particular, this is the case for (but not restricted to) popular

Fig. 1. SiLU activation function (black line) and its derivative (red
dashed).

piecewise-affine activation functions (identity, ReLU, leaky
ReLU), monotone functions (hyperbolic tangent, arctangent,
sigmoid, SoftPlus, ELU) as well as many non-monotone
activation functions (SiLU, GELU, HardSwish, Mish, REU,
PFLU, FPFLU, which are all reviewed or introduced in [19]).

Example 1: Two examples of such functions are provided
in Figure 1. The first one (in black) is the Sigmoid Linear
Unit (SiLU, also called Swish [17]) activation function Φ(x) =
x/(1+e−x), whose global arg min is z = −1.2785. Its global
arg max is z = +∞, which implies that the third monotone
component is pushed toward +∞ since it is not needed for
this function.

The second example (in dashed red) is the derivative of the
SiLU activation function Φ′(x) = (1 + e−x + xe−x)/(1 +
e−x)2, with global arg min and arg max defined as z =
−2.3994 and z = 2.3994, respectively. 4

The only exceptions of activation functions whose derivative
do not belong to this class that the author could find in
the literature are: the binary step, which is discontinuous so
its derivative is undefined in 0; and the Gaussian activation
function Φ(x) = e−x

2

which belongs to this class, but not its
derivative (although −Φ′ does belong to this class, so a very
similar approach can still be applied).

Proposition 3: Given a scalar function ϕ as defined above
and a bounded input domain [x, x] ∈ R, the local bounds of
ϕ on [x, x] are given by:

min
x∈[x,x]

ϕ(x) =

{
ϕ(z) if z ∈ [x, x],

min(ϕ(x), ϕ(x)) otherwise,

max
x∈[x,x]

ϕ(x) =

{
ϕ(z) if z ∈ [x, x],

max(ϕ(x), ϕ(x)) otherwise.
In this paper, Proposition 3 is used to obtain local bounds

of the activation function derivatives in order to compute
bounds on the network’s Jacobian matrix for Proposition 2.
However, Proposition 3 can also be useful on activation
functions themselves to compare (in Section IV) our method
with the naive interval propagation through the layers.



III. REACHABILITY ALGORITHM

Solving Problem 1 by applying the mixed-monotonicity
approach from Proposition 2 on the neural network (1) can be
done in many different ways. One possibility is to iteratively
compute bounds on the Jacobian matrix of the network and
then apply Proposition 2 once for the whole network. However,
this may result in wide bounds for the Jacobian of the whole
network, and thus in a fairly conservative over-approximation
of the network output due to the term αi in Proposition 2.
The dual approach is to iteratively apply Proposition 2 to each
layer of the network, which would result in tighter Jacobian
bounds (since one layer’s Jacobian requires less interval matrix
products than the Jacobian of the whole network), and thus
tighter over-approximation of the layer’s output. However, the
loss of the dependency with respect to the network’s input
may induce another source of accumulated conservativeness
if we have many layers. Any intermediate approach can also
be considered, where we split the network into several con-
secutive partial networks and apply Proposition 2 iteratively
to each of them.

Although all the above approaches result in over-
approximations of the network output, we cannot determine
in advance which method would yield the tightest bounds,
since this is highly dependent on the considered network and
input interval. We thus devised an algorithm that encapsulates
all possible choices by running Proposition 2 on all partial
networks within (1), before taking the intersection of the
obtained bounds to tighten the bounds on each layer’s output.
The main steps of this approach are presented in Algorithm 1
and summarized below.

Given the L-layer network (1) with activation function Φ
and input interval [x0, x0] as in Problem 1, our goal is to
apply Proposition 2 to each partial network of (1), denoted
as NN(k, l), containing only layers k to l (with k ≤ l) and
with input x(k−1) and output x(l). We initialize the Jacobian
bounds of each partial network to the identity matrix. Then,
we iteratively explore the network (going forward), where for
each layer l we first use interval arithmetics [22] to compute
the pre-activation bounds based on the knowledge of the output
bounds of the previous layer, and then apply Proposition 3 to
obtain local bounds on the activation function derivative (ϕ =
Φ′). Next, for each partial network NN(k, l) (with k ≤ l) ending
at the current layer l, we compute its Jacobian bounds based
on the Jacobian of layer l ([Φ′,Φ′]∗W (l)) and the Jacobian of
the partial network NN(k, l−1). We then apply Proposition 2 to
the partial network NN(k, l) with the Jacobian bounds we just
computed and input bounds [x(k−1), x(k−1)]. Finally, once we
computed the l over-approximations of x(l) corresponding to
each partial network ending at layer l, we take the intersection
of all of them to obtain the final bounds for x(l).

Theorem 4: The interval [x(L), x(L)] returned by Algo-
rithm 1 is a solution to Problem 1.

This is easily proved by the fact that we compute several
interval over-approximations of the output of each layer using
Proposition 2, which ensures that their intersection is still an
over-approximation of the layer’s output. Then, using these
over-approximations as the input bounds of the next layers

Input: L-layer network (1), input interval [x0, x0],
activation function Φ (with Φ′ defined as in
Section II-C)

∀k, l ∈ {1, . . . , L}, J(k, l)← I, J(k, l)← I

for l ∈ {1, . . . , L} do
[Φ′,Φ′]← Prop3(Φ′,W (l) ∗ [x(l−1), x(l−1)] + b(l))
for k ∈ {1, . . . , l} do

[J(k, l), J(k, l)]←
[Φ′,Φ′] ∗W (l) ∗ [J(k, l − 1), J(k, l − 1)]

[x(k, l), x(k, l)]←
Prop2(NN(k, l), [x(k−1), x(k−1)], [J(k, l), J(k, l)])

[x(l), x(l) ]← [x(1, l), x(1, l)] ∩ · · · ∩ [x(l, l), x(l, l)]

Output: Over-approximation [x(L), x(L)] of the
network output

Algorithm 1: Mixed-monotonicity reachability analysis of
a feedforward neural network.

guarantees the soundness of the approach.
Note also that in Algorithm 1, Proposition 2 is applied to

every partial network that exists within the main network (1).
Although this implies a computational complexity of O(L2),
it guarantees that the resulting interval [x(L), x(L)] from Al-
gorithm 1 is the least conservative solution to Problem 1
that could be obtained from applying the mixed-monotonicity
reachability analysis of Proposition 2 to any decomposition of
(1) into consecutive partial networks.

IV. NUMERICAL COMPARISONS

To evaluate the performances of our approach, we run
Algorithm 1 on both established benchmarks and randomly
generated neural networks, and compare the results with state-
of-the-art tools for reachability analysis and verification of
neural networks. 1 Since our method is an optimization-free
reachability analysis approach using interval bounds, we focus
these numerical comparisons to the most relevant toolboxes
of this category, and we leave to future work the additional
comparisons with less related verification tools relying on
optimization-based approaches [3] or reachability analysis
with more complex set representations (polyhedra, zonotopes)
as in the ERAN [12] and NNV libraries [11].

We provide comparisons to the following 5 tools and
methods for reachability analysis of neural networks. We first
use as a baseline the naive interval bound propagation (IBP), as
presented e.g. in [5], since this is the simplest approach using
interval arithmetic at each layer, but it is also very conservative
due to losing dependency to the network’s inputs at each
step. Three of the other tools (RELUVAL [7], NEURIFY [8],
VERINET [9]) rely on methods propagating symbolic intervals
(i.e. bounding functions linear in x(0)), sometimes combined
with linear relaxations of the nonlinear activation functions.

1All computations are done on a laptop with 1.80GHz processor and 16GB
of RAM running Matlab 2021b. The code used to generate all numerical
comparisons described in this section is available at:
https://gitlab.com/pj_meyer/MMRANN

https://gitlab.com/pj_meyer/MMRANN


The fifth tool (CROWN [10]) instead relies on a backward
propagation of these linear relaxations.

Since these tools are written in various programming lan-
guages (Matlab, C, Python), for the convenience of comparison
we have re-implemented the bounding method of each tool
in Matlab. The implemented approaches are those described
in each of the original papers cited above, and may thus
slightly differ from the latest updates of the corresponding
public toolboxes. Note also that the comparisons in this
section only focus on reachability analysis as formulated in
Problem 1 (over-approximating the network’s reachable set for
a given input uncertainty), and we thus disregard the iterative
refinement algorithms that some of the above tools use to
verify or falsify properties on the network’s behavior.

VNN benchmarks: We first compare our mixed-
monotonicity approach with the above 5 reachability
tools on the MNISTFC benchmark as presented in the 2021
VNN competition [21]. This benchmark is composed of 3
feedfoward ReLU neural networks trained on the MNIST
dataset for the recognition of handwritten digits. All 3
networks have 784 inputs (28 × 28 pixels of a gray-scale
picture), an output layer with 10 nodes, and an additional
2, 4 or 6 hidden layers of 256 nodes each. We run all 6
reachability methods on these 3 networks for 250 different
input pictures, each with an ε = 0.03 uncertainty around
their nominal values. In terms of tightness of the output
bounds, our approach is 10 to 1000 tighter than IBP and has
a comparable order of magnitude with the other four tools.
In the top half of Table I, the first three columns summarize
the percentage of the 250 evaluated input pictures for which
our mixed-monotonicity approach results in tighter (or at
least as tight) output bounds than the other five methods. We
can see in particular that our method outperforms all others
in at least 70% cases on the benchmark with two hidden
layers. In terms of computation times (bottom of Table I),
our approach is significantly slower than IBP and VERINET
and a bit slower than CROWN, but it is also up to 3 times
faster than RELUVAL and NEURIFY.

We ran the same comparison on the only non-ReLU feed-
forward benchmark of the 2021 VNN competition [21]: the
ERAN-sigmoid benchmark is also trained on the MNIST
dataset and has the same structure as the above MNISTFC
networks, but with 6 hidden layers of 200 nodes each, sigmoid
activation functions and input uncertainty ε = 0.012. On the
same 250 input pictures, we observe that: IBP is always more
conservative than our approach (as expected); RELUVAL and
NEURIFY cannot be run on non-ReLU networks; VERINET
and CROWN both fail for every 250 inputs because their
results are so conservative on this benchmark that Matlab
evaluates e−x =∞ when the pre-activation value x goes too
far in the negative, and the (theoretically horizontal) tangent of
the sigmoid e−x/(1 + e−x)2 cannot be computed. VERINET
and CROWN’s failure due to excessive conservativeness on
this sigmoid benchmark is also observed when using an input
uncertainty ε = 1.2∗10−5 which is 1000 smaller than the one
suggested in the VNN benchmark [21].

Random networks: To get more representative comparisons
on a wider variety of network dimensions (since the above

Method mnistfc-2 mnistfc-4 mnistfc-6 ERAN-sig
IBP [5] 100% 100% 100% 100%

RELUVAL [7] 80% 74.8% 65.6% -
NEURIFY [8] 72.4% 72% 58.8% -
VERINET [9] 70.4% 54% 15.6% 100%
CROWN [10] 70.4% 54% 15.6% 100%

IBP [5] 0.012 0.019 0.025 0.016
RELUVAL [7] 42 62 85 -
NEURIFY [8] 43 62 84 -
VERINET [9] 0.012 0.019 0.026 0.017
CROWN [10] 0.78 4.1 10 5.7
Mixed-Mono 15 36 69 39

TABLE I
TOP: PROPORTION OF THE 250 MNIST INPUT PICTURES FOR WHICH

OUR APPROACH GIVES OUTPUT BOUNDS TIGHTER THAN (OR EQUAL

TO) OTHER METHODS. BOTTOM: AVERAGE COMPUTATION TIME IN s.

benchmarks are only 4 specific networks), and more impor-
tantly to highlight the main strength of our approach handling
general activation functions (since we could not find well-
established benchmarks using any activation other than ReLU
and Sigmoid), we run these comparisons over two large sets
of randomly generated neural networks.

We first consider a set of 10000 small feedforward networks
as defined in (1) and whose parameters are randomly chosen
as follows: depth L ∈ {1, . . . , 5}; input and output dimensions
n0, nL ∈ {1, . . . , 10}; width of hidden layers (each layer may
have a different width) n1, . . . , nL−1 ∈ {1, . . . , 30}. The sec-
ond set contains 1000 deeper and wider networks with: depth
L ∈ {5, . . . , 10}; input dimension n0 ∈ {500, . . . , 1000};
output dimension nL ∈ {10, . . . , 50}; width of hidden layers
n1, . . . , nL−1 ∈ {100, . . . , 200}. The input bounds as in
Problem 1 are defined as the hypercube [x(0), x(0)] = {x∗}+
[−0.1, 0.1]n0 around a randomly chosen center input x∗ ∈
[−1, 1]n0 . The comparison between our mixed-monotonicity
method in Algorithm 1 and the five approaches from the
literature cited above (when applicable) is done for each of
these 4 activation functions:

• Rectified Linear Unit (ReLU) is the piecewise-affine
function Φ(x) = max(0, x), handled by all 6 tools;

• Hyperbolic tangent (TanH) is the S-shaped function
Φ(x) = (ex − e−x)/(ex + e−x), handled by all tools
apart from RELUVAL and NEURIFY;

• Exponential Linear Unit (ELU) is the monotone function
Φ(x) = ex − 1 if x ≤ 0 and Φ(x) = x if x ≥ 0,
natively handled only by IBP and our method. ELU
is compatible with the framework of VERINET and
CROWN (although not implemented) at the condition of
providing a method to compute linear equations bounding
Φ on any bounded input set. We added this to our own
Matlab implementation of these tools;

• Sigmoid Linear Unit (SiLU) is the non-monotone func-
tion Φ(x) = x/(1 + e−x), only natively handled by
our method. Although the implementation of IBP in [5]
is restricted to monotone activation functions, our own
Matlab implementation of IBP is extended to handle non-
monotone activation by using Proposition 3.

All these activation functions are Lipschitz continuous and
their derivatives satisfy the desired shape described in Sec-



tion II-C. Algorithm 1 can thus be applied to all of them.
For the set of 10000 small networks, Table II gives the

average computation times of each methods for each activation
function. For these time averaging to be meaningful despite
the varying sizes of the networks, we actually divide the
computation times by the total number of neurons in the
considered network, and only then we take the average.
Table III gives the proportion of the 10000 small networks
for which our mixed-monotonicity approach results in at least
as tight output bounds as the other methods. Table IV gives
the same result but only when our approach is strictly tighter.
For the 1000 large networks, the same results are displayed in
Tables V-VII. Note that the time tables are in microseconds
for small networks (Table II), and milliseconds for large ones
(Table V). In the next three paragraphs, we analyse these
results and highlight the main take-away conclusions from
these numerical comparisons in terms of generality of the
methods, complexity, and tightness of the output bounds.

Among all 6 compared methods, our mixed-monotonicity
approach is the most general one and the only one that could
natively handle all considered activation functions. Indeed,
RELUVAL and NEURIFY are limited to piecewise-affine func-
tions (such as ReLU) and VERINET and CROWN cannot
handle non-monotone functions (such as SiLU). In addition,
although we added an implementation for IBP to handle SiLU,
and for VERINET and CROWN to handle ELU, the original
tools do not natively handle these activation functions. (The
corresponding results are given in parentheses in Tables II-
VII.) This last comment brings up another important aspect of
the generality of our mixed-monotonicity approach: the ease
of implementation to add new activation functions. Indeed,
NEURIFY, VERINET and CROWN rely on linear relaxations
of the nonlinear activation functions, which may require long
and complex implementations to be provided by the user for
each new function (e.g. finding the optimal relaxations of
sigmoid-shaped functions takes several hundreds of lines of
code in the implementation of VERINET). In contrast, for
a user to add a new activation type to be used within our
mixed-monotonicity approach, all they need to provide is the
definition of the activation function and its derivative, and
the global arg min and arg max of the derivative as defined
in Section II-C. Everything else is automatically handled
internally by Algorithm 1.

This generality and ease of use however comes at the
cost of a higher computational complexity of O(L2) since
Algorithm 1 calls the mixed-monotonicity reachability method
from Proportion 2 on all L(L+ 1)/2 partial networks within
the main L-layer network. On the set of smaller networks,
this implies that our approach is the slowest, with a similar
order of magnitude as CROWN (which also has a complexity
of O(L2)), while the other four methods are 10 to 20 times
faster (Table II). When the size of the network increases, IBP
and VERINET are always the fastest methods and keep a
consistent average computation time (per number of neurons
in the network), while all other methods see their computation
time per neuron increase, the worst being RELUVAL and
NEURIFY which become slower than our mixed-monotonicity
approach (Table V).

Method ReLU TanH ELU SiLU
IBP [5] 12 18 11 (13)

RELUVAL [7] 29 - - -
NEURIFY [8] 27 - - -
VERINET [9] 14 33 (25) -
CROWN [10] 199 213 (177) -

Mixed-Monotonicity 591 462 550 543

TABLE II
AVERAGE COMPUTATION TIME (PER NEURON IN THE NETWORK) IN µs

FOR THE SET OF 10000 SMALL NETWORKS.

Method ReLU TanH ELU SiLU
IBP [5] 100% 100% 100% (100%)

RELUVAL [7] 68% - - -
NEURIFY [8] 46% - - -
VERINET [9] 43% 32% (40%) -
CROWN [10] 43% 31% (38%) -

TABLE III
PROPORTION OF THE 10000 SMALL RANDOM NETWORKS FOR WHICH

OUR MIXED-MONOTONICITY APPROACH RESULTS IN TIGHTER (OR

EQUAL) OUTPUT BOUNDS THAN OTHER METHODS.

Finally, in terms of tightness (measured as the 2-norm width
of the output bounds), we first observe that, as expected,
our approach is always at least as tight as the naive IBP
method (Tables III and VI), and even strictly tighter in 70-
80% cases in the set of small networks (Table IV). Apart from
the very conservative IBP, it should be noted that none of the
other 5 methods always outperforms the others. For example
on the set of 10000 small ReLU networks, our approach is
strictly tighter than the other four in 12-36% cases, equal in
31% cases, and strictly looser in the remaining 32-57% cases
(Tables III and IV). The respective strengths of each method
thus make them complementary. On average, our approach
returns at least as tight output bounds as the state-of-the-art
tools in less than half cases on smaller networks, but this
percentage significantly increases on larger networks except
for ReLU (Tables III and VI). When the size of the network
increases, we also observe a larger proportion of cases where
the compared methods return approximately equal output
bounds, particularly on activation functions with approximate
saturations, such as TanH (Tables VI and VII). However, one
interesting case if with the ELU activation (for which the state-
of-the-art tools where not designed and optimized), where our
approach not only outperforms both VERINET and CROWN
on almost all 1000 tested large networks, but it also obtains
strictly tighter output bounds than VERINET in 79% cases,
and CROWN is seen to fail to return a numerical result in all
cases due to its excessive conservativeness and its formulation
in [10] being incompatible with horizontal linear relaxations
(similarly to the ERAN-sigmoid benchmark).

V. CONCLUSIONS

This paper presents a new method for the sound reacha-
bility analysis of feedforward neural networks using mixed-
monotonicity. The main strength of our approach is its very
broad applicability to any network with Lipschitz-continuous
activation functions, which is satisfied by the vast majority of
activation functions currently in use in the literature. Another



Method ReLU TanH ELU SiLU
IBP [5] 73% 71% 79% (79%)

RELUVAL [7] 36% - - -
NEURIFY [8] 16% - - -
VERINET [9] 12% 11% (19%) -
CROWN [10] 12% 10% (17%) -

TABLE IV
PROPORTION OF THE 10000 SMALL RANDOM NETWORKS FOR WHICH

OUR MIXED-MONOTONICITY APPROACH RESULTS IN STRICTLY TIGHTER

OUTPUT BOUNDS THAN OTHER METHODS.

Method ReLU TanH ELU SiLU
IBP [5] 0.016 0.018 0.016 (0.018)

RELUVAL [7] 44 - - -
NEURIFY [8] 44 - - -
VERINET [9] 0.034 0.05 (0.037) -
CROWN [10] 4.8 4.8 (4.8) -

Mixed-Monotonicity 33 29 34 33

TABLE V
AVERAGE COMPUTATION TIME (PER NEURON IN THE NETWORK) IN ms

FOR THE SET OF 1000 LARGE NETWORKS.

significant strength of our framework is the greater simplicity
to implement new activation functions compared to existing
tools relying on linear relaxations. We compared our approach
with the naive Interval Bound Propagation and 4 state-of-
the-art tools using interval reachability analysis on neural
network (RELUVAL, NEURIFY, VERINET, CROWN) on both
benchmarks from the VNN competition [21] and sets of
randomly generated neural networks of a wide variety of
depth and width. From these comparisons, we observed a good
complementarity between our approach and the state-of-the-art
tools (when applicable on the considered activation functions),
where each outperforms the others on a significant percentage
of the tested inputs and networks.

Although this tool can already be used on its own for the
reachability analysis of neural networks, our next objective is
to address its main limitation of a O(L2) complexity to make it
more compatible with iterative refinement approaches similar

Method ReLU TanH ELU SiLU
IBP [5] 100% 100% 100% (100%)

RELUVAL [7] 100% - - -
NEURIFY [8] 2% - - -
VERINET [9] 0.1% 100% (98%) -
CROWN [10] 0.1% 100% (100%) -

TABLE VI
PROPORTION OF THE 1000 LARGE RANDOM NETWORKS FOR WHICH

OUR MIXED-MONOTONICITY APPROACH RESULTS IN TIGHTER (OR

EQUAL) OUTPUT BOUNDS THAN OTHER METHODS.

Method ReLU TanH ELU SiLU
IBP [5] 0% 0% 0% (0%)

RELUVAL [7] 0% - - -
NEURIFY [8] 0% - - -
VERINET [9] 0% 0% (79%) -
CROWN [10] 0% 2% (100%) -

TABLE VII
PROPORTION OF THE 1000 LARGE RANDOM NETWORKS FOR WHICH

OUR MIXED-MONOTONICITY APPROACH RESULTS IN STRICTLY TIGHTER

OUTPUT BOUNDS THAN OTHER METHODS.

to existing neural network verification algorithms.
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