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Abstract

We study the behavior of cylindrical objects as they sink into a dry granular bed fluidized

due to lateral oscillations. Somewhat unexpectedly, we have found that, within a large range of

lateral shaking powers, cylinders with flat bottoms sink vertically, while those with a “founda-

tion”consisting in a shallow ring attached to their bottom, tilt besides sinking. The latter scenario

seems to dominate independently from the nature of the foundation when strong enough lateral

vibrations are applied. We are able to explain the observed behavior by quasi-2D numerical sim-

ulations, which also demonstrate the influence of the intruder’s aspect ratio. The vertical sink

dynamics is explained with the help of a Newtonian equation of motion for the intruder. Our

findings may shed light on the behavior of buildings and other man-made constructions during

earthquakes.

I. INTRODUCTION

The Kocalei earthquake occurring on August 17, 1999 affected in various ways many

constructions in the city of Adapazari, Turkey. Following observers, some buildings sank

vertically into the soil, others tilted, and some even suffered lateral translation over the

ground [1–3]. This case illustrates well the diversity of damage that earthquake fluidization

of soils may cause to man-made structures [4].

Liquefaction in the ground may be triggered dynamically by waves emitted during earth-

quakes, generating cyclic shear stresses that lead to the gradual build-up of pore water

pressure [5, 6]. The shaking produced by seismic events is a trigger for extensive liquefac-

tion, as was observed recently in Belgium [7]. Ground fluidization [8, 9] has been investigated

in different kinds of media like sand [9], dry granular soils [10] and sediments [11]. Of im-

mediate interest for engineering and for the geosciences is to understand how man-made

structures such as buildings, and massive rocks laying on granular soils respond to fluidiza-

tion associated to seismic waves.

Granular matter itself displays a variety of puzzling phenomena [12–25], but during the

last decade or so, our understanding of the dynamics of objects penetrating into granular
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FIG. 1. Experimental setup. At the upper right, we have illustrated the intruder consisting in a

cylinder with ring.

media has advanced quickly [26–43]. While laterally shaken granular beds have received a

certain degree of attention [44, 45], the performance of objects initially laying on the surface

of a granular bed submitted to lateral shaking has been rarely studied [46–50].

In this paper we perform systematic experiments associated to the latter scenario, which

may help understanding the performance of human constructions and rocks laying on gran-

ular beds during earthquakes. In particular, using a cylinder as a simplified model, we

study its settling dynamics on a granular bed submitted to lateral vibrations. Somewhat

unexpectedly, we have found that, within a large range of lateral shaking powers, cylinders

with flat bottoms sink vertically, while those with a “foundation”consisting in a shallow

ring attached to their bottom, tilt besides sinking. The latter scenario seems to dominate

independently from the nature of the foundation when strong enough lateral vibrations

are applied. Quasi-2D simulations mimicking the experiments were also performed. The

settling dynamics of the simulated intruders, with or without foundation, reproduces the

corresponding experimental results. Our simulations also reveal how the difference in force-

chain distributions between flat and non-flat bottom cylinders produces different torques

justifying the two types of penetration. In addition, we present a simple phenomenological

model that reproduces well the sinking dynamics and helps understanding how the tilting

process influences the sinking one.
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II. EXPERIMENTAL

The penetration experiments were performed on a granular bed contained in a test cell

of approximately 25× 25× 25 cm3 filled with Ugelstad spheres of non expanded polystyrene

with a bulk density 1050 kg/m3, and diameter 140 µm (monodisperse within a 1 percent),

type Dynoseeds ©, produced by Microbeads, Norway. The box was horizontally shaken at

different amplitudes of motion (A), and a frequency (f) of 5.0 Hz (a value commonly found in

seismic waves), using a TIRA ©TV51120-M shaker, see figure 1. By controlling the voltage

of the shaker input signal we varied the amplitude of the oscillations up to a maximum value

corresponding to a peak ground acceleration of A(2πf)2 ≈ 12.2 m/s2 [51]. This acceleration

range covers most potentially damaging earthquakes, from weak to strong [52], though there

has been reports of larger peak ground accelerations [53]. The time the shaker needs to

reach the steady state depends on the dimensionless acceleration, being longer for larger

accelerations. The time intervals can range from one (0.2 s) to three periods.

Two types of intruders were used in the experiments: (a) a hollow 3D printed cylinder of

44 mm diameter, 44 mm height hc (external dimensions), and 5 mm thick walls, and (b) the

same cylinder with a ring of 5 mm height and 3 mm thickness glued to its bottom (illustrated

in the upper right corner of Fig. 1). Intruders (a) and (b) will be called “No-ring”and

“Ring”, respectively, from now on. Their masses were adjusted with ballast in such a way

that their densities matched the average effective density of the granular medium, which was

measured as 430 kg/m3. As far as the ballast used has a density near the effective density of

the granular material, it was almost evenly distributed inside the cylinder. Note that, using

a flat bottom cylinder and a ring-like bottom cylinder, we are modifying the “foundation”of

our intruder.

A digital camera Hero 2 made by GoPro © was fixed to the electromagnetic shaker, in

such a way that it could take a video of the sinking process from an oscillating reference

frame locked to the test cell, as proposed in [48]. This method allowed a much better quality

of the cylinder’s images, and made easier their digital processing. Videos were taken at a

maximum rate of 120 frames per second, with a resolution of 1920× 1080 pixels.

The images were processed as follows. We first converted the videos to image sequences

in *.jpg format, and cropped each picture, excluding irrelevant space. Then, the images were

binarized through an appropriate threshold. Using the tool regionprops from MatlabR2014a

4



0 < 𝑡 < ∆𝑡 𝑡 = ∆𝑡𝑡 = 0

ℎ ∆ℎ

ℎ ∆ℎ

𝜃 ∆𝜃

N
o

-r
in

g
R

in
g

Ground

level

Geometrical

center of the cylinder

FIG. 2. Sketch of sinking and tilting processes. The top row illustrates the sinking process of

a No-ring cylinder in three moments during the experimental interval from t = 0 to a final time

t = ∆t. The bottom row shows the same temporal sequence for a Ring cylinder, which tilts in

addition to sink.

©, we identified and assigned coordinates to several bright marks we had glued to certain

points of the cylindrical intruder. The coordinates of the marks were used to calculate the

position of the intruder’s geometrical center and inclination relative to the vertical in each

picture. In some experiments where the sinking was particularly big, it was difficult to

obtain the tilt angle, since part of the marks sank below the level of the sand surface, and

they were impossible to follow. In such cases the upper border of the cylinder was identified

using the Matlab’s tools find and bwtraceboundary, and then fitted to a polynomial using the

function polyfit. The fit was used to find the inclination. In the case of experiments ending

in a very inclined position, the reference to calculate the inclination was the cylinder’s corner

above the sand surface, that was identified as the intersection of the two polynomial fits of

the upper and one lateral borders of the cylinder.

As the cylinder oscillates due to the vibration of the box, it is difficult to determine

the final position, particularly when there is a big tilting. Then, in order to determine the

sinking depth and tilting, we observe in the videos the onset of a cyclic movement of a

reference point in the cylinder. Then, the final position could be measured in the frames

filmed after the shaker was stopped.

The experimental protocol can be described as follows: (I) preparing the granular medium

by stirring it evenly with a long rod, (II) gently depositing the cylinder in the upright position

on the free surface of the granular bed, (III) turning ON the camera, (IV) switching ON the

shaker after setting the desired frequency and amplitude (V) turning OFF the shaker and
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FIG. 3. (color online) Snapshots of the initial (a) and final (b) positions of a No-ring intruder in

a typical quasi-2D simulation using a shaking frequency of 5 Hz.

FIG. 4. (color online) Snapshots of the initial (a) and final (b) positions of a Ring intruder in a

typical quasi-2D simulation using a shaking frequency of 5 Hz.

the camera after the penetration process had visibly finished.

In Fig. 2 we define the main parameters describing the sinking process of a No-ring

cylinder (upper row), and the tilting and sinking of a Ring cylinder (bottom row), during

the experimental lapse, defined as ∆t. As the figure indicates, in the following we will call

h the penetration of the geometrical center at a time t and ∆h the final penetration at

time t = ∆t. Note that both magnitudes are defined as the vertical displacement of the

geometrical center of the cylinder (without taking the ring into account). In the same way

we will call θ the inclination of the intruder at time t and ∆θ the final inclination at t = ∆t.

We also explored the phenomenology through numerical simulations. They were based

on a discrete element method code (DEM) for the computation of granular systems [20,
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22, 24, 49, 50, 54, 55]. We modeled a quasi-2D granular medium, made of finite-sized hard

spheres with radii between 1.0 and 1.5 mm, to avoid the crystallization effect. The medium

contains 4000 particles and is prepared by placing the latter randomly in a space 30 cm wide

and 25 cm high and then allowing them to settle under the action of gravity g = 9.81 m/s2.

Once the medium reaches equilibrium, it occupies a virtual space 30 cm wide and about

8 cm high, laterally delimited by flat walls that define the Hele-Shaw cell. The simulation

box used was created narrow in order to have a single plane of particles in the direction

perpendicular to the images shown in Figures 3 and 4. The components of the velocities

and forces along this direction are set to zero at each time step. To mimic the experimental

conditions, we simulate particles of density 1050 kg/m3.

The two intruders are made of cohesive particles. One is a square of 40 mm side, made

of N = 1681 particles with diameter 1 mm, placed in a quasi-2D square arrangement, which

simulates the No-ring intruder of the experiments. The second one is also a square of 40 mm

side to which two ˝small feet˝are attached. Each foot has a size of 4.5 × 2.7 mm2, so the

simulated Ring intruder contains a total of N = 1705 particles. The density of the spheres

ρp which form the intruders is adjusted so that the bulk density of the rigid body matches

the effective density of the granular medium. The latter is calculated once the medium has

settled down and is stable, and was always found to be around ρm = 566 kg/m3. Then, the

density of the particles forming the intruder is obtained as ρp = ρmVi/NVp, where Vi is the

volume of the intruder and Vp the volume of a sphere.

Once our granular medium is created, we place the intruder 1 mm above the medium,

with its bottom parallel to the horizontal direction. We release it, under the action of the

force of gravity, and wait until the whole system becomes motionless (i.e. its total kinetic

energy reaches a value under 10−7 J). Then, we apply horizontal oscillations of different

amplitudes and a frequency of 5 Hz (∆t ≈ 8s) to the walls of the cell and compute the time

evolution of the position and tilting angle of the intruder. The amplitudes were chosen in

such a way that the dimensionless acceleration Γ = A(2πf)2/g had the values of 0.16, 0.25,

0.5, 1.0, 1.25 and 1.5.

The contact between spheres was modeled as a linear spring-dashpot Fij = (knδnij −

meffγnvn) − (kt∆St + meffγtvt) [54, 56], where k and γ are the elastic and viscoelastic

damping constants, δnij is the overlap distance along the line connecting the centers of

the two spheres, and v their relative velocity. ∆St is the tangential displacement vector
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between two spheres, which is truncated to satisfy a frictional yield criterion, and meff =

mimj/(mi + mj) is the effective mass of two spheres of mass mi and mj. We considered

normal (n) and tangential (t) forces components between the particles and, in order to model

hard spheres that interact on contact (i.e. spheres whose deformation during collisions is less

than a small fraction of their radii), we used the following parameter values: kn = 1.2× 107

N/m, kt = 2/7kn, γn = 12 s−1 and γt = 0.1γn. The interaction force between the walls and

the particles touching them is the same as the corresponding for two particles but considering

the wall of infinite radius and mass (flat wall). The microscopic friction coefficient between

spheres, and between spheres and boundaries, was taken as µ = 0.3. The time step dt

was chosen to guarantee that there are at least 50 steps during one characteristic time of a

collision dt = tc/50, where tc = π/
√

(kn/meff )− γ2n.

Figures 3 and 4 show the initial and final positions of both types of intruders in two

typical runs. Fig. 3 indicates that the No-ring cylinders are slightly inclined, while in Fig.

4 the large inclination of the Ring one becomes obvious.

We also performed an additional set of simulations aimed at elucidating the influence

of the intruder’s aspect ratio in the sink - tilt behaviour. Two intruders, one No-ring with

aspect ratio 1.125, and a Ring with aspect ratio 1 (see Fig. 5), were submitted to the same

range of dimensionless accelerations. Note that the new intruders (in dark gray in Fig. 5)

have the same dimensions of the former ones (in light gray) but the geometry of the bottom

is interchanged.

The new intruders are also rigid bodies made of 1 mm diameter cohesive particles and

their bulk densities also correspond to that of the granular medium. The new Ring intruder

is composed by N = 1498 particles forming a 40 mm wide and 35.5 mm high rectangle to

which two 4.5× 2.7 mm2 feet were added. Note that the size of these feet and those of the

Ring intruder are the same. The new No-ring is a rectangle of 40 mm wide and 44.5 mm

high composed of N = 1845 particles.
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FIG. 5. Comparison of the geometry of the intruders used to test the influence of the aspect ratio.

In light gray the intruders previously described and in dark gray the new ones.

III. RESULTS AND DISCUSSION

A. Sink vs. tilt penetration in experiments

Figure 6(a) shows the time variation of the sinking depth for selected values of the dimen-

sionless acceleration Γ = A(2πf)2/g (where g = 9.81 m/s2 is the gravitational acceleration

and A(2πf)2 is the horizontal peak acceleration of the sand box) for No-ring cylinders. It

is easy to see that the penetration of the No-ring cylinders follows a common pattern for

all the accelerations. A first process of fast sinking is followed by a slow creep. Only the

penetration depth increases with Γ. In this figure we do not show the total creep process,

due to its long duration. As the height of the cylinder is hc = 44 mm, it is possible to check

from Fig. 6(a) that, for a dimensionless accelerations of 1.24, the cylinder sinks completely.

An important characteristic of the sinking process in this type of cylinder is that the intruder

penetrates the granular medium with almost no tilting, and a final inclination smaller than

5°.

Figure 6(b) is similar to the previous one, but measurements were performed with Ring

cylinders. The general features of both graphics are similar, but there is a difference, that

will be better observed in the following figures: the dimensionless acceleration at which the

cylinder sinks completely in the medium is bigger for the Ring cylinders than for the No-ring

ones.

Figure 6(c) presents the time evolution of the tilting angle for a Ring cylinder, a process

that occurs simultaneously with the sinking. The sinking and tilting dynamics of Ring

cylinders is more irregular than that of the No-ring ones. This is illustrated in Fig. 6(b)

and (c), even after being submitted to a moving average process, to get a smoother graph.

No-ring cylinders tend to sink vertically as the granular soil is fluidized by horizontal
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FIG. 6. (color online) Experiments. Time evolution of penetration depths and tilt angles. Time

dependence of the penetration depth of a No-ring cylinder (a), the penetration depth of a Ring

cylinder (b) and the tilting angle of a Ring cylinder (c), for different dimensionless accelerations.

The long-time creep process is not completely shown. The tilting angle of No-ring cylinders is not

displayed, due to the fact that it oscillates around angles not larger than 5° relative to the vertical

direction.

shaking, while cylinders with rings tend to tilt. Figure 7 quantifies the differences between

the initial and final stages of the process, for almost all the range of accelerations our

experimental setup was able to reach.

Figure 7(a) shows sink data for No-ring cylinders. As can be seen, for dimensionless

accelerations up to Γ = 0.27, there was no significant penetration of the intruder into the
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FIG. 7. Experiments. Sinking and tilting: heights and angles for different dimensionless accelera-

tions Γ. Final sink heights for No-ring cylinders (a) and for Ring cylinders (b). Final tilt angles

for Ring cylinders (c). Tilt angles of No-ring cylinders are not shown for the same reasons of the

previous figure.

granular bed. Vertical penetrations started to increase significantly above this acceleration,

reaching a plateau around Γ ≈ 0.7. At the plateau, the cylinder has sunk completely, but

stays “floating” into the fluidized granular medium, as expected for an object isodense

relative to it, so there is no further sinking.

In Fig. 7(b) the sinking process of the Ring cylinders is summarized. Though the low

acceleration part is similar to Fig. 7(a), now the plateau is not observed for the range of

accelerations recorded. Notice that from the depth reached at Γ ≈ 1.2, approximately the
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height of the cylinder hc, it would not sink any further, and that from this value of Γ onwards

a plateau would appear.

Figure 7(c) shows the tilt data for Ring cylinders. No significant tilting is observed for

Γ smaller than approximately 0.25. With the increase of the dimensionless accelerations,

the cylinder significantly tilts, increasing abruptly the tilting angle with Γ, until it slows

down at Γ ≈ 0.7. We do not show the tilting angle of No-ring cylinders, because it is always

smaller than 5°, with a random distribution of values around the vertical direction.

Figures 7(b) and (c) are closely related, because they are two descriptions of the same

process: the motion of Ring cylinders into the granular medium, that includes both sinking

and tilting. The fact that at the accelerations shown in this figure the plateau in the

sinking depth is not reached while for the tilting angle at higher values of Γ the inclination

almost saturates, could be explained by the increase of the friction of the intruder with the

granular medium when the tilting angle increases. At Γ ≈ 0.7 the intruder has reached

a large inclination, but is not completely submerged into the medium. An increase in

the acceleration does not increase significantly the angle, because the resulting torque has

diminished due to the influence of both sinking and tilting, but the increase in fluidization

helps further sinking, until most of the cylinder is submerged.

The sinking process can be understood taking the experimental results in Ref. [46] into

account. When the system is submitted to lateral shaking, a fluidized layer appears in

the upper part of the granular cell. This layer reaches a depth hf that depends on the

dimensionless acceleration Γ. Below this layer exists a “solid” layer. For accelerations in the

range spanned in our experiments, hf varies almost linearly with Γ (see Fig. 3(a) in Ref.

[46]), so we can write

hf (Γ) = α(Γ− Γ∗); Γ > Γ∗ (1)

where Γ∗ is the onset of fluidization and α is the slope of the linear dependence. If Γ ≤ Γ∗

the depth of the fluidized layer is zero.

Then, at low values of Γ the granular medium is not fluidized, and the cylinder almost

does not sink (merely 5 mm at Γ = 0.27; see Fig. 7(a)). For accelerations above the

fluidization threshold, the cylinder sinks until it gets in contact with the solid layer. The

larger is the acceleration, the deeper is that layer, so the bigger is ∆h. But as soon as the

solid layer appears at a depth larger than the cylinder’s height, it does not sink further:
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instead, it “floats” due to isodensity with the sand, so a plateau is reached.

According to reference [57], Γ∗ can be taken as proportional to the friction coefficient µ

between the cylinder and the granular medium. In these experiments we can approximate

µ ≈ 0.3, which is the value we use in the simulations. The authors also conclude that the

final depth of intrusion depends on isostasy, and on the severity of shaking. It can be entirely

determined by isostasy, when the shaking completely unjam the medium and suppresses the

average friction around the intruder [50].

To better understand the differences in the dynamics of both types of intruders, we

performed numerical simulations and their results are described below.

B. Sink vs tilt in quasi-2D numerical simulations

Figure 8 shows the time dependence of the penetration depth (a) and tilting angle (b)

for both types of intruders at the dimensionless acceleration Γ = 1.0. In both figures the

thick curves represent the average value of six repetitions varying the initial conditions and

the surrounding zone represents ±1 standard deviation.

Regarding the vertical sinking in Fig. 8(a), we do not observe major changes between Ring

and No-ring intruders; both types of intruders sink less than in the experiments. This may

be related with the lower dimensionality of the simulations relative to the real experiment.

Quasi-2D granular media allow less choices of readjustment than in 3D: they are easily

jammed, which makes it more difficult for an object to sink. Moreover, the size ratio of

the intruder over the particles is 8 times smaller in the simulations than in the experiments

(experiments: 44 mm/0.140 mm ≈ 300; simulations: 40 mm/1 mm= 40), which means

that if one particle is stuck under the intruder during the simulations, it will slow down the

intruder significantly more than if the particle were 8 times smaller.

Figure 8(b) indicates that the presence of a foundation at the bottom of the intruder

causes a large tilting. Indeed, for the shaking with no ring, the intruder tilting angle is

around 10°, but during the shaking with ring, the intruder tilts fast, reaching an angle

around 50°. This resembles what happens in the experiments (see Fig. 4): the intruder

almost ends up lying on one of its sides. Of course, the tilting is also limited by the

diminished dimensionality in the quasi 2D simulations.

Figure 9 compares the penetration depth reached for both types of cylinders at different
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FIG. 8. (color online) Simulations. Time dependence of sinking depth (a) and tilting angle (b) for

both types of intruders with Γ = 1.0. The central lines are the average of six simulations, while

the colored bands cover ±1σ.
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FIG. 9. (color online) Simulations. Final depth reached for No-ring (squares) and Ring (circles)

cylinders as a function of the dimensionless acceleration. Symbols represent the average of six

experiments and the error bars ±σ.
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FIG. 10. (color online) Simulations. Maximum tilting angle reached for No-ring and Ring cylinders

as a function of the dimensionless acceleration. Symbols represent the average of six simulations

and the error bars ±σ.

values of Γ. The conclusions obtained from Fig. 8 are valid for all the dimensionless

accelerations used in the simulations: there are no significant differences in the final sinking

depth between both types of intruders.

In Fig. 10, on the contrary, the difference in tilting angles between the two types of

intruders is clearly seen. For all the values of Γ the simulated Ring intruder tilts more than

the No-ring one. For Γ=1.50, the No-ring tilts up to an angle that is closer to the Ring’s

one, corresponding to preliminary observations found in experiments with frequencies above

5 Hz for dimensionless accelerations Γ >1.25.

According to our simulations, the difference in tilting between intruders lies in that one

type of intruder, the No-ring one, is somehow more capable of rectifying its rotation during

sinking, while the other, the Ring intruder, is not. This rectification can be understood as

the process of returning to, or recovering, the initial rotation angle once one oscillation of

the cell has concluded and, as can be seen in the temporal evolution of θ (Fig. 11(a)), the

difference in the rotation angles between the No-ring and Ring intruders is produced by a

non-rectifying cumulative process taken by the latter.

To understand why the tilting dynamics is affected by the presence of the legs, which

makes the No-ring intruder able to further rectify its rotation – at least for the values of

gamma between 0.25 and 1.25–, we calculate from the simulations the torque about the

center of mass and the angular velocity.

Fig. 11 shows the time evolution of θ, the angular velocity, the torque about the center
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FIG. 11. (color online) Simulations. Temporal evolution of the calculated magnitudes for the

intruders during the first second of a simulation using Γ = 1.0. From top to bottom: the evolution

of the rotation θ (a), the angular velocity Ω (b), the torque about the center of mass τ (c) and finally,

the position of the cell (d) showing the oscillation described by it. The vertical line indicates the

instant t = 1.84 T. τmax is maximum torque on a non-tilting but horizontally accelerated No-ring

intruder.

of mass and the oscillation of the cell for the two types of intruders in a simulation with Γ =

1.0. Focusing on the θ curve, the difference in tilting can be noticed during the first second

of the simulation (as in Fig. 8 (b) for the averaged values) as well as the aforementioned

Ring intruder non-rectification process. Unexpectedly, the values of the torques shown in

Fig. 11 (c) are very similar for the two intruders, contradicting the intuitive idea that the

sole presence of the legs would produce higher torques about the Ring intruder’s center of

mass making it rotate more. However, the slight differences may affect, to a greater or lesser

extent, the rotational movement of the latter with respect to the No-ring intruder (see Fig.

11 (b)).

In general, during the first half of a cell oscillation, both intruders rotate in the same

direction –counterclockwise due to the fact that the granular bed moves from left to right–.

But, during the second half, some forces appear in the bottom and/or the inside of the
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a

c

b

d

FIG. 12. (color online) Simulations. Pressure field in the granular medium represented as a jet

color map for No-ring (a) and Ring (c) intruders. The color of the intruders represents their

angular velocity using a seismic color map. In (b) and (d) the outer segments of the intruders

are represented as a whole with a color corresponding to the resulting torque about the center of

mass that is generated on all grains belonging to them. Notice that for the Ring intruder each leg

is divided into 3 segments. The grains in these segments are magnified for better viewing. The

resulting torque about the center of mass is represented as the interior color of the intruder. For

both angular velocity and torque, blue color represents clockwise.

Ring intruder’s right leg that do not allow it to rotate in the same way as the No-ring does.

In some cases, these forces completely prevent it from rotating clockwise, as in both first

oscillations shown in Fig. 11. This process is prone to occur in each of the oscillations during

the simulation and its repetition causes the differences in inclination observed for the two

intruders after 8 simulated seconds (see Fig. 10).

Fig. 12 illustrates in more detail what is described above. In (a) and (c) it shows the

pressure field in the granular medium at t = 1.84 T (time indicated in Fig. 11 by the

vertical line), where the force chains are represented using a sequential color map. In them,

the color of the intruders represents their angular velocity, which in turn is displayed as a

diverging color map where blue indicates clockwise rotations. Figures 12 (b) and (d) show

the contribution to the torque about the center of mass of each of the intruder segments as a

result of the forces acting on them. In this case, the color of the intruders is associated with

the resulting torque about the center of mass. Note that all the grains of each outer edge in
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𝑡 = 0 s 𝑡 = 8 s (40 oscillations)

𝑡 = 8 s (40 oscillations)𝑡 = 0 s

FIG. 13. (color online) Simulations. Grain tracking. Initial (left) and final (right) positions of

the No-ring (top) and Ring (bottom) intruders as well as the grains of the granular medium next

to them. The grains right below the intruders are represented in blue while the yellow and cyan

colors represent the grains initially at the left and right side of the intruders, respectively. Note

that for the Ring intruder, the blue grains initially located between the legs remain in the same

region until the end of the simulation

.

(b) and (d) are represented with one color corresponding to the resulting torque about the

center of mass obtained from the torques of all the particles on this same edge, though only

the parts of the edge in contact with the granular medium are effectively interacting. These

figures help identify what type of torque, clockwise or counterclockwise, is generated in each

part of the intruders (including the legs), how it is generated, and how representative it is for

the resulting torque about the center of mass. In this particular case, it is observed for the

Ring intruder that the force associated with the lower part of the right leg is responsible for

almost canceling the torque about the center of mass. Therefore, the Ring intruder remains

inclined while the No-ring one rotates back to its original position.

Those forces acting on the Ring intruder’s legs could be associated with the grain jamming

between them. Fig 13 shows that almost all the blue grains that were initially in the region

between the legs remain there throughout the simulation. Furthermore, it can be seen that

some of the grains (cyan) around the Ring intruder accumulate between its legs: this is

because during the first part of the oscillations these grains tend to move towards the legs,

however, they cannot leave them during the second part. In contrast, grains in the region
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below No-ring intruders have more freedom to exit. The previous process suggests that

the Ring intruder along with the grains between the legs could be treated as a No-ring

intruder with increased friction at the bottom. This increase in friction will make the grains

underneath more likely to get stuck, preventing them from coming out and thus creating

force chains capable of stopping the clockwise rotation (restoring towards vertical position)

of the intruder.

A final observation from the simulations for dimensionless accelerations of Γ = 1.5 is that

the No-ring intruder rotates almost 90 degrees in a 100% of the cases where it reached 45

degrees, doing so in an abrupt way. The Ring intruders, however, show a constant growth

up and, in some cases (after reaching 90 degrees), increase the slope reaching values of up

to 180 degrees. It is worth noting that once Ring intruders turn 90 degrees they begin

to resemble No-ring ones as the presence of the legs loses importance in the penetration

dynamics. Behaviors such as those described before were not observed experimentally since

the Γ values used in the experiments did not exceed 1.24 due to technical limitations of the

shaker used.

The experimental findings are explained not only by the numerical simulations, but also

by a Newtonian model developed in the Appendix 1. This model is based in the force

balance on a cylinder sinking in a granular medium. The forces considered in the 1D model

are gravity, a frictional force proportional to velocity and a pressure like force, proportional

to the depth h, as expressed in Eq. (A.13). Though this model does not include the degree

of freedom associated with tilting, the consideration of its influence in the lineal and surface

dimensions of the intruder is enough to explain why a tilted intruder reaches a final depth

smaller than that reached by a non tilted intruder for a given Γ.

Now, we examine the influence of the intruder’s aspect ratio on the penetration dynamics.

The results of the simulations performed with the intruders of different aspect ratios are

summarized in Fig. 14. Fig. 14(a) compares the dependence of the final tilt of two intruders

with the same aspect ratio (1), one with legs and the other with a flat bottom. With the

exception of the smaller values of Γ where no noticeable differences are apparent, the intruder

with legs always tilts more. This behavior is repeated in the results of Fig. 14(b) for a larger

aspect ratio (1.1125): again the intruder with legs has a final tilt larger than the one with

a flat bottom. Therefore, the above suggests that the presence of a ring at the bottom

of the intruder causes a higher final tilt, although it might become less important with
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FIG. 14. Simulations. Final tilt angles at different Γ for two intruders with (a) aspect ratio 1

and different foundations; (b) aspect ratio 1.1125 and different foundations; (c) a flat bottom and

different aspect ratios and (d) a ring at the bottom and different aspect ratios.

increasing aspect ratio. Figures 14(c) and (d) compare intruders with the same foundation

and different aspect ratios. Both figures lead to the same conclusion: the larger the aspect

ratio, the larger the tilt angle. Summarizing the results of Fig. 14, the intruder with higher

aspect ratio and ring placed on the bottom has the largest tilt angle for all dimensionless

accelerations, and the intruder with flat bottom and lower aspect ratio has the smallest tilt

angle. Interestingly, the other two intruders show approximately equal final tilt angle values

for equal values of Γ.
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IV. CONCLUSIONS

We have studied the behavior of cylindrical objects as they sink into a dry granular

bed fluidized by horizontal oscillations, as a model system to understand the effects of

earthquake-related fluidization of soils on human constructions and other objects like rocks.

We have found that, within a relatively large range of lateral shaking amplitudes at a

frequency of 5 Hz, cylinders with flat bottoms sink vertically, while those with a “founda-

tion”consisting in a shallow Ring attached to their bottom, tilt laterally besides their vertical

sinking.

We have been able to mimic the above described behaviors by quasi-2D numerical simu-

lations. With their help we found that these differences are not necessarily due to the sole

existence of the legs that generate bigger torques about the center of mass. Instead, they

can be associated with the jamming of the particles in the region between the legs, which

can increase the friction at the bottom of the Ring intruder generating force chains capable

of preventing the total recovery of its initial angle of rotation. Numerical experiments also

helped to clarify the influence of the intruder aspect ratio on the tilt dynamics: of two

intruders with the same foundation, the one with higher aspect ratio will have a larger tilt

angle. So, the aspect ratio and the foundation type cooperate to establish the penetration

dynamics of the intruder.

We have also reproduced the vertical sink dynamics of cylinders with a flat base using a

Newtonian equation of motion for an object penetrating a fluidized layer of granular matter,

where the granular effective density increases with depth, eventually reaching a solid phase.

The same model allows to understand the sinking even in the present of tilting (Appendix 1).

Finally, it is worth noting that preliminary experimental data and quasi-2D numerical

simulations suggest that, when strong enough lateral shaking is applied, the tilting scenario

tends to dominate regardless the nature of the intruder’s foundation.
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Flekkøy, for fruitful discussions. This research was made in the frame of the University

of Havana’s institutional project ”Medios granulares: creando herramientas para prevenir
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Appendix

1. Sink dynamics: a phenomenological Newtonian model

The model to be formulated should account for two related processes, the sinking in the

vertical direction and the oscillations perpendicular to it. But as was shown above, the No-

ring intruders have only small oscillations that end fast, being the overall sinking process

almost vertical. Regarding the Ring intruders, though they strongly oscillate, the tilting

process ends first, so we will consider only the equation controlling the vertical sinking,

figuring out how the tilting angle affects the sinking dynamics.

In order to formulate a model to describe analytically the sinking process, let us consider

the forces acting on the cylinder. As soon as the shaking starts, if the dimensionless accel-

eration is above threshold, the upper part of the granular bed is fluidized, and the intruder

sinks.

Let us assume that the cylinder just sinks vertically, and let us name the vertical down-

ward axis as z. The force balance on the intruder can be written as

m~a = m~g +

∫
(−P )n̂dS +

∫
σs · n̂dS (A.1)

where P is the pressure, σs the shear stress tensor, n̂ is the vector normal to the intruder’s

surface, and the integrals run over the boundary of the intruder that is inside the granular

material. Assuming a hydrostatic pressure profile, we can write:

P =

∫ h

0

ρ(z′)gdz′ (A.2)
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where h, as previously, is the depth reached by the cylinder below the surface of the granular

medium. In Eq. (A.2) we have made explicit that the density of the material varies with

depth. Let us assume that it varies as a power law between zero and the density of the solid

layer, ρsl, that is reached at a depth hf :

ρ(z′) = ρsl

( z′
hf

)p
(A.3)

where p ∈ [0, 1]. The selection of the value of p is discussed below (see also Appendix 2).

By combining (A.3) and (A.2) and integrating, we find the hydrostatic buoyancy force

acting on the cylinder with a length h under the (average) level of the granular bed, as:

∫
(−P )n̂dS = − ρslSg

(p+ 1)hpf
hp+1ĥ (A.4)

where S is the characteristic area of the intruder cross section, and ĥ is a unit vector pointing

downwards. It is easy to see that the buoyancy force depends on the volume submerged into

the granular medium.

Neglecting the inertial forces, which according to our simulations is typically two orders

of magnitude smaller than the contact forces, the shear stress component goes as

∫
σs · n̂dS = −Dγvĥ (A.5)

where γ has the dimensions of a viscosity, D is the characteristic size of the cross section of

the intruder and v is its sinking speed [58, 59]. By substituting Eq. (A.4) and Eq. (A.5)

into Eq. (A.1), and only recovering the modular values, we get:

m
d2h

dt2
+Dγ

dh

dt
+

ρcsSg

(p+ 1)hpf
hp+1 = mg (A.6)

Before solving Eq. (A.6) we will assume that the sink velocity is constant, which follows

quite well the behavior during the fast sink regime, as seen in Fig. 15 (i.e., we neglect the

inertial term). So,

dh

dt
+

ρslSg

Dγ(p+ 1)hpf
hp+1 =

mg

Dγ
(A.7)

which can be written as
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FIG. 15. (color online) Time dependence of sinking depth for the No-ring cylinder from experiment,

compared with that determined from Eqs. (A.9, A.10). The inset shows the solutions of Eq. (A.6)

for different values of p (see text).

dh

dt
+ ahp+1 = b (A.8)

The definitions of a and b are easily deduced by comparing Eqs. (A.7) and (A.8).

Equation (A.8) has analytical solutions if p = 0 or p = 1, which correspond to the extreme

cases of constant density and a linear density profile with depth, respectively. The solutions

are

h(t) =
b

a
(1− e−at) (A.9)

if p = 0, and

h(t) =

√
b

a
tanh(

√
abt) (A.10)

if p = 1.

It is easy to see that both expressions correspond to an exponential growth that saturates.

Figure 15 shows the experimental results (continuous line) obtained for a dimensionless

acceleration Γ ' 0.3. It is possible to see in more detail the initial fast sinking process,

followed by the slow creep. Fig. 15 also shows the fitting of equations (A.9, A.10) to

experimental data. Both solutions reproduces well the main features of the sinking process.

It is almost impossible to determine experimentally the exact density profile. But we

do not need to know it in order to validate our model, if we use the following rationale.
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Firstly, we fit Eqs. (A.9, A.10) to the experimental data and obtain the values of a, b that

correspond to p = 0 (a(p = 0), b(p = 0)) and p = 1 (a(p = 1), b(p = 1)). Let us assume

that a and b vary linearly with p between the extremes values which were obtained from the

fitting process. For an intermediate value of p (say, p1) we can calculate the corresponding

values of a(p1) and b(p1). With them, we can in turn determine the constants of Eq. (A.6).

Then, we solve this equation numerically. This procedure is repeated for values of p between

0 and 1, with a step of 0.1.

The inset in Fig. 15 shows some of the numerical solutions for the values of p in the

legend. The main conclusion is that the density profile has small influence on the first (and

most important) part of the sinking process. Of course, the final depth is influenced by

the value of p, but due to experimental uncertainties, it is almost impossible to choose any

particular value.

Let us now study the influence of the values of p in the quality of the fit of the solution

of Eq. (A.6) to the experimental data. For doing this we notice that the values of a and b in

Eq. (A.9) can be easily obtained from the experiments. Considering Eq. (A.8) in the first

moments of motion, as h is small, h′(t) ' b, so b can be evaluated as the initial slope. As

at large times h(t) ∼ heq (heq = ∆h if h(0) = 0) then a = b/hp+1
eq . Then solving Eq. (A.6)

for a given value of b, p, a(p) and naming the result hmod, the best value of p arises from the

minimization:

popt = arg min
N∑
i=1

[hmod(ti, p)− hexp(ti)]2 (A.11)

where hexp(t) are the experimental values of h.

The result for Γ ≤ 1.0 is indifferent to p: the fit is equally good no matter which is the

value of p ∈ [0, 1]. For Γ = 1.24 there are differences in the quality of the fits for various

values of p, but Eq. (A.11) gives a minimum for p = 0, so, we will use p = 0 in the following

(Appendix 2 supports the selection of p from the simulations). Then, Eq. (A.6) becomes:

m
d2h

dt2
+Dγ

dh

dt
+
ρslSg

hf
h = mg (A.12)

that can be taken as the simplest equation of motion describing the vertical sink dynamics

of our cylinders. It is worth noticing that Eq. (A.12) reproduces quite closely the results

reported in Fig. 15, and can be used to qualitatively describe the vertical sinking of Ring-
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cylinders while tilting, as we will see below. It is possible to demonstrate that Eq. (A.12),

developed for a granular bed fluidized by shaking, is closely related with that proposed in [30]

to describe the penetration of an intruder into ultra-light granular material that eventually

behaves like a fluid medium even in the absence of shaking.

In order to understand the influence of the tilting dynamics in the sinking process, it is

useful to note that, when applying Eq. (A.12) to a tilted cylinder, the values of both D

and S change. The reason is that when we calculate the surface integrals, the result will be

proportional to the cylinder’s immersed volume. As the cylinder tilts, both the immersed

surface and linear dimensions increase more than in the case of sinking without tilting, so the

drag force is bigger in the former case. Considering, for instance, the situation represented

in the lower row of Fig. 2, when the cylinder sinks a distance ∆h, the surface and linear

dimensions increase as the inverse of cos θ (of course, other intruder geometries may follow

different laws).

To test it, let us assume a simplified model: the increase factor of S and D is proportional

to the characteristic size of the cross section of the cylinder projected on the horizontal plane,

i.e., it is proportional to the inverse of cos θ. Then, instead of D and S, we will solve Eq.

(A.12) using D/ cos θ(t) and S/ cos θ(t), where θ(t) is a function that grows from zero to the

maximum angle θmax reached by the cylinder, mimicking Fig. 6(c), i. e. with the same time

constant.

The consequences can be seen in Fig. 16. While in the beginning the sinking process

in all situations occurs with the same dynamics, as the cylinder approaches the final angle,

the behavior changes, being the final depth larger for the situations corresponding to low

tilting.

The upper curve, calculated for θ = 0 coincides with the upper curve in the inset of Fig.

15 (calculated for p = 0). Subsequent curves are calculated for values of θmax varying in

steps of π/15, the lowermost curve corresponds to θmax = π/3. As the inclination of the

cylinder increases, both the buoyancy and the viscous drag do. The effect of these factors

on the sinking process of Ring cylinders was already noted in Fig. 6(b): an immediate

consequence is the decrease of the sinking depth (for a given Γ), compared with that of the

No-ring ones, which can be easily observed in the experiments. From the inset it is possible

to deduce that, for the larger angles, a small decrease in the depth is observed.

In spite of the simplifications assumed, it is worth noting that one of the basic differences
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FIG. 16. (color online) Time dependence of sinking depth as calculated solving numerically Eq.

(A.12) considering the variation of S and D provoked by tilting (see text). Upper curve is for

θmax = 0 while the lower one is for θmax = π/3. Between them, θmax varies in steps of π/15. The

inset shows the last three seconds.

between Fig. 7 (a) and (b) –for a given Γ the No-ring cylinders sink deeper than the Ring

ones– could be qualitatively described by our model.

Finally, there is another element that was neither considered by us: as the container

shakes horizontally, it produces a horizontal drag that changes periodically its direction.

According to [60], it creates an additional lift force, and also a dependence of the drag force

with depth, which, of course, must influence the detailed penetration dynamics of the Ring

cylinders. The results of Li et al [40] also support these ideas.

2. Density profile of the granular medium

At each time step the simulation box is subdivided into a fixed number of rectangles for

which the density is calculated as ρ = m/V , where m is the sum of the masses of all the

particles of the granular medium within each rectangle and V is the volume of the rectangle

calculated as its area multiplied by the average diameter of the particles of the medium

inside it.

The density profile for each dimensionless acceleration Γ is obtained by calculating the

average of the density profile at each time step. The latter is obtained by averaging the

profiles of a set of rectangle columns near the intruder. These columns are chosen avoiding

the presence of the intruder in them in order not to affect the density profile since only the

particles that compose the granular medium are taken into account in its calculation.

Figure 17 shows the density profiles as a function of depth for the different values of
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FIG. 17. (color online) Density profiles for the different values of dimensionless acceleration Γ

obtained from the simulations. The background shows the subdivision of the simulation box where

the color of each rectangle goes sequentially from blue to red and represents its density. The

intruder is represented in light gray.

Γ. As can be seen in the region of the graph enclosed by dashed lines, the density of the

medium saturates rapidly with increasing depth for all dimensionless accelerations. This

fact supports from the simulations the use of p = 0 in expression A.3 of Appendix 1.
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rayleigh-taylor instability: Experiments and simulations, Phys. Rev. Lett. 99, 048001 (2007).

29
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