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ABSTRACT

The use of a parameterized encoders or audio front-ends has
shown promises in improving the interpretability of time do-
main single-channel source separation models such as Conv-
TasNet. This type of filters also allows a potential reduction
of the computational cost since larger encoder filters can be
used. In this work, we propose to build a new parameteri-
zation of such encoder filter-bank which allows gaining in-
terpretability while keeping flexibility. Based on the Hilbert
transform and the Bedrosian theorem, we propose to build
phase-shifted set of filters by modulating sinusoids through
freely learned low pass filters. We show that the use of these
filters allows to keep the same performances when using small
filters and even improve them when using large filters.

Index Terms— Audio source separation, audio filterbank

1. INTRODUCTION

Over the past years, major improvements in Single-Channel
Source Separation (SCSS) has been achieved thanks to Deep
Neural Networks (DNN). Among the possible DNN ap-
proaches, masking methods have been shown to be the most
efficient, either in the spectral domain using the Short Time
Fourier Transform (STFT) [1, 2] or in the time domain di-
rectly on the audio waveform using learned filters through the
training of 1D-convolutions [3, 4].

Given a mixture of C sources, x(t) =
∑C
i=1 si(t) , a

typical masking network is then made of an encoder w =
fe(x) applied to the input audio waveform x, a separator
mi = fs(w) applied to the output of the encoder — it builds
masks mi for each source si to be separated — and a decoder
ŝi = fd(w �mi) applied to the masked (element-wise) out-
put of the encoder.

While much effort has been put in the improvement of
the separator fs [5, 6, 7], the encoder fe or audio front-ends
used in the time domain has been little discussed. However,
simple structural modifications of it can significantly change
the performances without changing the overall architecture.

fe(x) is usually a 1D-convolution with free-filters (has in
TasNet [3] or Conv-TasNet [3]). It is however possible to
constrain the filters by parameterizing their shape such as in
SincNet [8] for Automatic Speech Recognition (ASR) which

allows to extend the filter banks on the one hand for ASR [9,
10], but also for source separation tasks. Recently, Pariente
et al. [11] have shown that a simple trick in the estimation of
filters can improve the performance on speech separation in
noisy conditions. On the other hand, Ditter et al. [12, 13] have
shown that well-chosen Gammatone filters allows to avoid the
learning of a front-end without loss of performances.

1.1. Proposal and paper organization

In this paper, we propose a new front-end which achieves high
performances for SCSS while using large filter size. The use
of large filter size allows to decrease the overall computa-
tion (since the number of frames (per second) to process is
reduced). For this, we propose to extend the Hilbert trans-
form and apply the Bedrosion theorem to separate and control
the amplitude and phase term of the filters. The front-end is
parametrized in a regime close to the STFT. A side benefit of
our approach is that it enforces interpretability.

The paper is organized as follows. We first review
the Time-domain Audio Separation (TAS) architecture of
masked network (1.2), review the encoders fe (audio front-
ends) which have been previously proposed (1.3) and discuss
the interpretability of the trained filters and their pro and
cons. In part 2, we then investigate the construction of
new interpretable encoder parameterizations. We propose
extended-Hilbert-transform filters (2.1) and Bedrosian filters
(modulated sinusoid filterbanks) (2.2). Finally, in part 3, we
compare the performances of our two proposals with previous
proposals for a task of SCSS. We constrain the systems to
have the same complexity (same Floating-Point Operations
Per Second (FLOPS)).

1.2. Time-domain Audio Separation Architecture

TAS networks [3, 4] are based on the masking architecture
and operates directly on the audio waveform x(t). They have
allowed a real breakthrough in SCSS and hence became a
central object of study because of its simple structure and
flexibility. In those, fe is a simple 1D-convolution which
projects x(t) on a filterbank. It uses N filters of size L.
fs is a Recurrent Neural Network (RNN) in TasNet [4]
and a Temporal Convolutional Networks (TCN) in Conv-
TasNet [3]. The decoder fd is also a simple 1D convolution.



1.3. Existing encoders / audio front-ends fe

1.3.1. STFT front-end

The STFT can be considered as a non-trained fe: each
cos, sin basis is then considered as a 1D-filter. In this case, the
filters are ordered (by increasing frequency). This ordering
allows to apply 2D-convolution directly to the output of the
encoder. When fe is trained, the resulting 1D-filters are not
ordered, then it will not be possible to apply 2D-convolution.

1.3.2. Free front-end

In [3, 4], fe is a simple trained 1D-convolution. In the follow-
ing we denote by L the size of these filters. In those papers, a
small value ofL has been chosen (16 samples for the initial ar-
ticle) which seems to be the most efficient for their system. In
the Dual Path Transformer network [14], a value even lower
(L=4) has been proposed with even higher performances.

However, using such a small filter in fe leads to a higher
cost in the separator fs. Indeed using smaller L implies more
convolutions hence more computations in fs. Increasing L
is therefore an interesting direction to reduce the number of
operations. This is the direction we follow here.

Filter analysis. Luo et al. in their Conv-TasNet pa-
per [3] have already noted that fe seemed to learn waveforms
with well-defined frequencies and a large number of phase-
shifts for the same waveform. We represent this in Fig. 1 for
L=256. We see that many filters have the same frequency pat-
tern but different phase-shifts. In low-frequencies, the filters
are very well localized in frequency while in mid-frequencies
they are well localized in time. Note that the filters are natu-
rally distributed according to logarithmic frequencies regard-
less of the size of the filters. However, as already studied
in other works [15, 16], the learning process of such large
filters presents more and more noise as we increase L. This
phenomenon appears clearly in Figure 1 for high-frequencies:
the learned filters look like random high pass filters.

1.3.3. Analytic front-end

From the above, we see that many “Free” filters represent sim-
ilar waveform which only differ by their phase. This leads
Pariente et al. [11] to only learn half of the N filters, we de-
note those by base-filters s0(t), and to deduce the other half
by taking their Hilbert transform. The orthogonality of a fil-
ter and its Hilbert transform allows to project the signal on a
precise waveform whatever its phase. The network can then
robustly learn the phase shift of the desired waveform. The
whole system remains differentiable then trainable. For any
base-filter s0(t), its Hilbert transform in Fourier domain is:

H(S0(f)) =

 S0(f).e
jπ/2 iff > 0,

S0(f).e
−jπ/2 iff < 0,

0 otherwise.
(1)

Combining s0(t) with its Hilbert transformH(s0(t)) as imag-
inary part leads to the analytical signal ŝ(t): ŝ(t) = s0(t) +

0

255

Ti
m

e

0 200 400 600 800 1000
Filters

0

8000

Fr
eq

ue
nc

ies

Fig. 1: Example of learned filterbank for Free front-end with
L=256. The top and bottom parts represent respectively the
learned filters in the time and in the frequency domain.

jH(s0)(t). ŝ(t) is often used to extract the instantaneous am-
plitude and phase of s0(t): ŝ(t) = A(t)ejφ(t), where A cor-
responds to a strictly positive signal (the modulating signal)
and φ to any real signal (the phase of the modulated signal).

1.3.4. Gammatone/ over-parametrized front-end

Along the same spirit, Ditter et al. [12] propose to project
x(t) on a fixed set of Gammatone filters, each with a prede-
fined frequency f0 and for each f0 a predefined set of phase-
shifts ψi, hence the name Multi-Phase Gammatone Filter-
bank (MPGTF). A Gammatone filter is expressed as

γ(t|a, b, n, f0, ψi) = a tn−1e−2πbt · cos(2πf0t+ ψi) (2)

With this, they reached state of the art results with small L.
However, one major limitation of their model is that the Gam-
matone envelopes are always centered in the same area (what-
ever the values of ψi which only concerns the modulated sig-
nal). This becomes detrimental as L increases since it there-
fore provides little or no information on the temporal location.
Note that, as for analytic signal, eq. (2) can be considered as
a modulating (amplitude A) and modulated (phase φ) signal:

γ(t|f0, ψi) = A(t) ·cos(φ(t)) = A(t) ·cos(2πf0t+ψi), (3)

where ψi corresponds to the chosen phase and f0 to the oscil-
lation frequency of the modulated signal.

While it would be enough theoretically to use only two
filters (projection on 0 and π/2) for a given frequency in
order to reconstruct the signal, it is precisely this over-
parameterization of the ψ that allows this filter-bank to be
so efficient: the phase of the signal is directly encoded in a
given filter.

2. PROPOSAL

In order to add interpretability and be able to use large filter
sizes L (hence decreasing the computational cost), we pro-



pose two new front-ends which take the benefits of both the
analytical filters (1.3.3) and the MPGTF filters (1.3.4).

2.1. Extended Hilbert front-end

We first propose to extend the Hilbert transform to other phase
values than π/2. For this, we simply shift the phase of a base-
filter s0(t) to the desired values ψ:

Hψ(S0(f)) =

 S0(f).e
jψ iff > 0,

S0(f).e
−jψ iff < 0,

0 otherwise.
(4)

Doing so, we therefore re-use (a) the idea of the Hilbert trans-
form (phase shift of a free base-filter s0(t), eq. (1)) and (b) the
idea of the MPGTF (set of phase-shifts ψi of eq. (2) applied
to the modulated part of Gammatone filters).

For a base-filter s0(t), we deduce a set of K filters sk(t)
by taking ψ ∈ {kπ/K}k∈{0,...,K−1}. This corresponds to
sampling the upper unit-circle of the complex plane1. As Pari-
ente et al. [11] which only learned N/2 base-filters, we also
reduce here the number of learned base-filters to N/K when
using K phase shifts in eq. (4). Again, we can write sk(t) as
a modulating and modulated signal:

sk(t) = A(t) · cos
(
φ(t) +

kπ

K

)
, k ∈ {0, . . . ,K − 1}, (5)

However, while this front-end is promising (as we will
discuss in part 3 2), it does not allow to correct the noise which
is inserted in A(t). We therefore need to constraint s(t) to
avoid the presence of noise. We do this in the Bedrosian front-
end by making the modulating signal A(t) a low-pass signal
and the modulated one a high-pass one.

2.2. Bedrosian front-end

If A(t) and cos(φ(t)) are taken randomly, the resulting base-
filter s0(t) is generally not analytic and the filters induced
by the phase shifts will lose their interpretation in terms of
rotation with respect to each other.

To deal with this, we use results from the Bedrosian the-
orem [17] which provides conditions to guarantee analytic-
ity. [17] proves that for two complex valued functions f, g in
L2(R), if the support of their Fourier transform are disjoint3

then the Hilbert transform of their product can be written:

H(fg) = f H(g). (6)

By associating f to A(t) and g to cos(φ(t)) we have a suf-
ficient condition to build analytical filters as before (see

1It is in fact not useful to completely decompose the unit-circle since no
activation function (such as ReLU) is used at the output of fe and only a
minus sign would appear between a filter and its π phase shift.

2Promising since the performances for SCSS remained stable while the
number of parameters to be learned is reduced by K

3By disjoint we mean: given a real number a, f and g are respectively
included in ]− a, a[ and ]−∞,−a[∪]a,∞[

eq. (4)). Note that this condition can also be seen as the prod-
uct of a low pass filter A(t) and a high pass filter cos(φ(t)).

We now propose a practical implementation of this. Note
that this should be considered as a first simple (but efficient)
implementation which can be further improved.

Practical implementation. We choose to construct the
modulated term cos(φ(t)) using a simple sinusoid parameter-
ized by its frequency f0 as in the SincNet architecture [8].
Then the amplitude parameter A(t) is obtained by convolv-
ing a learned free filter a(t) by a Gaussian lowpass filter4.
The whole filters are therefore rewritten:

sk(t|A, f0) = A(t) cos

(
2πf0t+

kπ

K

)
, (7)

such as A(t) = a(t)~ e−(
t
σt
)
2

, (8)

or F(A)(f) = F(a)(f) ∗ e−
(
f
σf

)2

, (9)

and σ being 2L
πf0

. The positivity constraint of A is obtained
by shifting A such that mint(A(t)) = 0. The parameters to
be trained are the f0 and the free filters a(t).

3. EXPERIMENTS

In the following, we compare the various front-ends (pre-
existing and proposed) and their configurations for a task of
separating speech from speech.

Dataset. We use the LibriMix [18] dataset. made of
mixed items from LibriSpeech [19]. We use dynamic mixing
to build our examples from the train-clean-360 training subset
with a ratios between 0 and 5 dB between the two speakers.

Experimental protocol. As Conv-TasNet, our separa-
tor fs is a TCN. The different experiments will vary in the
choice of the encoder fe, their parameters and the hyper-
parameters of the TCN. The hyper-parameters are chosen
in order to have a constant computational cost (number of
FLOPS) across experiments. We provide those in Table 1.
For computational resource reason and in order to show that
satisfactory results can be obtained with low computational
costs, we perform our experiments without using an optimal
hyperparametrization. Training is performed using 3 s long
mixture. Losses and performances measures use the permuta-
tion invariant [20] Scale-Invariant Source-to-Noise Ratio [3]
(SiSNR). For the implementation of all our networks, we used
the Asteroid library [21].
3.1. Effect of the number of phase-shifts K

To understand the impact of base-filter redundancy, we first
test the influence of K (the number of phase-shifts) for the
extended Hilbert filterbank . We kept the total number of fil-
ters N fixed (N=1050) and choose K ∈ {1, 2, 3, 5, 7, 10}.

4The filters is designed to have an attenuation of -20 dB at frequency f0.
This choice is made in order to have smooth modifications of A(t) when
adding new frequencies in the free filter a(t) if the value of f0 increases.



Table 1: N and L refers respectively to the number of filters
in the fe and their size. H , B and S are the hyperparameter
of the TCN separator (see [3] for more details on those).

Encoder type N L H B S

Small Sm. 128 32 128 128 128
Mid Mi. 512 128 170 170 170
Large Lg. 1024 256 256 256 256

Very Large V l. 2048 1024 512 512 512

Example of phase-shifted waveform for D=7
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Fig. 2: [Top] Example of a learned base-filter s0(t) and its as-
sociated extended-Hilbert-transforms. We represent in black
its temporal envelope. [Bottom] Same with Bedrosian.

The number of base-filter to be learnt varies according to
Nw = N/K. Note that K = 1 corresponds to the free front-
end and K = 2 to the analytic one (Hilbert-based). We use
filters of sizes L = 256 (16 ms for a sampling rate of 16 kHz).

Table 2: Performance for different phase-shifts K.

Nw 1050 525 340 210 150 105
K 1 2 3 5 7 10

SiSNR 10.11 10.66 10.61 10.64 10.73 10.45

As can be seen in Table 2, for a fixed N value (1050), it is
more important to have less base-filters but with good phase-
accuracy (Nw=150, K=7, SiSNR=10.73) than having a large
number of base-filters but decorrelated in phase (Nw=1050,
K=1, SiSNR=10.11). However, increasing further the num-
ber of phases (K=10) leads to a too small number of base-
filters (Nw=105) which is not diverse enough to correctly
project the signal (SiSNR= 10.45). In Figure 2 [Top], we il-
lustrate the filters for the case K=7. As can be seen, we gain
in interpretability: the learned filters are highly correlated and
seem to converge towards modulated sinusoids. This further
motivates the choice we made for the Bedrosian filters: a
set of modulated sinusoids. We illustrate the corresponding
Bedrosian filters in Figure 2 [Bottom].

3.2. Comparison between different front-ends

We now compare the various pre-existing front-ends (Free,
Gammatone, Analytic) with our proposed Extended Hilbert
and Bedrosian filters. We also add to the comparison a fixed
random front-end. We test two assumptions.

(1) Our first assumption is that when L increases the
performance of the non-structured filters (Random fix, Free)
will drop while the ones of structured filters (Analytic, Ex-
tended Hilbert and Bedrosian model) will not. We compare
the results for L=32 (Sm.), 128 (Mi.) and 256 (Lg.). Table 3
confirms our assumption, it even shows a slight SiSNR in-
crease for structured filters (Analytic, Extended Hilbert and
Bedrosian model). As discussed, Gammatone results de-
crease with L since they do not allow to model the temporal
location. For large L, the proposed Bedrosian filters achieved
the best SiSNR (10.78). These results show that it is possible
to gain in interpretability while maintaining (or even increas-
ing) performances when the filters are larger. To check if we
can further extend L, we compare the results obtained with a
Very Large (V l.) L=1024. In this case the performances of
all front-ends drop (especially those of the Free front-end).

(2) Our second assumption is that structured filters will
necessitate less training data. We test this in Table 4 using
0.1%, 1%, 10% or 100% of the data. Our assumption is how-
ever not confirmed: the performances of all front-ends drop.

Table 3: Performance (SiSNR) of the different encoder fe.

Encoder type / L Sm. Mi. Lg. V l.

Random fix 9.85 9.53 9.08 /
Free 10.40 10.33 10.11 7.76

Gammatone 10.43 8.34 6.52 /
Analytic 10.31 10.41 10.66 8.61

Extended Hilbert 10.37 10.51 10.73 8.58
Bedrosian 10.50 10.43 10.78 8.47

Table 4: Performance (SiSNR) of the different encoder fe in
function of the amount of training data for Lg.

Encoder type / Data 0.1% 1% 10% 100%
Free 6.16 8.66 9.61 10.11

Analytic 6.15 8.72 10.12 10.66
Extended Hilbert 6.21 8.88 10.05 10.73

Bedrosian 6.14 8.61 9.97 10.78

4. CONCLUSION

In this paper, we have studied existing encoders or audio
front-ends for SCSS and proposed two new ones: either
based on the extended Hilbert transform or on the Bedrosian
theorem. This last one allows to gain interpretability of the
filters while keeping the performances very high and even
slightly improve them in the case of large filters. This pa-
rameterization of the front-end allows to bypass the problem
of the noise which is usually inserted in the learned filters;
it also allows keeping a greater flexibility than the SincNet
architecture [8] and could potentially be used for other tasks
such as ASR. Further works will concentrate on improving
our specific implementation of the Bedrosian filters.
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