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In this work we investigate the performance of a recently proposed transcorrelated (TC) approach based on a single-parameter correlation factor [E. Giner, J. Chem. Phys., 154, 084119 (2021)] for systems involving more than two electrons. The benefit of such an approach relies on its simplicity as efficient numericalanalytical schemes can be set up to compute the two-and three-body integrals occuring in the effective TC Hamiltonian. To obtain accurate ground state energies within a given basis set, the present TC scheme is coupled to the recently proposed TC-full configuration interaction quantum Monte Carlo method [JCP, 151, 6, 2019]. We report ground state total energies on the Li-Ne series, together with their first cations, computed with increasingly large basis sets and compare to more elaborate correlation factors involving electron-electron-nucleus coordinates. Numerical results on the Li-Ne ionization potentials show that the use of the single-parameter correlation factor brings on average only a slightly lower accuracy (1.2 mH) in a triple-zeta quality basis set with respect to a more sophisticated correlation factor. However, already using a quadruple-zeta quality basis set yields results within chemical accuracy to complete basis set limit results when using this novel single-parameter correlation factor. Calculations on the H 2 O, CH 2 and FH molecules show that a similar precision can be obtained within a triple-zeta quality basis set for the atomization energies of molecular systems.

I. INTRODUCTION

At the heart of quantum chemistry lies the accurate description of the electronic structure of molecular systems, which is a very challenging task since the corresponding mathematical problem to be solved scales exponentially with the system size. Wave function theory (WFT) aims at solving the Schrödinger equation for a general molecular system and provides a systematic way of improving the accuracy of the computed properties following a two-fold path: (i) improving the quality of the wave function in a given basis to get as close as possible to the full-configuration interaction (FCI), (ii) improving the quality of the one-electron basis set used to project the Schrödinger equation. The exact properties of the system would be obtain with the FCI wave function in a complete basis set (CBS). There exists many different a) Electronic mail: dobrautz@chalmers.se b) Electronic mail: emmanuel.giner@lct.jussieu.fr flavours of wave function ansätze which approximate the FCI wave function and energy, and they all have an unfavorable computational scaling with the system size and, most importantly, with the size of the basis set in common. Therefore a major drawback of WFT is the slow convergence of the results with respect to the basis set size, which mainly originates from the poor description of the two-body density matrix near the electron-electron coalescence point (i.e. r 12 ≈ 0).

A central idea shared by the theories aiming to improve the convergence of WFT with respect to the basis set is related to the so-called electron-electron cusp-conditions derived by Kato 1 : one multiplies the cusp-less wave function developed in an incomplete basis set by a correlation factor explicitly depending on the r 12 coordinate which restores the cusp-conditions. Beside the cusp, the most important role of the correlation factor is to lower the probability of finding two electrons near one another, which is often referred as "digging" the short-range part of the Coulomb hole.

There are mainly three classes of theories dealing with a correlation factor: (i) F12 theory [2][3][4][5][6][7] where one projects out the effect of the correlation factor from the incomplete basis set used to compute the cusp-less wave function, (ii) variational Monte Carlo (VMC) methods [START_REF] Toulouse | Advances in Quantum Chemistry[END_REF] where the full effect of the correlation factor is retained in the wave function and all parameters are variationally optimized and (iii) the transcorrelated (TC) theory, [START_REF] Hirschfelder | [END_REF][10][11] where the effect of the full correlation factor is incorporated through a non hermitian effective Hamiltonian. All these three theories have been shown to strongly reduce the basis set convergence problem of WFT.

The main advantage of the TC theory is that it combines favourable aspects of both VMC and F12: (i) since only up to effective three-electron terms are needed (compared to the N-body terms of VMC), usual post-Hartree Fock methods can be designed to solve the TC Hamiltonian, (ii) no more than R 6 integrals are needed, and (iii) compact wave function can be obtained because the full correlation factor is taken into account. Despite these attractive features, the two main drawbacks of the TC theory are that (i) the non-hermitian nature of the TC operator which causes the loss of variationality, and (ii) that the three-body terms generate an N 6 tensor -N is the number of basis set functions -which becomes rapidly prohibitive to store during calculations. Nevertheless, because it originates from a similarity transformation, the exact eigenvalues are obtained when reaching the CBS limit, which suggests that the loss of the variational property in the TC method could be a signature of an unbalanced treatment between the Slater determinant (SD) expansion and correlation factor in the wave function ansatz. Regarding the functional form of the cusp-less wave function and of the correlation factors, the seminal work of Boys and Handy 10,11 proposed to optimize both the orbitals of a single SD and a sophisticated correlation factor. Then, Ten-No 12 proposed a significant change of paradigm since he used the combination of a rather simple universal correlation factor whose shape was optimized for the range of valence electrons, and a rather sophisticated ansatz for the wave function (Møller-Plesset at second order in Refs. 12 and 13 and linearised coupled-cluster in Ref. 14). The works of Ten-No have shown that TC theories, such as transcorrelated second order Møller-Plesset perturbation theory (TC-MP2) converge faster towards the exact energies with respect to the basis set compared to their non-TC counterpart, like regular MP2. Nevertheless, it should be mentioned that because the correlation factor was optimized for valence electrons, the use of basis sets explicitly optimized for core electrons (e.g. the cc-pCVXZ family) is mandatory in order to maintain a sensible value for the energy in all-electron calculations.

More recently, Cohen et. al 15 applied the TC equations with an elaborate correlation factor and proposed to use the full configuration interaction quantum Monte Carlo (FCIQMC) method to obtain the exact ground state energy and the corresponding right eigenvector of the TC Hamiltonian in a given basis set. In their work 15 , the authors used the Jastrow factors of Schmidt and Moskowitz 16 optimized with VMC for the He-Ne neutral series, which explicitly take into account electronelectron-nucleus correlation effects. Their work has also allowed to show the strong compression of the right eigenvector for both ab initio and model Hamiltonians 17 . Similar application of the Gutzwiller Ansatz 18,19 where recently reported by Reiher et. al. 20 using density matrix renormalisation group and various methods based on the TC approach have been used to reduce the resource requirements for accurate electronic structure calculations on state-of-the-art quantum computing hardware [21][START_REF] Mcardle | Improving the accuracy of quantum computational chemistry using the transcorrelated method[END_REF][START_REF] Schleich | [END_REF][START_REF] Kumar | Accurate quantum simulation of molecular ground and excited states with a transcorrelated hamiltonian[END_REF][START_REF] Sokolov | Orders of magnitude reduction in the computational overhead for quantum many-body problems on quantum computers via an exact transcorrelated method[END_REF] .

Recently, one of the present authors introduced a single-parameter correlation factor [START_REF] Giner | [END_REF] inspired by rangeseparated density functional theory (RS-DFT). The main idea developed in this work was to find a mapping between the leading order terms in 1/r 12 of the effective scalar potential obtained in the TC equations and the non-divergent long-range interaction erf(µr 12 )/r 12 used in RS-DFT. The correlation factor obtained with such a procedure has an explicit analytical form which depends on a single parameter µ: the lower the µ, the deeper is the correlation hole dug by the correlation factor, and in the µ → ∞ limit the effect of the correlation factor vanishes. Preliminary tests on atomic and molecular two-electron systems have shown that this TC framework also improves the convergence of the energy, and that a good value of the parameter µ could be systematically obtained with nothing more than the knowledge of the Hartree-Fock (HF) density. The advantage of this simple correlation factor is that the corresponding TC Hamiltonian has a rather simple analytical form for which the two-and three-body integrals can be very efficiently obtained using a mixed numerical/analytical scheme.

The aim of the present work is to study how this relatively simple correlation factor performs for systems with more than two electrons. In order to be able to eliminate any source of errors within a basis set, we use the FCIQMC approach to obtain the exact right eigenvector in a given basis set. We are then able to compare with the results obtained with the more sophisticated correlation factor used in the recent work of Cohen et. al.. 15 The remainder of this article is organized as follows: In Section II, we recap the main equations of the TC theory together with the explicit form of the TC Hamiltonian obtained in Ref. 26. Then, in Section III B 1 we investigate the sensitivity of the present approach with the quality of description of core electrons, in Section III B 2 the dependence of the results on the value of the parameter µ is studied and in Section III B 3 we investigate a possible approximation to the three-body term of the TC approach within the Ansatz considered here. In Section III C we report total energies results of the neutral and first cation species on the Li-Ne series as a function of increasing basis set size. We also compare the qual-ity of the ionization potentials (IPs) obtained with the present approach with the existing literature. We conclude the present study by investigating the convergence of both total energies and atomization energies (AEs) on the CH 2 , FH and H 2 O molecules.

II. THEORY

A. General equations and concepts of TC theory

The general form of the transcorrelated Hamiltonian for a symmetric correlation factor u(r 1 , r 2 ) is given by

H[u] ≡ e -τu Ĥe τu = H + H, τu + 1 2 H, τu , τu , (1) 
where τu = i<j u(r i , r j ) and Ĥ =i 1) leads to the following transcorrelated Hamiltonian

1 2 ∇ 2 i + v(r i ) + i<j 1/r ij . Eq. (
H[u] = H - i<j K[u](r i , r j ) - i<j<k L[u](r i , r j , r k ), (2) 
where the effective two-and three-body operators K[u](r 1 , r 2 ) and L[u](r 1 , r 2 , r 3 ) are defined as

K[u](r 1 , r 2 ) = 1 2 ∆ 1 u(r 1 , r 2 ) + ∆ 2 u(r 1 , r 2 ) + ∇ 1 u(r 1 , r 2 ) 2 + ∇ 2 u(r 1 , r 2 ) 2 +∇ 1 u(r 1 , r 2 ) • ∇ 1 + ∇ 2 u(r 1 , r 2 ) • ∇ 2 , (3) and L 
[u](r 1 , r 2 , r 3 ) =∇ 1 u(r 1 , r 2 ) • ∇ 1 u(r 1 , r 3 ) +∇ 2 u(r 2 , r 1 ) • ∇ 2 u(r 2 , r 3 ) +∇ 3 u(r 3 , r 1 ) • ∇ 3 u(r 3 , r 2 ). ( 4 
)
In practice, the TC Hamiltonian is projected into a basis set B

H[u] B = P B H[u]P B , (5) 
where P B is the projector onto the N e -electron Hilbert space spanned by a given basis set B, where N e is the number of electrons. Using real-valued orthonormal spatial molecular orbitals (MOs) {φ i (r)}, H[u] B can be writ-ten in a second-quantized form as

H[u] B = i,j∈B σ=↑,↓ h ij a † j,σ âi,σ + 1 2 i,j,k,l∈B σ,λ=↑,↓ W kl ij -K kl ij a † k,σ a † l,λ âj,λ âi,σ - 1 6 i,j,m,k,l,n∈B σ,λ,κ=↑,↓ L kln ijm a † k,σ a † l,λ a † n,κ âm,κ âj,λ âi,σ , (6) 
where h ij are the usual one-electron integrals, W kl ij are the usual two-electron integrals, K kl ij are the two-electron integrals corresponding to the effective two-body operator K[u](r 1 , r 2 ) operator

K kl ij = dr 1 dr 2 φ k (r 1 )φ l (r 2 ) K[u](r 1 , r 2 )φ i (r 1 )φ j (r 2 ), (7) 
and L kln ijm are the three-electron integrals corresponding to the effective three-body operator L[u](r 1 , r 2 , r 3 )

L kln ijm = dr 1 dr 2 dr 3 φ k (r 1 )φ l (r 2 )φ n (r 3 ) L[u](r 1 , r 2 , r 3 )φ i (r 1 )φ j (r 2 )φ m (r 3 ). (8) 
The ground state eigenvalue and the associated right eigenvector fulfill the eigenvalue equation

H[u] B |Φ B 0 [u] = ẼB 0 [u]|Φ B 0 [u] , (9) 
and because of the properties of the similarity transformation the exact ground state energy E 0 is recovered in the CBS limit lim

B→CBS ẼB 0 [u] = E 0 , (10) 
for all correlation factors u(r i , r j ) chosen to obtain H[u] B . If u(r i , r j ) is properly chosen one expects a fast convergence of ẼB 0 [u] towards E 0 . Because of the loss the of variational principle of ẼB 0 [u], due to the non hermitian character of H[u] B , this convergence is not guaranteed to be monotonic as in the usual WFT calculations, and ẼB 0 [u] can be below the exact ground state energy.

B. One-parameter TC Hamiltonian: H[µ]

Recently, one of the present authors [START_REF] Giner | [END_REF] has introduced a one-parameter correlation factor u(r 12 , µ) based on a mapping between the r 12 ≈ 0 limit of the TC Hamiltonian and the range-separated DFT effective Hamiltonian. The explicit form of u(r 12 , µ) derived in Ref. 26 

reads as

u(r 12 , µ) = 1 2 r 12 1 -erf(µr 12 ) - 1 2 √ πµ e -(r12µ) 2 . ( 11 
)
Because of the simple analytical expression of u(r 12 , µ), the corresponding TC Hamiltonian H[µ] defined as

H[µ] ≡ e -τµ Ĥe τµ = H - i<j K[µ](r i , r j ) - i<j<k L[µ](r i , r j , r k ), (12) 
with τµ = i<j u(r ij , µ), has a relatively simple analytical form with the effective two-and three-body operators

K[µ](r i , r j ) = 1 -erf(µr 12 ) r 12 - µ √ π e -µr12 2 + 1 -erf(µr 12 ) 2 4 -erf(µr 12 ) -1 ∂ ∂r 12 , (13) 
and 

L[µ](r i , r j , r k ) = 1 -erf(
. The correlation factor u(r 12 , µ) exactly restores the cusp conditions and the scalar two-and threebody effective interaction in Eqs. ( 13) and ( 14) are non divergent, yielding "cusp-less" eigenvectors as illustrated in Ref 26. As apparent from the definitions of Eq (13) and Eq. ( 14), the global shape of H[µ] depends on a unique parameter µ, which can be seen either as the inverse of the typical range of the correlation effects, or the typical value of the effective interaction at r 12 = 0. In the µ → +∞ limit one obtains the usual Hamiltonian, while in µ → 0 limit the correlation factor becomes singular but one nevertheless remains with a well-defined attractive non hermitian Hamiltonian.

Similarly to Eq. ( 5), we define the projection onto a basis set B of the TC Hamiltonian H

[µ] H[µ] B ≡ P B H[µ]P B , (15) 
whose ground state eigenvalue and associated righteigenvector satisfy

H[µ] B |Φ B 0 [µ] = ẼB 0 [µ]|Φ B 0 [µ] . (16) 
Because of its relatively simple form, the correlation factor u(r 12 , µ) has the advantage that it leads to effective operators K[µ](r 1 , r 2 ) and L[µ](r 1 , r 2 , r 3 ) with a simple-enough analytical form for which integrals can be computed efficiently using a mixed numerical-analytical scheme (see Ref 26 for explicit formulas). This is in contrast to the R 6 numerical integrals needed when using more sophisticated correlation factors.

III. RESULTS

A. Computational details

To obtain the ground state eigenvalue ẼB 0 [u] of a given TC Hamiltonian H[u] B , we use the recently developed similarity transformed full-configuration interaction quantum Monte Carlo (ST-FCIQMC) technique, 15,27 which extends the original stochastic projection technique of FCIQMC [28][29][30][31][32][33][34][35] to a non-hermitian and threebody Hamiltonian. FCIQMC parameters were 10 6 walkers, an initiator threshold of n init = 3 and a semistochastic space of N D = 1000. After having investigated the dependence of the results with the parameter µ in Sec. III B 2, we found that the so-called RSC+LDA system-dependent value defined in Eq. (57) of Ref. 26 is a good strategy to obtain a reasonable systematic value of the µ parameter, and therefore we use the latter throughout this work except for Sec. III B 2. Provided a H[u] B and a given basis set B, the necessary one-, twoand three-body integrals are computed using restricted Hartree-Fock (RHF) MOs. When the correlation factor is u(r 12 , µ), we label the results by "µ-TC", whereas when using the correlation factor of Schmidt and Moskowitz 16 we label the results by "SM-17", as in Ref. 15. Regarding the integrals involved in H[µ] B , the scalar two-body part is computed analytically and the non-Hermitian and three-body parts are computed using a mixed analyticalnumerical scheme utilizing a Becke numerical grid 36 with 30 radial points and a Lebedev angular grid of 50 grid points. Numerical tests have shown that these relatively small number of grid points ensures a sub µHa convergence of the total energies.

Estimates of the FCI in a given basis set B and within a sub mH precision were obtained with the configuration interaction perturbatively selected iteratively 37 (CIPSI) as implemented in the Quantum Package 38 . The CIPSI results are reported in Tables and Figures as "No-TC."

The estimated CBS all-electron results for atoms and cations are taken from Ref. 39. Except for the ST-FCI-QMC, all calculations where performed using the Quantum Package 38 .

B. Preliminary investigation on B, B + , Ne and Ne +

Before performing the study on the whole Li-Ne series together with their first cations, we perform a detailed study on the neutral and first cations of the boron and neon atoms. The main question we address are (i) how to treat core electrons in all-electron calculations using H[µ], (ii) to quantify the dependency of the results with the value of the parameter µ, and (iii) to investigate a possible reduction of the computational cost involved in TABLE I. Boron neutral and first cation total energies results (in a.u.) and ionization potentials (IP) from all-electron calculations with and without core-valence basis functions. cc-pVXZ basis sets are referred to as "w/o core valence", while the cc-pCVXZ basis sets are referred to as "with corevalence". The parameter µ is obtained with the µRSC+LDA approach and is about 1.02 and 1. 15 the three-body operator while maintaining high accuracy.

Treatment of core electrons in all-electron calculations

We begin our preliminary investigation by studying the treatment of core electrons with H[µ] in the case of the boron neutral atom. We performed all electron µ-TC calculations with the cc-pVXZ and cc-pCVXZ basis sets (X=D,T) to study the impact of functions suited for corevalence correlation, and we report the results in Table I. The calculations with the cc-pVXZ and cc-pCVXZ basis sets are referred to as "w/o core-valence" (w/o standing for "without") and "with core-valence", respectively. From Table I we can observe that the all electron µ-TC calculations without core-valence functions significantly underestimate the exact ground state energy of the boron atom by 36 mH and 26 mH in the cc-pVDZ and cc-pVTZ basis sets, respectively. This effect is strongly reduced when using core-valence functions as the underestimation of the ground state energy is 2.2 mH and 1.8 mH with the cc-pCVDZ and cc-pCVTZ basis sets, respectively. Regarding now the effect on the IP, it can be noticed that while the energy difference computed using a cc-pCVDZ is already within a sub mH precision with respect to the CBS value, the results obtained without the core-valence functions are far from such an accuracy as the error is 15 mH and 17 mH using the cc-pVDZ and cc-pVTZ, respectively. Therefore, as already shown by Ten-No et. al. 13 , core-valence correlation functions are mandatory when performing all electron calculations in the context of TC methods, unless the correlation factor includes explicit electron-electron-nucleus correlation as for instance in the work of Cohen et. al. 15 .

Dependence of the results with respect to µ

Having established that the use of basis sets able to treat core-core and core-valence correlation is mandatory to obtain sensible values for both total energies and energy differences in all-electron calculations, we investigate another aspect of the present method: the dependence of the results with µ. The latter aspect have been quite intensively studied in Ref. 26 for two electron systems and this study has shown that the value of µ must increase with the nuclear charge of the atomic system studied. Still in Ref. 26, one of the present authors has proposed three different system-dependent values of the µ parameter: the so-called µ RSC , µ LDA and µ RSC+LDA . These values of µ are efficiently obtainable and only depend on the density of the system under study, which essentially results in a parameter-free correlation factor. For more details we refer the interested reader to Ref. [26]. In this section, we perform a similar study on heavier atoms in order to quantify the dependence of the results on the parameter µ in more realistic systems including core electrons. We report in Table II the total energies for the Ne and Ne + atomic systems together with the ionization potential for the three different flavours of parameter µ and the numerical values for the parameter µ obtained with each approach in the cc-pCVDZ basis set. The values in the other basis sets used here are within less than 1%.

From Table II we can observe that the lower the value of µ, the lower is the total energy, which can be related to the depth and range of the correlation hole induced by the correlation factor which are typically inversely proportional to µ. One can also notice that the value of µ LDA is typically twice as large as µ RSC , and the differences in total energies are significant in the cc-pCVDZ basis set (about 350 mH). They decrease monotonically in the cc-pCVTZ (about 40 mH) and cc-pCVQZ (about 5 mH) basis sets. The dependence of the total energy on the value of µ decreases when using larger basis sets. This is expected and coherent with the fact that when reaching the CBS limit, one recovers the exact groundstate energy whatever the value of µ chosen for the correlation factor. Regarding the values of the IP, one can notice that although there are significant variations of the total energies, the energy differences are not very sensitive to the value of µ. The largest deviations of the IP are about 10 mH in the cc-pCVDZ basis set between µ LDA and µ RSC+LDA . Nevertheless, the IP computed with the three different flavours of parameter µ remain much closer to the exact IP than the CIPSI results without any correlation factor. To conclude this study, one can notice that the IP computed with µ RSC tend to converge less rapidly than the two other choices, and that the values µ RSC+LDA and µ LDA give sensibly the same quality of energy differences. Therefore, we choose to retain the µ RSC+LDA strategy for the rest of the present work. Another important computational aspect of the TC method are the numerous N 6 integrals to be computed for the three-body effective operator L[u](r 1 , r 2 , r 3 ). The problems regarding these terms are two-fold: (i) the computation of the intermediate quantities which can be quite demanding and (ii) the computation and storage of all the N 6 integrals. In the context of H[µ] B , point (i) is not really a problem since all intermediate quantities are computed analytically and not numerically in contrast to more complex correlation factors 15,27 (see Appendix of Ref. 26). Therefore, the main computational bottleneck is the computation and storage of the N 6 integrals. One can notice that when using methods such as MP2 or coupled cluster (CC) approaches, as proposed in Ref. 13, one can use a resolution of the identity approximation (RI) with only N 4 -storage requirement for intermediate quantities. Nevertheless, in stochastic algorithms like TC-FCIQMC, the RI would be very costly as it would imply to recompute the three-electron integrals whenever they are required in the matrix elements computations.

Nevertheless, one can notice that the most numerous terms in L[u](r 1 , r 2 , r 3 ) are those corresponding to 6 different indices, which corresponds to pure triple excitation operators. We propose here the "5-idx" approximation of the three-body term which consists in neglecting all integrals with six different indices, which reduces the number of integrals to compute and store for the treatment of L[u](r 1 , r 2 , r 3 ) to N 5 . We performed TABLE III. Effect of neglecting the full 3-body terms on total energies (in H) for all electron calculations in µ-TC in a cc-pCVXZ basis sets (X=D,T,Q) labelled here CVXZ, for the Neon and Ne + atomic system and the corresponding ionization potential (in mH). The parameter µ is obtained with the µRSC+LDA approach.

Method Basis

Ne numerical calculation with the full consideration of the L[u](r 1 , r 2 , r 3 ) operator and the "5-idx" approximation using the cc-pCVXZ (X=D,T,Q) basis sets for the neon atom and its first cation, and report the results in Table III. From Table III we can observe that the results are almost insensitive to the 5-idx approximation as the differences between the energies are of about 10 -5 H for both the neon and the first cation. This result therefore indicates that the 5-idx approximation drastically reduces both the memory and CPU bottleneck of the TC calculations while leaving the numerical results unchanged to a sub mHa precision. This is still more expensive than the normal-ordered approaches proposed by some of the present authors in Ref. 41, but has the advantage to not depend on the one-and two-body density of some reference wave function. One has to keep in mind that as the three-body operator is truncated, the 5-idx approximation formally introduces a dependence on the choice of orbitals used in the calculations. We have investigated the dependency of the results in the cc-pCVDZ basis sets for both the Ne and CH 2 using different sets of orbitals (HF, localized and natural orbitals from correlated calculations) and found very small differences in the 5-idx results (typically 10 -5 H)

C. All electrons calculations the Li-Ne species and first cations

In Table IV we report the performance of all-electron ground state calculations on the Li-Ne series in the cc-pCVXZ basis sets (X=D,T,Q), together with their first cations at the µ-TC and CIPSI levels of theory. We also report in Table IV the estimated non relativistic CBS results of Ref. 39, together with the so-called SM-17 results which are the TC-FCIQMC calculations in the cc-pCVXZ basis set family (X=D,T) using the same methodology of Ref. 15 where the correlation fac-TABLE IV. Errors (in mH) with respect to the estimated CBS ground state energies (in H) for the Li-Ne species, together with their first cations and the corresponding ionization potential (IP) (in mH) computed with cc-pCVXZ (X=D,T,Q) basis sets. SM-17 stands for TC-FCIQMC results with the correlation factor of Schmidt and Moskowitz 16 . µ-TC calculations are performed with a parameter µ obtained with the µRSC+LDA approach. Estimated non-relativistic CBS results are obtained from Ref. 39 From Tables IV and V one can observe that the convergence of both the total energies and the ionization potential using µ-TC and SM-17 is strongly improved with respect to usual WFT calculations, which is expected due to the presence of explicit correlation.

Several specifics aspects have to be pointed out from the Tables IV and V: (i) For Z > 5, the total energies provided by µ-TC are always closer to the exact ones than that of SM-17.

(ii) With increasing nuclear charge, the discrepancy between the total energies at triple-zeta basis set level using µ-TC and SM-17 increases. This suggests that, the electron-electron-nucleus term of the SM-17 takes into account only a part of the correlation effects arising from the core (i.e. core-core and core-valence correlation effects). (iii) Although the total energies obtained with µ-TC in double-zeta basis sets can be way below the exact ground in the cc-pCVDZ basis set, respectively), the energy differences are of good quality (the accuracy of the ionization potential of Ne using µ-TC in the cc-pCVDZ basis set is comparable to that of regular WFT in a cc-pCVQZ basis set).

(iv) While at the double-zeta level the error with respect to the exact IP is significantly smaller using the µ-TC than the SM-17 approach for all systems, the errors at the triple-zeta level are smaller with the SM-17 by approximatively 1 kcal/mol on average. Nevertheless, the error with respect to the exact IP obtained with µ-TC at the quadruple-zeta level decrease below 0.001 H., show-ing a systematic convergence pattern.

D. All electron calculations on the CH2, FH and H2O molecules

We conclude this study by performing all electron calculations on the CH 2 , FH and H 2 O molecules, whose equilibrium geometries have been taken from Ref. 42 and Ref. 43, respectively. In Table VI we report the total energies of these three molecules computed at the µ-TC and CIPSI levels of theory, together with the corresponding atomization energies (AE). Estimated CBS quantities are obtained from Ref. 43 and Ref. 42. From Table VI one can notice that also for molecular systems the convergence of both the total energies and AE is much faster with respect to the basis set with the µ-TC than with the usual CIPSI calculations. For the CH 2 molecule we obtain an error below 1 mH for the AE in a cc-pCVTZ basis set, while the error is 2.00 mH and 1.77 mH for the H 2 O FH molecules, respectively. These results illustrate the benefit of using the TC approach with a simple correlation factor even for simple molecular systems. 

IV. CONCLUSION

In the present work, we further investigated a new strategy based on the TC method which was previously applied to two-electron systems only. [START_REF] Giner | [END_REF] One of the focuses of this paper is to test its validity in more realistic systems where many body effects arrise and therefore the effective three-body terms of the TC Hamiltonian have to be included. In order to avoid particle-hole truncation errors due to approximations of the right eigenvector in a given basis set, the ground state energy of the TC Hamiltonian have been obtained using the recently proposed non-hermitian and three-body variant of FCIQMC. 15 The main feature of the recently introduced 26 TC correlation factor is that, beside producing a strictly non divergent TC Hamiltonian, it has a simple parametrization which depends only on a single parameter µ. Such a parameter µ determines the impact of the correlation factor through the depth and typical range of the correlation hole that it induces in the wave function. In addition, due to the simple analytical structure of the obtained TC Hamiltonian, all needed integrals can be efficiently computed in a mixed numerical-analytical scheme. The parameter µ is determined for each system, according to the method described in Ref. [26], and depends only on the density of the system under study, which essentially results in a parameter-free correlation factor.

The main focus of this work is the study of the convergence of the TC eigenvalues and energy differences with respect to the quality of the basis set and its ability to treat both core and valence electrons. We performed calculations on the Li-Ne series together with their first cations in the cc-pCVXZ (X=D,T,Q) basis sets, in order to investigate the convergence towards the CBS limit of both total energies and IPs. We also computed both the total energies and AEs of the CH 2 , FH and H 2 O molecules.

The main conclusion of this study is that, provided that the basis set contains core-valence functions, very accurate total energies can already be obtained from the triple-zeta quality basis sets.

Regarding the accuracy of the IPs computed here, while the MAE is significantly smaller in double-zeta basis sets using the single-parameter µ-TC compared to the more elaborate SM-17 correlation factor, the results at the triple-zeta level of theory are outperformed by the latter by about 1.2 mH on average. Nevertheless, the MAE of both these methods are within chemical accuracy (below 1 mH) with CBS limit results at the quadruple zeta level. Regarding the AEs computed on the three small molecules considered here, an error below 1 mH is reached with a triple-zeta quality for the CH 2 molecule, while it is 2.00 mH and 1.77 mH for the H 2 O and FH molecules, respectively.

In the context of TC calculations, this study shows that the results obtained with a simple one-parameter correlation factor such as u(r 12 , µ) are comparable with those obtained with much more sophisticated correlation factors including electron-electron-nucleus terms. On the other hand, it should be pointed out that in the TC work of Cohen et al. 15 the employed SM17 correlation factors were taken from the literature, and were not further optimized for use in the TC method. In subsequent work, some of the present authors will investigate a better suited method to optimize general Jastrow factors for the TC approach.

Among the perspective of this work, the use of a correlation factor u(r 12 , µ) with a µ varying in real space could be of interest as it could probably mimic the electronelectron-nucleus correlation effects.

FIG. 1 .

 1 FIG.1. Boron (a), B + (b), Ne (d) and Ne + (e) absolute energy difference with respect to the estimated exact total energies39 and ionization potential for boron (c) and neon(f) of the range separated TC (µ-TC), and Cohen et al.15 (SM-17) and nontranscorrelated results (no TC) for fully correlated calculations with cc-pCVXz core-valence basis sets. µ-TC calculations are performed with a parameter µ obtained with the approach. The gray areas indicate sub mH accuracy.

  for the neutral and first cation, respectively.

	Atom	DZ	TZ	CBS 39,40
	B	with core-valence -24.65613 -24.65568 -24.65391 w/o core-valence -24.69075 -24.68063
	B + with core-valence -24.35147 -24.34960 -24.34889 w/o core-valence -24.37284 -24.36495
	IP	with core-valence 0.30466 0.30608 0.30502 w/o core-valence 0.31791 0.31568

TABLE II .

 II Total energies for the Ne atom and its first cation together with the corresponding ionization potential (IP) for different choices of the µ parameter, in cc-pCVXZ (X=D,T,Q) the basis-sets, labelled here CVXZ. The numerical values of the µ parameter are also reported in cc-pCVDZ only, the values in the other basis sets being similar up to less than 1%.

	µ type	Basis Energy(Ne) [H] Energy(Ne + ) [H] IP [mH]
	µLDA	CVDZ -128.85276(1)	-128.06238(1) 790.38(2)
	µRSC	CVDZ -129.21054(1)	-128.41442(1) 796.12(2)
	µRSC+LDA CVDZ -128.96435(1)	-128.16345(1) 800.90(2)
	µLDA	CVTZ -128.91396(1)	-128.12384(1) 790.12(2)
	µRSC	CVTZ -128.95026(1)	-128.16004(1) 790.21(2)
	µRSC+LDA CVTZ -128.93230(1)	-128.14083(8) 791.47(9)
	µLDA	CVQZ -128.93180(1)	-128.13951(1) 792.3(2)
	µRSC	CVQZ -128.93764(1)	-128.14739(1) 790.24(2)
	µRSC+LDA CVQZ -128.93569(3)	-128.14295(8) 792.7(1)
			Estimated Exact
			-128.93760	-128.14310	0.79450
	µ type	Basis	Ne [a.u.]	Ne + [a.u.]
	µLDA	CVDZ	1.93	2.043
	µRSC	CVDZ	1.16	1.201
	µRSC+LDA CVDZ	1.55	1.622
	3. The "5-idx" approximation on the three-body term

  .Atom Method CVDZ CVTZ CVQZ Est. CBS a Atom Method CVDZ CVTZ CVQZ Est. CBS a + , Ne and Ne + is shown in Fig.1.

	Li	µ-TC -1.03 -0.51 -0.26	N	µ-TC -9.76 -4.62 -0.99
		SM-17	0.58 -0.18	--7.47806	SM-17 22.25	2.62	--54.58920
		No-TC 12.04	3.82	1.70		No-TC 71.55 21.27	7.23
	Li +	µ-TC	0.03 -0.12 -0.08	N +	µ-TC -3.27 -2.61 -0.18
		SM-17	0.40 -0.25	--7.27991	SM-17 15.85	3.01	--54.05460
		No-TC 10.72	3.36	1.58		No-TC 58.48 17.88	6.10
	IP(Li)	µ-TC	1.06	0.38	0.18	IP(N)	µ-TC	6.49	2.01	0.85
		SM-17 -0.18 -0.07	-	198.15	SM-17 -6.40 0.39	-	534.60
		No-TC -1.32 -0.46 -0.12		No-TC -13.07 -3.39 -1.13
	Be	µ-TC -3.01 -1.19 -0.41	O	µ-TC -6.82 -0.44	0.01
		SM-17 -2.33 -1.27	--14.66736	SM-17 40.54	6.48	--75.06730
		No-TC 15.54	5.00	1.80		No-TC 116.79 36.08 12.83
	Be +	µ-TC -0.89 -0.62 -0.28	O +	µ-TC -10.68 -3.75 -1.49
		SM-17 -0.94 -0.64	--14.32476	SM-17 24.91	4.79	--74.56680
		No-TC 13.74	4.28	1.59		No-TC 88.84 25.82	8.65
	IP(Be) µ-TC	2.14	0.59	0.14	IP(O)	µ-TC -3.86 -3.31 -1.50
		SM-17	1.41	0.65	-	342.58	SM-17 -15.63 -1.69	-	500.50
		No-TC -1.78 -0.70 -0.19		No-TC -27.95 -10.26 -4.18
	B	µ-TC -2.21 -1.77 -0.76	F	µ-TC -13.11 2.26	0.64
		SM-17	2.22 -0.68	--24.65391	SM-17 63.89 11.06	--99.73390
		No-TC 27.88	9.06	3.08		No-TC 164.25 52.05 18.81
	B +	µ-TC -2.55 -0.68 -0.61	F +	µ-TC -11.18 -0.19 -0.78
		SM-17 -1.36 -0.24	--24.34892	SM-17 51.64 10.52	--99.09280
		No-TC 19.07	6.79	2.28		No-TC 137.54 41.23 14.30
	IP(B)	µ-TC -0.33 1.09	0.14	IP(F)	µ-TC	1.93 -2.45 -1.42
		SM-17 -3.58 0.43	-	304.99	SM-17 -12.25 -0.54	-	641.10
		No-TC -8.81 -2.27 -0.80		No-TC -26.71 -10.82 -4.51
	C	µ-TC -3.88 -2.93 -1.17	Ne	µ-TC -26.75 5.39	1.91
		SM-17	9.63	0.38	--37.84500	SM-17 89.86 18.15	--128.93760
		No-TC 47.02 14.97	5.38		No-TC 215.06 69.37 25.25
	C +	µ-TC -0.59 -1.11 -0.67	Ne +	µ-TC -20.35 2.28	0.12
		SM-17	4.97	0.85	--37.43103	SM-17 76.19 17.57	--128.14310
		No-TC 36.16 11.71	3.92		No-TC 188.73 58.12 20.51
	IP(C)	µ-TC	3.30	1.82	0.50	IP(Ne) µ-TC	6.40 -3.11 -1.79
		SM-17 -4.66 0.47	-	413.97	SM-17 -13.67 -0.58	-	794.50
		No-TC -10.52 -2.74 -0.94		No-TC -26.33 -11.25 -4.74
	tor of Schmidt and Moskowitz 16 was used to obtain the				
	TC Hamiltonian. The SM-17 correlation factor is very				
	flexible as it contains explicit electron-nucleus, electron-				
	electron and electron-electron-nucleus terms and have				
	been optimized at the VMC level for each neutral species				
	considered here. The mean absolute errors (MAE) of the				
	IPs are reported in Table V. A graphical representation				
	of the results B, B									

TABLE V

 V 

	. Mean absolute errors (MAE) in mH for the ion-
	ization potentials at the µ-TC and No-TC levels of theory for
	the Li-Ne series in the cc-pCVXZ basis sets. µ-TC calcula-
	tions are performed with a parameter µ obtained with the
	µRSC+LDA approach. The results labelled by SM-17 are the
	TC-FCIQMC results of Ref. 15 using a flexible correlation
	factor.			
		CVDZ CVTZ CVQZ
	No-TC 14.65 5.24	2.08
	µ-TC	3.19	1.85	0.81
	SM-17 7.22	0.60	-
	state energy (by about 26 mH and 20 mH in the case of
	the Ne and Ne +			

TABLE VI .

 VI Error (in mH) with respect to the estimated CBS ground state energies (in H) for the H2O, CH2 and FH molecules, together with their respective atomization energies (AE) (in mH) computed with cc-pCVXZ (X=D,T,Q) family of basis set. µ-TC calculations are performed with a parameter µ obtained with the µRSC+LDA approach. The molecular geometries are as follows: CH2: CH distance=1.1063 Å, HCH angle=102.30 • , H2O: OH distance=0.9572 Å, HOH angle=104.52 • , FH: FH distance=0.91680 Å. Results from Ref. 43 and from the estimated CBS total energies of the atomic components of the molecule.

	System	Method CVDZ CVTZ CVQZ	Est. CBS
	H2O	No-TC 156.07 4.90	1.74 -76.43894(12) a
		µ-TC -4.44 1.95	-
	AE(H2O) No-TC -37.84 -12.55 -4.45	371.64(12) b
		µ-TC -0.94 -2.00	-
	CH2	No-TC 72.95 21.94	7.36	-39.13425 c
		µ-TC	0.35 -1.70	-
	AE(CH2) No-TC -24.45 -6.55 -1.84	289.22 c
		µ-TC -5.90 -0.81	-
	FH	No-TC 189.14 59.94 21.89	-100.46008 c
		µ-TC -13.23 4.22	-
	AE(FH) No-TC -24.18 -7.70 -3.03	226.18 c
		µ-TC	0.84 -1.77	-

a Results from Ref. 43. b c Results from Ref. 42.
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