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Abstract 86 

Since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects 87 

of mercury (Hg) on Arctic biota in 2011 and 2018, there has been a considerable number of new Arctic 88 

bird studies. This review article provides contemporary Hg exposure and potential health risk for 36 89 

Arctic seabird and shorebird species, representing a larger portion of the Arctic than during previous 90 

AMAP assessments now also including parts of the Russian Arctic. To assess risk to birds, we used Hg 91 

toxicity benchmarks established for blood and converted to egg, liver, and feather tissues. Several Arctic 92 

seabird populations showed Hg concentrations that exceeded toxicity benchmarks, with 50% of 93 

individual birds exceeding the “no adverse health effect” level. In particular, 5% of all studied birds 94 

were considered to be at moderate or higher risk to Hg toxicity. However, most seabirds (95%) were 95 

generally at lower risk to Hg toxicity. The highest Hg contamination was observed in seabirds breeding 96 

in the western Atlantic and Pacific Oceans. Most Arctic shorebirds exhibited low Hg concentrations, 97 

with approximately 45% of individuals categorized at no risk, 2.5% at high risk category, and no 98 

individual at severe risk. Although the majority Arctic-breeding seabirds and shorebirds appeared at 99 

lower risk to Hg toxicity, recent studies have reported deleterious effects of Hg on some pituitary 100 

hormones, genotoxicity, and reproductive performance. Adult survival appeared unaffected by Hg 101 

exposure, although long-term banding studies incorporating Hg are still limited. Although Hg 102 

contamination across the Arctic is considered low for most bird species, Hg in combination with other 103 

stressors, including other contaminants, diseases, parasites, and climate change, may still cause adverse 104 

effects. Future investigations on the global impact of Hg on Arctic birds should be conducted within a 105 

multi-stressor framework. This information helps to address Article 22 (Effectiveness Evaluation) of the 106 

Minamata Convention on Mercury as a global pollutant. 107 

 108 
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1. Introduction 115 

Among contaminants of concern, mercury (Hg) is a non-essential trace element from both natural 116 

(e.g., volcanic eruptions, forest fires, biomass burning) and anthropogenic sources (e.g., fossil fuel 117 

combustion, mining, waste disposal and chemical production). Due to long-range transport by atmos-118 

pheric, oceanic, and riverine pathways (AMAP 2021), the Arctic is considered a sink to atmospheric 119 

Hg deposition (Dastoor et al., 2022; Nerentorp et al., 2022; AMAP 2021). Mercury contamination has 120 

increased globally from anthropogenic inputs and has become a major concern in the Arctic (AMAP 121 

2021). 122 

The toxic form of Hg, methylmercury (MeHg), bioaccumulates in organisms, biomagnifies throughout 123 

trophic food webs, and can have numerous detrimental effects on Arctic wildlife (Scheuhammer et al., 124 

2007; Ackerman et al., 2016). Avian reproduction is especially sensitive to MeHg toxicity, with even 125 

low levels of exposure potentially leading to adverse effects (Wiener et al., 2003; Heinz et al., 2009). 126 

Aquatic birds typically have the highest exposures to environmental Hg contamination (Ackerman et 127 

al. 2016), although terrestrial birds, like riparian songbirds, may also bioaccumulate MeHg to poten-128 

tially harmful levels (Cristol et al., 2008; Ackerman et al., 2019; Cristol and Evers, 2020). Within the 129 

Arctic, aquatic birds are primarily exposed to elevated levels of MeHg in pelagic environments 130 

(Provencher et al., 2014a; Braune et al., 2015; Peck et al., 2016; Burnham et al., 2018; Albert et al., 131 

2019, 2021), coastal shorelines, and wetland foraging habitats (Hargreaves et al., 2011; McCloskey et 132 

al., 2013; Perkins et al., 2016; Sun et al., 2019). 133 

Among aquatic birds, seabirds are long-lived species often at the top of food web chains, both leading 134 

them to exhibit some of the highest Hg concentrations observed in wildlife, making them particularly 135 

sensitive to the harmful effects of MeHg exposure. Hence, seabirds are commonly and efficiently used 136 
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as bio-indicators of the health of their environment (Elliott and Elliott, 2013). Originally centered on 137 

the Canadian Arctic (e.g., Braune et al. 2014a), the characterization of MeHg contamination in 138 

seabirds has been recently expanded to many other localities and species of the Arctic regions (e.g., 139 

Albert et al., 2021). 140 

Recently Hg data have also become available for another group of aquatic birds - shorebirds (Perkins 141 

et al., 2016; 2018; Pratte et al., 2020, Burnham et al., 2018). As long-lived species with widespread 142 

distributions across the Arctic during the breeding season, shorebirds may represent an ideal group for 143 

Arctic Hg exposure research. Shorebirds nest and forage within wetland habitats in the Arctic tundra 144 

and can occupy relatively high trophic levels. Because Hg research on terrestrial avian invertivores in 145 

the Arctic is limited (Scheuhammer et al., 2015), recent investigations of shorebird Hg concentrations 146 

fills an important knowledge gap (Perkins et al. 2016, Burnham et al. 2018). 147 

The first objective of the present study was to provide contemporary (post-2000) information on Hg 148 

contamination and potential health risks for Arctic seabirds and shorebirds, updating the AMAP 2011 149 

Hg Assessment and the AMAP 2018 Effect Assessment (AMAP 2011, AMAP 2018, Dietz et al. 2013, 150 

2019). Therefore, we provide the most up-to-date risk assessment of Hg exposure on Arctic seabirds 151 

and shorebirds, including more species, tissues (blood, feather, eggs, liver), regions, and larger sample 152 

sizes than done in previous assessments. This review was meant to be an update to the last AMAP 153 

effects assessment (AMAP, 2018; Dietz et al., 2019a), and, as such, does not constitute a complete 154 

synthesis of raw data extracted from the literature that has been previously published. In particular, 155 

Burnham et al. (2019) provides an additional resource, particularly for Hg concentrations in birds from 156 

Greenland during 2010-2012. We also address some of the knowledge gaps identified in previous 157 

AMAP (2011) assessments. Some of these gaps include geographical data gaps in the Russian Arctic, 158 

where new seabird data have become available, including a substantial amount from the ARCTOX 159 

project (https://arctox.cnrs.fr/en/work-area/, e.g., Albert et al. 2021). In addition, we include Hg data 160 

on shorebirds (Perkins 2018, in collaboration with the Arctic Shorebird Demographics Network 161 

(ASDN); Lanctot et al. 2016) which have recently become available. This paper includes more Hg 162 

data, a greater number of species, and a wider coverage of the Arctic than was reported previously in 163 

https://arctox.cnrs.fr/en/work-area/
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the assessment of the risk of Hg to birds in western North America first carried out by Ackerman et al. 164 

(2016). The generation of such a knowledgebase is also important for Article 22 of the Minamata 165 

Convention, which calls for an effectiveness evaluation program, within which Hg levels in Arctic 166 

avian species are an important component 167 

(https://www.mercuryconvention.org/sites/default/files/documents/information_document/4_INF12_168 

MonitoringGuidance.English.pdf).  169 

The second objective of this study is to update the previous AMAP (2011) assessment by reviewing 170 

the effects of Hg contamination on Arctic seabirds and shorebirds. Establishing links between 171 

contaminant exposure and health is difficult (Rodríguez-Estival and Mateo, 2019). However, this 172 

information is extremely important for managing and conserving wildlife populations including those 173 

of globally declining seabirds and shorebirds (Colwell 2010, Paleczny et al. 2015). Herein, we report 174 

on post-2011 studies, mostly on seabirds, that have examined the relationships between Hg exposure 175 

and behavioral and physiological mechanisms that may explain the links between Hg exposure and 176 

Arctic seabird and shorebird demography (reproduction and survival). Studies conducted on Arctic 177 

seabirds and shorebirds are viewed with respect to research conducted on Antarctic birds, which face 178 

ecological constraints comparable to those of Arctic birds. Studies based on long-term mark-capture-179 

recapture monitoring, have made it possible to explore the effects of Hg exposure on demographic 180 

parameters. Hene, in recent years there have been some studies on the effects of Hg in both Arctic and 181 

Antarctic birds (e.g., Bårdsen et al. 2018, Amélineau et al. 2019, Carravieri et al. 2021). As this type 182 

of study is still rare in the Arctic, we believe it is relevant to place Arctic studies in the more general 183 

context of the effects of Hg in polar birds. This section is intended to be comprehensive, including 184 

potential mechanisms that have been little studied. 185 

 186 

In this article we: 187 

1) Provide Hg exposure and potential health risk assessments for 36 Arctic seabird and shorebird 188 

species, by using toxicity benchmarks established for blood and converting them into their toxicity 189 

equivalents for egg, liver, and feather tissues. 190 

https://www.mercuryconvention.org/sites/default/files/documents/information_document/4_INF12_MonitoringGuidance.English.pdf
https://www.mercuryconvention.org/sites/default/files/documents/information_document/4_INF12_MonitoringGuidance.English.pdf
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2) Discuss Hg exposure and potential health risks. To do so, we will review recent studies that 191 

have investigated relationships between Hg exposure, behavior, physiology, and fitness in Arctic 192 

seabirds and shorebirds. 193 

3) Make suggestions for future research on the impact of Hg exposure in Arctic seabirds and 194 

shorebirds. 195 

 196 

2. Methods 197 

In birds, most of the total Hg (THg) consists of MeHg in many tissues including blood, feather 198 

and eggs (Bond and Diamond 2009, Rimmer et al. 2005; Ackerman et al. 2013, Renedo et al. 2017). In 199 

the present study, Hg refers to THg and is reported as a proxy for MeHg, except for liver where a sig-200 

nificant proportion of Hg is in its inorganic form (Eagles-Smith et al. 2009). Adult seabird blood, body 201 

feathers, eggs, and liver Hg data were collected in 24 species from several areas of the Arctic (see 202 

Supplementary Material, Tables S1-S3). Data presented here are based on published data (Ackerman 203 

et al., 2016; Tartu et al. 2013, 2016; 2017, 2018; Goutte et al. 2015; Blévin et al. 2018, 2019; Fleish-204 

man et al. 2019; Braune 2015; Braune et al. 2014, 2016; Jæger et al. 2009; Helgason et al. 2008, 2011; 205 

Miljeteig et al. 2009; Hoydal and Dam 2005, 2009; Nielsen et al. 2014; Saunes 2011) and, where pos-206 

sible, raw data as cited in the Supplementary Material, Tables S1-S3 (particularly from ARCTOX: 207 

https://arctox.cnrs.fr/en/work-area/). 208 

For shorebirds (see Supplementary Material, Tables S4 and S5), a study of the period 2012 to 209 

2013 led by Perkins (Perkins et al. 2016; Perkins 2018), in collaboration with the Arctic Shorebird De-210 

mographics Network (ASDN; Lanctot et al. 2016) and several other partners, sampled 12 breeding 211 

species from five sites in Alaska located near Nome, Cape Krusenstern, Barrow, the Ikpikpuk River 212 

and the Colville River (Alaska), and three sites in Canada near the Mackenzie River Delta, Bylot Is-213 

land and East Bay (Nunavut). An additional Canadian study site, Igloolik (Nunavut), was included 214 

with the previously sampled sites in 2013. The ASDN biologists collected blood and feather samples 215 

from adult shorebirds captured while conducting routine fieldwork during the breeding season. 216 

https://arctox.cnrs.fr/en/work-area/
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We reviewed and assessed the potential for MeHg toxicity in Arctic seabirds and shorebirds 217 

using the available data (see Supplementary Material, Tables S1-S5). To assess risk, we used MeHg 218 

toxicity benchmarks previously established for bird blood (Ackerman et al., 2016) and converted these 219 

values into equivalent total Hg concentrations in other bird tissues that are also commonly sampled in 220 

the Arctic, such as eggs, liver, and body feathers.  221 

Blood-equivalent Hg concentrations <0.2 μg/g (wet weight, ww) are below the lowest-ob-222 

served effect levels, whereas birds are generally considered to be at low risk when blood Hg concen-223 

trations are 0.2–1.0 μg/g ww, moderate risk at 1.0–3.0 μg/g ww, high risk at 3.0–4.0 μg/g ww, and se-224 

vere risk at >4.0 μg/g ww (Ackerman et al., 2016). We converted these toxicity benchmarks in bird 225 

blood into equivalent concentrations in eggs, based on a review paper that established a general bird 226 

maternal transfer equation of Hg from females to their eggs (Ackerman et al., 2020). Similarly, we 227 

converted blood to equivalent liver Hg concentrations using an inter-tissue correlation equation built 228 

for four species of seabirds and shorebirds (Eagles-Smith et al., 2008). Because many of the Arctic 229 

bird data for Hg contamination have been sampled using bird feathers (Albert et al., 2019), we also 230 

converted these toxicity benchmarks for bird blood into equivalent body feather Hg concentrations us-231 

ing an unpublished dataset (n=16 species, n=2077 measurements during 2015 to 2017; Equation: ln 232 

(Hg body feather µg/g dw) = 0.64 × ln (Hg Blood µg/g ww) + 1.51; Fort, unpublished). Unlike the 233 

other equations, inter-tissue correlations for feathers and internal tissues, such as blood or eggs, tend to 234 

be poor (Evers et al., 1998; Eagles-Smith et al., 2008; Ackerman et al., 2016). Feather molt represents 235 

a major excretion pathway in birds during which 60% to 90% of accumulated Hg is excreted (Honda 236 

et al., 1986; Braune, 1987; Braune and Gaskin, 1987; Lewis et al., 1993; Agusa et al., 2005). Mercury 237 

in feathers becomes stable once they have been fully grown to the adult stage (Appelquist et al., 1984), 238 

even though they are changed on a regular basis during annual or bi-annual molt. Since feathers have 239 

often grown months before they are collected, the existing temporal and spatial mismatch in Hg con-240 

centrations between feathers and other tissues is exacerbated. In addition, feather Hg concentrations 241 

can be difficult to interpret for several reasons: a) the complex timing and location of feather molt 242 

(Pyle, 2008; Pyle et al., 2018); b) differences among feather tracts (such as head vs. body feathers; 243 
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Braune and Gaskin, 1987; Ackerman et al., 2016, Fort et al., 2016); c) the large scale movements of 244 

birds that expose migratory species to Hg over different regions (Fleishman et al., 2019); and d) the 245 

extreme variability in Hg concentrations in some species both within and among individual feathers 246 

from the same individual bird (Peterson et al., 2019). 247 

Because of these complexities, feathers of adult birds are typically not recommended for Hg biomoni-248 

toring programs if detailed information about bird-species biology is lacking (Ackerman et al. 2016; 249 

Chételat et al., 2020) such as the species-specific precise feather molt timing or distribution over their 250 

annual cycle (Ackerman et al., 2012; Albert et al., 2019). Feathers can be a useful sampling tool to 251 

represent Hg contamination in specific cases, such as in remote oceanic locations where birds are diffi-252 

cult to sample. For example, nape feathers of red-legged kittiwakes (Rissa brevirostris) are thought to 253 

be grown at the end of the wintering period and were sampled from birds on their breeding grounds, 254 

where these kittiwakes can be more easily captured on their nests (Fleishman et al., 2019). This sam-255 

pling strategy coupled with tracking dataloggers demonstrated that red-legged kittiwakes wintering at 256 

more southern latitudes within the North Pacific Ocean had higher Hg concentrations than birds win-257 

tering at more northern latitudes (Fleishman et al., 2019). Similarly, head feathers of little auks (Alle 258 

alle), which grow on the wintering grounds, were used to demonstrate that the bird’s feathers were 259 

3.5 times more contaminated when outside of their Arctic breeding locations, indicating that MeHg 260 

acquired at non-Arctic wintering areas in the northwest Atlantic Ocean can be transported to Arctic 261 

breeding areas by migratory birds and has the potential to affect reproductive success (Fort et al., 262 

2014). Therefore, feathers were useful for demonstrating that non-Arctic regions that were used by the 263 

Arctic avian community for several months per year, during which birds travel thousands of kilome-264 

ters between their Arctic breeding sites and non-Arctic non-breeding grounds (e.g., Egevang et al., 265 

2010), are of high concern due to higher Hg contamination experienced during winter (Albert et al., 266 

2021). 267 

 268 

3. Results and Discussion 269 
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3.1. Hg exposure and potential health risk for Arctic seabirds and shorebirds 270 

3.1.1. Seabirds 271 

Based on toxicity benchmarks, we found 50% of individual seabirds (n=5000) showed tissue Hg con-272 

centrations that were above the no risk level for adverse health effects (i.e., a blood-equivalent Hg con-273 

centration >0.2 μg/g ww) and that 1% of seabirds were either in the high or severe risk categories (Fig-274 

ures 1.1, 1.2, and 1.3. Supplementary Material, Table S1, S2 and S3). In particular, northern fulmar 275 

(Fulmarus glacialis), ivory gull (Pagophila eburnea), glaucous-winged gull (Larus glaucescens), 276 

glaucous gull (Larus hyperboreus), lesser black-backed gull (Larus fuscus), black-legged kittiwake 277 

(Rissa tridactyla), red-legged kittiwake, Atlantic puffin (Fratercula arctica), thick-billed murre 278 

(Brünnich's guillemot, Uria lomvia), black guillemot (Cepphus grylle), pigeon guillemot (Cepphus co-279 

lumba), rhinoceros auklet (Cerorhinca monocerata), and double-crested cormorant (Phalacrocorax 280 

auritus) had at least 5% of the individuals sampled with blood-equivalent Hg concentrations at levels 281 

considered to be at moderate, high, or severe risk to toxicity (Figures 1.1, 1.2 and 1.3.; Supplementary 282 

Material, Table S1-S3). Mercury concentrations in seabirds tended to increase through time within the 283 

Arctic, but trends have flattened recently in several Arctic regions (Braune et al., 2001, 2006, 2016; 284 

Braune, 2007; Bond et al., 2015; but c.f. Fort et al., 2016 in East Greenland and Tartu et al. 2022 in 285 

Svalbard). As is common, seabird Hg concentrations differed widely among sites in the Arctic (Figure 286 

2) due to differences in bioaccumulation pathways and processes (Braune et al., 2002, 2014b). Braune 287 

et al. (2014a) found that thick-billed murres breeding at two High Arctic colonies (above 66°30′ N) 288 

tended to have higher Hg concentrations than murres breeding at three Low Arctic locations (below 289 

66°30′ N). In contrast, seabirds wintering at more southern latitudes generally had higher Hg exposure 290 

(Fort et al., 2014; Fleishman et al., 2019). In general, seabirds tended to have higher Hg concentrations 291 

in the Canadian Arctic, western Canada, and western Greenland than in the European Arctic or Rus-292 

sian Arctic (Figure 2; Provencher et al., 2014a; Albert et al., 2021). 293 

 294 

3.1.2. Shorebirds 295 
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Blood Hg concentrations in individual shorebirds ranged from 0.01 to 3.52 μg/g ww, with an overall 296 

mean ± standard deviation of 0.30 ± 0.27 μg/g ww (Figure 3.1., Supplementary Material Table S4). 297 

Among the shorebird species reviewed, the mean blood Hg concentration for long-billed dowitchers 298 

(Limnodromus scolopaceus; 0.74 ± 0.25 μg/g ww) was over 4.9 times greater than for American 299 

golden plovers (Pluvialis dominica; 0.15 ± 0.07 μg/g ww). For feathers of shorebird species, the mean 300 

Hg concentration was 1.14 ± 1.18 μg/g dw for all samples analyzed and ranged from 0.07 to 12.14 301 

μg/g dw (Supplementary Material, Table S5). Feather Hg concentrations also differed by species, with 302 

the mean feather Hg concentration for pectoral sandpipers (Calidris melanotos; 2.58 ± 1.76 μg/g dw) 303 

over 4.3 times greater than for red phalaropes (Phalaropus fulicarius; 0.60 ± 0.44 μg/g dw). Most Arc-304 

tic-breeding shorebirds had blood Hg concentrations which placed individuals in the no risk or low 305 

risk categories (Figure 3.1) and below the level at which there can be adverse effects of Hg exposure, 306 

with approximately 45% of individuals in the no risk category and 47% in the low risk category (Fig-307 

ure 3.1). We found no individuals in the severe risk category, and a low proportion of individuals with 308 

blood Hg concentrations in the moderate risk (4.5%) and high risk (2.5%) categories. The greatest pro-309 

portion of individuals in the moderate risk and high-risk categories were sampled at the Barrow 310 

(Alaska) study site while the Cape Krusenstern, Ikpikpuk River, Mackenzie River Delta, and Bylot Is-311 

land sites did not have any individual shorebirds with blood Hg concentrations in these moderate and 312 

high-risk categories. Long-billed dowitchers had the greatest proportion of individuals in the moderate 313 

risk (22%) and high-risk categories (17%). Pectoral sandpiper also had 17% and 9% of individuals 314 

within the moderate and high-risk categories, respectively. Individual American golden plover, Baird’s 315 

sandpiper (Calidris bairdii), grey plover (Pluvialis squatarola), and black turnstone (Arenaria melao-316 

cephala) had blood Hg concentrations only in the no effect and low risk categories. Because no tem-317 

poral trend data were available from shorebirds, no further information on highly Hg exposed species 318 

and regions with temporal trend information could be conducted. 319 

 320 

3.2. Review of the consequences of Hg exposure in Arctic seabird and shorebirds 321 

3.2.1 Demographic consequences 322 
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Impaired reproductive success is the most widely investigated and reported consequence of Hg expo-323 

sure in wildlife (Evers et al. 2008, Scheuhammer et al. 2012, Whitney and Cristol 2017). Chronic ex-324 

posure to MeHg might also compromise survival rates and long-term reproductive output, potentially 325 

leading to population declines, although very few studies have investigated such demographic conse-326 

quences (Tartu et al. 2013). 327 

3.2.1.1. Reproductive performance. Exposure to MeHg can alter avian sexual and mating behaviors 328 

(Frederick and Jayasena 2011 for waterbirds, Spickler et al. 2020 for a domesticated songbird model 329 

species, the zebra finch Taeniopygia guttata). For Arctic birds, no information is available. In contrast 330 

to legacy chlorinated Persistent Organic Pollutants (POPs; Blévin et al. 2014), Hg concentrations in 331 

Svalbard black-legged kittiwakes were not associated with carotenoid-based sexual ornamentations, 332 

carotenoid concentrations in plasma, nor to pairing success (Blévin, pers. comm.). Further, the preva-333 

lence of abnormal sperm cells observed in Svalbard kittiwakes (Humann-Guilleminot et al., 2018) was 334 

unrelated to Hg blood concentrations (Blévin et al., pers. comm.). Amélineau et al. (2019) reported 335 

that adult little auks with high Hg concentrations had reduced body condition. Skipping a breeding 336 

event is a common phenomenon in long-lived birds (Charlesworth et al. 1980). Investigations con-337 

ducted in Svalbard have shown that foregoing breeding was associated with high Hg concentrations in 338 

pre-laying kittiwakes, whereas laying date and clutch size were not related to Hg concentrations (Tartu 339 

et al. 2013). Similarly, Hg levels were unrelated to clutch size and timing of breeding in common ei-340 

ders (Somateria mollissima; Provencher et al., 2017) and Leach’s storm petrel (Hydrobates leu-341 

corhous; Pollet et al. 2017). In another study of Svalbard kittiwakes, breeding success (probability to 342 

raise at least one chick) in males was negatively related to Hg concentration (Tartu et al. 2016). In a 343 

study of three shorebird species (ruddy turnstones, grey plover, and semipalmated plover Charadrius 344 

semipalmatus), hatching success was not influenced by egg Hg concentrations (Hargreaves et al., 345 

2010). In contrast, hatching success was negatively related to paternal Hg concentrations in feathers 346 

(Hargreaves et al., 2010). 347 

Impaired reproductive performance may also originate from eggshell thinning (Olivero-Verbel et al., 348 

2013), although evidence is lacking for seabirds (Peterson et al. 2020). Low hatching success may also 349 
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be the consequence of a reduced egg size.  For example, female little auks with greater feather Hg con-350 

centrations laid smaller eggs in Greenland (Fort et al., 2014), whereas egg volume was not related to 351 

Hg in Leach’s storm petrels (Pollet et al., 2017). The negative effect of Hg exposure on egg hatchabil-352 

ity was experimentally demonstrated in thick-billed murres and Arctic terns (Sterna paradisea) by in-353 

jecting birds with a range of environmentally relevant concentrations (0–6.4 μg/g ww) of MeHg chlo-354 

ride (MeHgCl). This study by Braune et al. (2012) showed the relative sensitivity of the developing 355 

embryos to MeHg in these two Arctic seabird species. Finally, in Greenland, chicks of little auks with 356 

the highest Hg concentrations hatched with a body mass reduced by approximately 30% compared to 357 

those with the lowest concentrations, although no impact was further observed on their growth and 358 

fledging success (Kerric, pers. comm). Nevertheless, Amélineau et al. (2019) found that the long-term 359 

increase in Hg contamination of this same population of little auks was associated with a decreased 360 

chick growth rate during the last decade. 361 

Previous studies therefore demonstrated that reproductive performances can be impaired by MeHg in a 362 

number of Arctic species. However, those effects were not observed in all study species and further 363 

meta-analysis approaches (i.e. Carravieri et al. 2022) are now required to fully understand how Hg, 364 

alone or in interaction with other environmental stressors, is impacting the reproduction of Arctic sea-365 

birds. Additionally, most of those studies focused on breeding birds, thus excluding individuals which 366 

did not breed and potentially hiding some Hg effects on seabird body condition or breeding probabil-367 

ity. Considering this part of the population is challenging but important when investigating effects of 368 

contaminants to avoid biased interpretations (Tartu et al. 2013).  369 

3.2.1.2. Long-term demographic consequences. Our understanding of the ultimate consequences of Hg 370 

exposure on long-term fitness is still limited in free-living Arctic birds because of the paucity of long-371 

term data sets that would be required to address this topic. Few long-term capture-mark-recapture 372 

studies on Antarctic (wandering albatross Diomedea exulans; Goutte et al. 2014a, Bustamante et al. 373 

2016, grey-headed albatrosses Thalassarche chrysostoma, Mills et al. 2020; subantarctic and south po-374 

lar skuas Catharacta lonnbergi, C. maccormicki Goutte et al. 2014b) and Arctic seabirds (Svalbard: 375 

glaucous gull and black-legged kittiwake Erikstad et al. 2013; Goutte et al. 2015; Greenland: little auk, 376 
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Amélineau et al., 2019; Northern Norway: common eider Bårdsen et al., 2018) have estimated the im-377 

pact of contaminants on long-term breeding probability, reproductive success, and/or adult survival. 378 

These studies, based on long-term ringing programs have mainly focused on legacy chlorinated POPs, 379 

but some of them have included blood and feather Hg concentrations in demographic models (Goutte 380 

et al., 2014 a,b; 2015; Bustamante et al., 2016; Pollet et al., 2017; Bårdsen et al., 2018; Amélineau et 381 

al., 2019). Regarding Arctic seabirds, a long-term study on Svalbard kittiwakes found reduced breed-382 

ing probability with higher Hg concentrations, but the overall impact of Hg on demographic parame-383 

ters was modest compared to that of some legacy chlorinated POPs (Goutte et al., 2015). Importantly, 384 

all these long-term studies (reviewed in Whitney and Cristol, 2017) revealed no effect of Hg on adult 385 

survival, a key parameter for seabird population dynamics, despite an order of magnitude range in 386 

blood Hg concentrations across species (from 0.89 to 8.22 ± 0.24 µg/g dw). In summary, it appears 387 

that Hg exposure affects reproduction more than adult survival in Arctic birds. Further studies are 388 

nonetheless needed to confirm this pattern. 389 

 390 

3.2.2 Behavioral and physiological mechanisms potentially involved in the demographic conse-391 

quences of Hg exposure 392 

3.2.2.1. Parental behavior 393 

In birds, incubation-related behaviors are influenced by hormonal regulation. In some Antarctic 394 

seabirds, Tartu et al., (2015a) showed that Hg concentrations were associated with a lower 395 

commitment to incubate eggs. Nonetheless, relatively little is known about the effect of contaminants 396 

on incubation temperature for wild birds (Hartman et al., 2019; Taylor et al., 2018). By using loggers 397 

placed into artificial eggs, Blévin et al., (2018) investigated relationships between three groups of 398 

contaminants (organochlorine pesticides (OCs), poly-/per-fluoroalkyl substances (PFAS), and Hg) 399 

with incubation temperature and brood patch in Svalbard black-legged kittiwakes. This study revealed 400 

that, contrary to OCs, Hg concentrations in blood (2.00 ± 0.59 µg/g dw in males; 1.43 ± 0.38 µg/g dw 401 

in females) were not related to the minimum incubation temperature, nor the size of the brood patch. 402 

However, incubation does not solely imply the active warming of the eggs but also the active turning 403 
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of eggs to facilitate albumen absorption by the embryo, reduce the likelihood of an embryo being 404 

mispositioned for hatching (Herring et al., 2010), and prevent the embryo from adhering to the inner 405 

shell membrane. Using egg-loggers, Blévin et al. (2020) found that, unlike polychlorinated biphenyls 406 

(PCBs) and PFAS, blood Hg concentrations were unrelated to egg-turning behavior in Svalbard black-407 

legged kittiwakes, similar to studies on egg turning in seabirds at temperate latitudes (Taylor et al., 408 

2018). 409 

3.2.2.2. Endocrine system 410 

To maximize fitness, individuals must make behavioral decisions on their reproduction depending on 411 

environmental conditions (e.g., whether to breed or not, when to breed, what level of parental invest-412 

ment). These behavioral decisions are mediated by hormones, including luteinizing hormone, a pitui-413 

tary hormone involved in the onset of breeding (Dawson et al. 2001); stress hormones (corticosterone, 414 

Wingfield and Sapolski, 2003); and prolactin, a pituitary hormone involved in the expression of paren-415 

tal care (Angelier and Chastel, 2009). Because Hg is a known endocrine disruptor (Tan et al., 2009), 416 

Hg may impair breeding decisions (Hartman et al., 2019) and could alter the ability of Arctic seabirds 417 

to adequately respond to ongoing environmental changes (Jenssen, 2006). 418 

Research conducted on Svalbard black-legged kittiwakes has shown that Hg (0.91–3.08 µg/g dw) in-419 

fluences pituitary hormones. For example, high Hg concentrations in blood were related to a decreased 420 

secretion of luteinizing hormone (Tartu et al., 2013). Additionally, experimental challenges with exog-421 

enous GnRH (gonadotropin-releasing hormone) were conducted to test the ability of the pituitary to 422 

release luteinizing hormone in relation to Hg concentrations. These investigations suggested that Hg 423 

disrupted luteinizing hormone secretion by suppressing GnRH input to the pituitary and that elevated 424 

Hg concentrations were linked to years where birds did not reproduce (Tartu et al., 2013). A similar 425 

pattern was observed for Antarctic seabirds (Tartu et al., 2014). As for luteinizing hormone, Hg seems 426 

to impact another pituitary hormone, prolactin, which is known to play a key role in the expression of 427 

avian parental care (Angelier and Chastel 2009). In black-legged kittiwakes from Svalbard as well as 428 

in several Antarctic seabirds, high Hg exposure appeared to be associated with lower plasma prolactin 429 

levels and poor incubation behavior (Tartu et al., 2015a, 2016, Smith et al. pers comm). The effect of 430 
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Hg on stress hormones secretion is less clear (see Herring et al., 2012 for temperate seabird nestlings 431 

and Provencher et al., 2016a for common eider ducks). In Svalbard kittiwakes, baseline and stress-in-432 

duced corticosterone levels were unrelated to Hg concentrations (range: 0.82-2.96 µg/g dw). In this 433 

population, exacerbated baseline and stress-induced corticosterone levels appeared to be triggered by 434 

PCBs, possibly via a stimulation of adrenocorticotropic hormone (ACTH) receptors (Tartu et al., 435 

2015b). Further research is thus required on a wider diversity of species to fully grasp the relationships 436 

between Hg contamination and endocrine system in Arctic seabirds.   437 

 438 

3.2.2.3. Bioenergetics-energy expenditure and thyroids hormones 439 

Individual variation in energy metabolism may influence fitness because of the trade-off in allocating 440 

energy toward self-maintenance (survival), activity, growth, and reproduction (Stearns, 1992). The 441 

minimal energetic cost of living in endotherms, the basal metabolic rate (BMR), is known to be influ-442 

enced by thyroid hormones (THs) which can stimulate in vitro oxygen consumption of tissues in birds 443 

and mammals (Merryman and Buckles 1998). A disruption of THs by environmental contaminants 444 

could act on energy expenditure, yet the effect of Hg on BMR is still poorly documented for wildlife 445 

(see Alexander et al. 2019 on a lab passerine model). Blévin et al. (2017) investigated the relationships 446 

between OCs, PFAS, and Hg with metabolic rate and circulating total THs (thyroxine (TT4) and triio-447 

dothyronine (TT3)) in adult black-legged kittiwakes from Svalbard. This study indicated that, contrary 448 

to some OCs and PFAS (Blévin et al., 2017; Melnes et al., 2017 for glaucous gull), metabolic rate and 449 

some thyroid hormones (T3) were not associated with Hg blood levels in Svalbard kittiwakes. Further 450 

investigation on the link between Hg exposure, THs, and energy expenditure (basal and field meta-451 

bolic rate) could be helpful, especially for the most Hg-contaminated species. 452 

 453 

3.2.2.4. Oxidative stress and telomeres 454 
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One potential important biochemical mechanism for Hg to influence wildlife is how it may affect oxi-455 

dative stress, because of its possible detrimental effects on fitness traits (e.g., reproduction, susceptibil-456 

ity to disease, survival; Costantini, 2014; Sebastiano et al., 2016). Investigations on temperate and 457 

Antarctic seabirds have reported some associations between Hg and oxidative stress (Costantini et al., 458 

2014; Gibson et al., 2014; Hoffman et al., 2011). For Arctic seabirds, Wayland et al. (2010) investi-459 

gated glaucous gulls from the Canadian Arctic and found associations between some oxidative mark-460 

ers (thiols, lipid peroxidation) and Hg burdens. In Svalbard, there was no association between blood 461 

Hg concentrations (1.96-4.82 μg/g dw) and several oxidative status markers for kittiwakes (Chastel, 462 

unpublished). Similarly, Fenstad et al. (2016) found no association between Hg exposure and total an-463 

tioxidant capacity in Baltic and Svalbard common eiders. Oxidative stress can be considered as one of 464 

the mechanisms involved in telomere shortening. Telomeres are repeated sequences of non-coding 465 

DNA located at the terminal ends of chromosomes (Blackburn, 2005). Following their discovery and 466 

implications for maintaining chromosome stability, health, and ageing, there has been a growing inter-467 

est for studies relating telomere dynamics to contaminant exposure (Angelier et al., 2018). Because 468 

they are associated with longevity and survival in vertebrates, telomeres represent a physiological 469 

marker that may be useful to estimate the toxicological consequences of contaminant exposure (Sebas-470 

tiano et al., 2020). A recent study has reported that higher feather Hg concentration was associated 471 

with shorter te-lomeres in Cory's Shearwater Calonectris borealis (Bauch et al., 2022). However, to 472 

date only a few studies have explored telomere-contaminant relationships in Arctic free-living birds, 473 

mainly in relation to organic pollutants (Sletten et al., 2016; Blévin et al., 2016, 2017; Eckbo et al., 474 

2019; Sebastiano et al., 2020). Regarding Hg, only one study has been conducted, and they found that 475 

absolute telomere length was positively but weakly associated with blood Hg concentrations in Sval-476 

bard kittiwakes (Angelier et al., 2018). Thus, there is a current data gap for our understanding of the 477 

relationship between Hg and telomeres. 478 

3.2.2.5. Genotoxicity 479 

Alterations in genetic material may have severe consequences on the survival of individuals and ulti-480 

mately on the fate of populations. Since 2010, several studies have investigated the genotoxic effects 481 
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of environmental exposure to pollutants in Arctic seabirds (e.g., Fenstad et al. 2014, Haarr et al., 482 

2018). Fenstad et al. (2016b) assessed the impact of blood Hg concentrations on DNA double-strand 483 

break (DSB) frequency, in blood cells of a higher exposed Baltic (Hg: 0.43–1.71 nmol/gww), and 484 

lower exposed Arctic population (Svalbard, Hg: 0.31–0.98 nmol/gww) of common eiders. Significant 485 

positive relationships between Hg and DNA DSB frequency were found in Baltic, but not in Svalbard 486 

eiders. 487 

3.2.2.6. Neurology 488 

To understand the effects of Hg exposure on developing thick-billed murre and arctic tern embryos, 489 

Braune et al. (2012) investigated the concentrations of receptors in the brain, a biomarker of MeHg ef-490 

fects in wildlife (Basu et al., 2006; Scheuhammer et al., 2015). However, no relationship was found 491 

between Hg concentration and density of specific neuroreceptors in brain tissue in either species. De-492 

spite strong evidence that Hg poses neurotoxic risks to a diverse range of taxa (including birds), there 493 

is limited information from the Arctic. 494 

3.2.2.7. Immune system 495 

Exposure to Hg can be associated with depressed avian immune responses (Fallacara et al., 2011; 496 

Lewis et al., 2013), and this may interfere with reproduction and survival in some contaminated indi-497 

viduals. Furthermore, such impairment of the immune system may pose an additional threat to Arctic 498 

birds because climate change could increase the emergence of new infectious diseases or a higher 499 

prevalence of parasites (Eagles-Smith et al., 2018; Lee et al., 2020). Provencher et al. (2016a) did not 500 

find an association between Hg blood levels and immunoglobulinY (IgY) in female eider ducks from 501 

the Canadian Arctic. Similarly, in an experimental study of Svalbard barnacle geese (Branta leu-502 

copsis), de Jong et al. (2017) found that exposure to Hg from a historic coal mine area had little impact 503 

on four innate immune parameters (haemolysis, haemagglutination, haptoglobin-like activity, and ni-504 

tric oxide) in goslings. Though studies have failed to detect strong effects of Hg on immune response 505 

in Arctic birds, contaminants and parasites may negatively affect wildlife health and reproduction ei-506 

ther additively or synergistically (Marcogliese and Pietrock, 2011). To date, only one study on com-507 

mon eiders from the Canadian Arctic indicated that Hg (breast muscle levels: 0.63 ± 0.24 μg/g dw 508 
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[mean ±SD]) and gastrointestinal parasites potentially influence each other (Provencher et al., 2016b). 509 

Because of their connection with the immune system, changes in vitamins A, D, and E have been in-510 

vestigated as biomarkers of contaminant exposure and effects in Arctic wildlife (for POPs see Hel-511 

gason et al., 2010; Braune et al., 2011; Verreault et al., 2013). Since 2010, few studies addressing the 512 

relationships between Hg and vitamins in Arctic seabirds have been conducted. In the ivory gull, a 513 

year-round and contaminated resident of the Arctic (Bond et al., 2015; Lucia et al., 2015), eggs from 514 

Svalbard and the Russian Arctic populations were sampled to investigate relationships between whole 515 

egg Hg content (0.06 - 0.30 µg/g ww), eggshell thinning, vitamin A, and vitamin E (Miljeteig et al., 516 

2012). No association between Hg concentration, eggshell thinning and the two vitamins were found 517 

in this study. Additional research on Hg-vitamin relationships could be helpful for interpreting Hg ef-518 

fects on birds in the arctic, especially in the context of thiamine (vitamin B1) deficiency observed in 519 

the Baltic Sea (Sonne et al., 2012). 520 

 521 

4. Discussion and suggestions for future research on the potential impact of Hg in arctic seabirds 522 

and shorebirds 523 

 Overall, the ability of the AMAP monitoring program to provide Hg concentrations in Arctic seabirds 524 

and shorebirds has greatly improved since 2011 with the addition of 24 Arctic seabird and 12 Arctic 525 

shorebird species, and include more tissues (e.g., blood, feathers, eggs, embryo, liver), regions 526 

(Alaska, Nunavut, Northwest Territories, Greenland, Svalbard, Scandinavia), and sample sizes than 527 

prior work. This manuscript also addresses some of the knowledge gaps identified in previous AMAP 528 

assessments. These prior data gaps include geographical data gaps in the Russian Arctic, where new 529 

seabird data have become available and allowed the risk analysis first carried out by Ackerman et al. 530 

(2016) of North American birds to be extended to other parts of the circumarctic region. Continuous 531 

efforts to futher fill some still existing spatial gaps (especially in the Russian Arctic) is nonetheless 532 

needed. The knowledge on Hg exposure of Arctic shorebirds has considerably progressed but is still 533 

limited to North America and there is a need to collect additional data on Hg exposure in birds from 534 

the European Arctic and Russia which support considerable shorebird populations (Colwell, 2010). 535 
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The present study is particularly timely given the recent entry into force of the Minamata Convention 536 

on Mercury (https://www.mercuryconvention.org/en), which makes special note of the Arctic’s vul-537 

nerability to Hg. In particular, there is specific interest in monitoring Hg levels in birds in this region 538 

as part of the Minamata Convention’s plans for effectiveness evaluation. 539 

 540 

4.1. Incorporating Hg monitoring into long-term banding studies 541 

Despite recent important advances in assessing Hg exposure in Arctic seabirds and shorebirds, our un-542 

derstanding of the ultimate consequences of Hg exposure in Arctic seabirds and shorebirds is still lim-543 

ited by the availability of long-term demographic studies. Seabirds and shorebirds are long-lived ani-544 

mals and, as such, their populations are especially sensitive to any decrease in adult survival (Sæther 545 

and Bakke 2000). To date, long-term ringing (banding) studies investigating the demographic conse-546 

quences of Hg and other contaminants in Arctic seabirds are limited to a handful of species and loca-547 

tions (Svalbard black-legged kittiwakes, Svalbard glaucous gulls, Greenland little auks, Northern Nor-548 

way common eider; Erikstad et al., 2013; Goutte et al., 2015; Bårdsen et al., 2018; Amélineau et al., 549 

2019; Sebastiano et al., 2020). For shorebirds, this type of long-term ringing study incorporating Hg 550 

measurements is not currently available, but it would be useful given the current, large-scale declines 551 

in many Arctic shorebird populations (e.g., Kubelka et al., 2018).Thus, investigating whether Hg con-552 

tamination is linked to adult survival and reproduction, especially for at-risk species, may be particu-553 

larly useful. These mark-recapture studies on individuals that have been marked and subjected to de-554 

mographic monitoring over several years would help our understanding of the effects of Hg on bird 555 

demography.  556 

 557 

4.2. Considering a multi-stressor perspective 558 

Overall, our review indicates that most individual Arctic seabirds (93%) and shorebirds (95%) were 559 

considered at lower risk to potential Hg impairment (<1.0 µg/g ww in blood). For instance, according 560 

to Hg toxicity benchmarks observed for blood, most Svalbard kittiwakes and 100% of Greenland little 561 
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auks were considered at no or low risk, yet behavioral and physiological disruption together with im-562 

paired breeding performances have been reported in these species (Tartu et al., 2013, 2016; Goutte et 563 

al., 2015; Amélineau et al., 2019). Arctic birds are exposed to multiple stressors and the impacts of Hg 564 

probably act in concert with both natural and other anthropogenic stressors (e.g., other contaminants, 565 

diseases, parasites, climate-related environmental changes; see Provencher et al., 2016b). Thus, even 566 

Hg concentrations considered as posing low or moderate risks to birds, may cause adverse effects if 567 

they co-occur with other stressors (Goutte et al., 2014b; Fort et al., 2015; Tartu et al., 2016; Amélineau 568 

et al., 2019).  569 

 570 

4.2.1. Interactions between Hg and other contaminants 571 

The Arctic is a sink for a mixture of various pollutants (Dietz et al., 2019), thus future investigations 572 

could also incorporate other types of contaminants (e.g., legacy chlorinated and brominated POPs, 573 

PFAS, and other non-essential trace elements) known to interact with behavior, physiology, and fit-574 

ness into demographic models to better assess the specific impacts of Hg. For instance, little is known 575 

about levels and effects of trace elements such as copper (Cu), iron (Fe), or selenium (Se) (but see An-576 

derson et al., 2010; Hargreaves et al., 2010, 2011; Borgå et al., 2006; Fromant et al., 2016). These 577 

trace elements are essential for biological processes within a narrow range of concentrations, but can 578 

lead to deleterious effects outside the range, and are able to interact with other contaminant uptake, 579 

storage, and toxic effects (Walker et al., 2012). Specifically, Se may have a protecting role against Hg 580 

toxicity (Khan and Wang, 2009), yet only a few studies have quantified their co-exposure and interac-581 

tion in seabirds (e.g., Carravieri et al., 2017; 2020; Carvalho et al., 2013; Cipro et al., 2014; Gonzalez-582 

Solís et al., 2002; Provencher et al., 2014b). Demethylation of MeHg and subsequent sequestration of 583 

inorganic Hg with Se has often been suggested as a probable detoxification mechanism for vertebrates 584 

(Eagles-Smith et al. 2009, Renedo et al. 2021, Manceau et al. 2021). Ralston et al. (2008) reported that 585 

the molar ratio of Hg:Se was critical to the expression of MeHg toxicity. Specifically, molar excesses 586 

of Se over Hg may be important in the potential to protect cells from Hg toxicity, such as by detoxify-587 

ing Hg by forming tiemannite complexes (Dietz et al., 2013, 2019). However, the process is complex, 588 



23 
 

and recent studies indicate that demethylation may require four Se rather than one per atom of Hg 589 

(Manceau et al. 2021). Incorporating Se measurements into Hg assays might allow refinement of our 590 

understanding of Hg toxicity and, more generally, allow for better assessment of the overall impact of 591 

Hg on wildlife (Goutte et al. 2014a, Carravieri et al. 2017). 592 

 593 

4.2.2. Interplay between Hg and parasites 594 

Hg and parasites are ubiquitous stressors that can affect animal physiology and derive from similar di-595 

etary sources (co-exposure). Parasites could modulate the kinetics of Hg in its organism (assimilation, 596 

distribution in tissues, accumulation) and effects on health (Bustnes et al., 2006). Understanding Hg 597 

concentrations in bird tissues and their parasites (Morrill et al. 2015) and the interaction of Hg with 598 

parasites could be useful for biomonitoring pollution, and to realistically quantify the health risks for 599 

Arctic birds (Provencher et al. 2016). Finally, quantifying the effects of Hg and parasites, alone or in 600 

combination, on markers representative of the health status of the organism (Carravieri et al., 2020) 601 

could test the hypothesis that parasites may act as a "contaminant sink" and thus relieve the host of 602 

some of its Hg contamination. 603 

 604 

4.2.3. Possible carry-over effects 605 

Most seabirds and shorebirds leave the Arctic after the breeding period and some are long distance mi-606 

grants, spending the winter in sub-Arctic, temperate, tropical, or Antarctic areas (e.g., Egevang et al., 607 

2010; Battley et al., 2012; Gilg et al., 2013). Environmental stressors and Hg uptake experienced out-608 

side of the breeding season can result in sub-lethal to lethal effects and can synergistically contribute 609 

to high bird mortality by impacting their body condition (Fort et al., 2015). Environmental stressors 610 

can also result in non-lethal effects that will be carried on to the next breeding season (carry-over ef-611 

fects; Norris, 2005) and which could impact fitness and population dynamics. Combining miniaturized 612 

tracking systems (e.g., geolocators to document migratory movements and wintering areas) with meas-613 

urements of Hg levels in tissue archives (e.g., feathers molted during winter; Albert et al., 2021; 614 
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Fleishman et al., 2019), environmental stressors, and detailed demographic surveys could provide rele-615 

vant information on the global impact of Hg on Arctic birds. Moreover, recent advances in Hg isotope 616 

analyses and studies suggest that Hg isotopes may be used to differentiate between specific environ-617 

mental Hg sources and processes (Tsui et al., 2020), which again may provide insight into the sources, 618 

source areas, and biogeochemical processes involved in Hg uptake and exposure in migrating birds.   619 

 620 

4.2.4. Climate change and assessments of Hg risk for Arctic seabirds and shorebirds 621 

The Arctic is warming two to three times faster than any other region on Earth (AMAP 2021) with 622 

impacts on precipitation, snow cover, permafrost levels, and sea-ice thickness and extent. These 623 

changes are causing fundamental alterations in ecosystems that affect biogeochemical fluxes, bottom-624 

up processes, ecosystems, and food webs, which may lead to modifications in Hg exposure in Arctic 625 

biota (Stern et al., 2012; Braune et al., 2014b; McKinney et al., 2015; Tartu et al., 2022). Of particular 626 

concern is that global warming, which will lead to an earlier onset of thawing and a later start of 627 

freezing, will likely extend the period of Hg methylation (Stern et al., 2012) and thus may increase 628 

exposure of the toxic form of Hg, MeHg, to seabirds and shorebirds. The permafrost stores large 629 

amounts of Hg, nearly twice as much as other soils, the ocean, and the atmosphere combined, which 630 

may become mobilized and released during thawing and therefore may represent a significant source 631 

of Hg (Schuster et al., 2018). A recent study on Hg contamination of polar bears (Ursus maritimus) in 632 

the Barents Sea (northern coasts of Norway and Russia) showed that the increased Hg in polar bears 633 

during the last two decades was attributed to re-emissions of previously stored Hg from thawing sea-634 

ice, glaciers, and permafrost, with this Hg then becoming bioavailable and biomagnifying in the Arctic 635 

marine food webs (Lippold et al., 2020). These results indicate that climate-induced re-emission of 636 

legacy Hg may already be happening in the Arctic.  637 

 638 
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Climate change in the Arctic may challenge physiological processes of individuals (water balance, ther-639 

moregulation, nutrition, immune, endocrine, and neurological systems) critical for coping with the ex-640 

ternal environment, causing Artic birds to become more sensitive to Hg contamination because they 641 

may be pushed to the limits of their physiological tolerance (Hooper et al., 2013). Alternatively, in-642 

creased exposure to Hg could make birds more sensitive to stressors (heat waves, increased precipita-643 

tion, diseases, changes in food web, and nesting habitats) induced by climate change (Hooper et al., 644 

2013). In this multi-stressor context, the challenge will be to identify potential interactions between non-645 

chemical and chemical stressors affecting key physiological processes in Arctic seabirds and shorebirds. 646 

Understanding Hg exposure and climate change interactions could facilitate the assessment of the po-647 

tential health risks for Arctic birds. 648 
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FIGURES  1131 

 1132 

Figure 1.1. Ranked overview (from highest to lowest risk) of the proportion of seabird blood per re-1133 

gion from the Arctic, which are at risk for Hg-mediated health effects (categorized in five risk catego-1134 

ries based upon blood Hg effect thresholds). Blue bars on the right side indicate the date range of the 1135 

samples. Please see Supplementary Material Table S1 for detailed information upon which this sum-1136 

mary graphic is based, including scientific names for all species. 1137 

 1138 

 1139 
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 1141 

Figure 1.2. Ranked overview (from highest to lowest risk) of the proportion of seabird feathers per 1142 

region from the Arctic, that are at risk for Hg-mediated health effects (categorized in five risk catego-1143 

ries based upon feather Hg effect thresholds). Blue bars on the right side indicate the date range of the 1144 

samples. Please see Supplementary Material Table S2 for detailed information upon which this sum-1145 

mary graphic is based, including scientific names for all species. 1146 
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 1147 

Figure 1.3. Ranked overview (from highest to lowest risk) of the proportion of seabird livers and eggs 1148 

per region from the Arctic, that are at risk for Hg-mediated health effects (categorized in five risk cate-1149 

gories based upon liver and egg Hg effect thresholds). Blue bars on the right side indicate the date 1150 

range of the samples. Please see Supplementary Material Table S3 for detailed information upon 1151 

which this summary graphic is based, including scientific names for all species. 1152 
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Figure 2. Geographical overview of the proportion of adult seabirds that are at risk of Hg-mediated 1156 

health effects based on data for blood (upper) and feathers (lower). Please see Supplementary Material 1157 

Table S1 and S2, and Figures 1.1 (blood) and 1.2 (feathers), for detailed information upon which this 1158 

summary graphic is based. 1159 
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 1163 

Figure 3.1. Ranked overview (from highest to lowest risk) of the proportion of shorebirds blood, per 1164 

region from the Arctic, that are at risk for Hg-mediated health effects (categorized in five risk catego-1165 

ries based upon liver Hg effect thresholds). Please see Supplementary Material Table S4 for detailed 1166 

information upon which this summary graphic is based, including scientific names for all species. 1167 
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