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We present a general quantum fluctuation theorem for the entropy production of an open quantum system
coupled to multiple environments, not necessarily at equilibrium. Such a general theorem, when restricted to
the weak-coupling and Markovian regime, holds for both local and global master equations, corroborating
the thermodynamic consistency of local quantum master equations. The theorem is genuinely quantum, as it
can be expressed in terms of conservation of a Hermitian operator, describing the dynamics of the system
state operator and of the entropy change in the baths. The integral fluctuation theorem follows from the
properties of such an operator. Furthermore, it is also valid when the system is described by a time-dependent
Hamiltonian. As such, the quantum Jarzynski equality is a particular case of the general result presented here.
Moreover, our result can be extended to nonthermal baths, as long as microreversibility is preserved. We
present some numerical examples to showcase the exact results previously obtained. We finally generalize
the fluctuation theorem to the case where the interaction between the system and the bath is explicitly taken
into account. We show that the fluctuation theorem amounts to a relation between time-reversed dynamics of
the global density matrix and a two-time correlation function along the forward dynamics involving the baths’
entropy alone.

DOI: 10.1103/PhysRevResearch.4.023230

I. INTRODUCTION

In classical stochastic thermodynamics the physics of work
and heat fluctuations in small, out-of-equilibrium systems is
now well understood in the framework of fluctuation the-
orems (FTs) extending the second law of thermodynamics
to the microscopic realm [1–7]. Their importance originates
from their generality, relying on very few assumptions, and
from providing connections between equilibrium quantities
and fluctuations of entropy, heat, and work. While the proof
of the FT in the classical regime often relies on the stochastic
trajectories that a system performs in its phase space while in-
teracting with the external environment [7], other approaches
based on the symmetries of the classical master equation [8]
or of the Fokker-Planck equation have been proposed [9,10].

In the quantum realm, several approaches have been put
forward to generalize the FT and the impossibility of moni-
toring a quantum system without disturbance has generated a
long debate (see, for example, the reviews [11–13]). Several
approaches to the quantum FT employ the formalism of quan-
tum trajectories or quantum Monte Carlo (QMC) [14–22].
In this context, thermodynamic quantities, e.g., entropy and
energy, can be sampled along quantum trajectories generated
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by a continuous evolution and random quantum jumps. In-
terestingly, the back-action from the observation of the jump,
e.g., through the emission of a photon, gives rise to a gen-
uinely quantum energy contribution, dubbed “quantum heat”
[23–25]. Very often, the so-called two-point measurement
scheme, where the system is observed at the start and end
of the protocol, is used [26], potentially destroying useful
quantum coherences. Alternative approaches exist [27–30].
One can also prove the FT by diagonalizing the instantaneous
density matrix, thus generating a quantum counterpart of the
classical trajectories [31]. A fully coherent quantum FT in
the framework of quantum resource theory has also been
proposed [32] and recently experimentally verified [33].

In this paper, we first present a general and unified
approach that naturally extends the classical FT to open quan-
tum systems and is only based on the quantum Lindblad
master equation. We prove the FT by introducing an auxiliary
quantum master equation and a Hermitian operator that ac-
counts for the time evolution of both the system’s state and the
bath entropy. Our formalism, based on the change of entropy
in the baths and in the system, is general: it is valid at all
times and not just at steady state; it is valid for both local and
global quantum master equations (for which a heated debate
has arisen in recent years), for an arbitrary number of baths,
and for time-dependent system Hamiltonians.

We then consider the fate of the FT when the interac-
tion between the system of interest and its environment is
explicitly taken into account, and the total dynamics for the
combined system is unitary. We show that the FT in this case
can be expressed in terms of a two-time correlation function
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FIG. 1. Schematics of the setup: a system is interacting with NB

baths which are continuously monitored by their respective measure-
ment apparatus.

involving the baths’ entropy alone. Such a correlation function
turns out to be equal to the transition probability of the system
along the time-reversed dynamics. This result confirms the
intimate connection between the FT and the lack of symmetry
between the forward and backward dynamics.

Moreover, we validate the results obtained in the first part
of the paper: starting from the unitary dynamics we rederive
the auxiliary master equation for the system in the same limit
where the Lindblad master equation holds. We discuss explic-
itly the requirements for the local detailed balance to hold (or
not), in connection with the interaction mechanisms between
the system and the baths, and with the baths’ properties.
This analysis provides an operational approach to evaluate the
entropy change in the bath and thus to test experimentally or
numerically the proposed FT.

Our quantum FT goes beyond the two-point measurement
scheme: it requires an initial projection of the system in an
arbitrary basis to estimate the initial system’s entropy along
a specific trajectory. The initial projection may also occur in
the eigenbasis of the initial density matrix, thus preventing
any measurement back-action. It also requires the continuous
monitoring of the baths but not the final system’s projection or
the continuous measurement of the work done on the system
for time-dependent Hamiltonians (see Fig. 1). As such, its ex-
perimental implementation may be easier than schemes based
on two-point measurements.

Moreover, a dissipative quantum Jarzynski equality (JE)
[34–37] can be derived in operator form, and the result of
the classical stochastic thermodynamics can be immediately
recovered for diagonal density matrices. Our approach is uni-
fying as it provides a proof of the quantum FT for relevant
physical situations, namely, manipulated systems in contact
with multiple heat baths, and allows a full description of the
system’s thermodynamics

II. THE FLUCTUATION THEOREM

We assume the evolution of a d-level system weakly cou-
pled to Nb environments to follow the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) master equation (ME) [38–40]

(h̄ = 1):

dρ(t )

dt
= −i[H (t ), ρ(t )] +

Nb∑
α=1

Dα[ρ(t )], (1)

for its density matrix ρ(t ) with dissipators

Dα[ρ] =
∑

λ

γα,λ

(
LλρL†

λ − 1

2
{L†

λLλ, ρ}
)

, (2)

where α labels the environment and Lλ = | j′〉〈 j| and λ =
λ( j → j′) denotes a transition between two states | j〉 and
| j′〉. In the following, in order to lighten the notation, we
will omit the initial and final states of such a transition. The
orthonormal basis {| j〉}, though arbitrary, is motivated by the
physical environments. If the states | j〉 are the eigenstates of
H the ME is dubbed “global” or “local” otherwise [41]. We
split an operator X = XD + XND into the sum of its diagonal
and nondiagonal parts in the basis {| j〉} and set Xj j = 〈 j|X | j〉.
We consider the general case where different baths can drive
the same transition λ, if the dissipation rates (potentially time
dependent) γα,λ �= 0.

In the classical case the FT reads [7]

〈e−�SB−�SS 〉 = 1, (3)

where �SS is the entropy change of the system along a given
stochastic trajectory, and, if the detailed balance is fulfilled,
the total entropy change in the baths due to the heat Qα

reads �SB = −∑
α βαQα . In Eq. (3) the average runs over

all the possible stochastic trajectories in the phase space,
given the system dynamics and the time protocol H (t ). We
adopt the convention Qα > 0 when the heat flows from the
bath into the system. We will first derive a quantum FT with-
out assuming the local detailed balance condition for the jump
rates: such an assumption will be later introduced in the paper,
and its consequences discussed.

The classical FT (3) requires the characterization of the
bath entropy statistics. To this end, we will follow closely the
approach discussed in Ref. [8] for classical stochastic systems.
The “jumps” between two states in the system occur at the
rates γ j′ j because of the interaction with the baths: we thus
introduce the elementary current associated with the jump λ:

�sα, j′ j = − log(γα, j j′/γα, j′ j ). (4)

We introduce a total “jump” current S given by the sum
of the contributions (4) for all the baths and for all the jumps
up to time t . Such a quantity is akin to the entropy change
�SB in Eq. (3): we will elaborate later on this connection.
We would thus like to characterize the joint probability dis-
tribution � j (S, t ) of finding the system in the state | j〉 with
a total jump current S up to the time t . This can be done by
introducing an extended quantum ME that takes into account
the dynamic evolution of both the density operator and of the
quantity S . In practice we introduce a modified density matrix
ρ(S, t ), such that its diagonal elements describe the desired
joint probability ρ j j = � j (S, t ). It is possible to show that
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the modified density matrix satisfies the modified ME:

∂tρ j′ j′ (S, t ) = −i[H, ρ] j′ j′ +
∑
α, j

{γα, j′ j

×
[ ∞∑

n=0

(−�sα, j′ j )n

n!

∂nρ j j

∂�Sn
B

]
− γα, j j′ρ j′ j′

}
,

(5)

∂tρ lk (S, t ) = −i[H, ρ]lk +
∑

α

DND,α[ρND]lk, l �= k,

(6)

where DND,α[·] is a superoperator such that DND[ρND] has
vanishing diagonal terms and only couples nondiagonal terms
of the density matrix in the chosen basis. A derivation of
Eqs. (5) and (6) based on the GKSL (1) alone is discussed
in Appendix A. Such a derivation starts from the fact that,
if S is the total jump current at time t , after the transition
j → j′ such a current reads S + �sα, j′ j . Next, we introduce
the generating function operator 
(ξ, t ) akin to the generating
function in classical physics, defined as


(ξ, t ) =
∫

dS ρ(S, t )e−ξS , (7)

and applying this integral transform to both sides of Eqs. (5)
and (6), one obtains an equation for 
(ξ, t ):

∂t
(ξ, t ) = Lξ [
(ξ, t )], (8)

where the superoperator Lξ [·] depends parametrically on ξ ,
and its full expression is given in Appendix A [see Eqs. (A8)
and (A9)]. We will see that the modified density matrix ρ(t ),
its generating function 
(t ), and their modified MEs are the
essential ingredients to prove the quantum FT.

We now discuss the physical initial condition for Eqs. (5)
and (6) and Eq. (8). Let ρ (0) be the initial state at t = 0. Since
no current S has yet been generated, ρ(S, t = 0) = ρ (0)δ(S ),
where δ(x) is the Dirac delta function. Given the definition
of 
, Eq. (7), its initial condition becomes 
(ξ, t = 0) =
ρ (0), ∀ξ , and in the following 
(ξ, t | ρ (0) ) will indicate the
solution to Eq. (8) with this specific initial condition. The
following equalities hold:

〈e−ξS〉π j ,ρ (0) = Tr[π j
(ξ, t |ρ (0) )] = 
 j j (ξ, t |ρ (0) ), (9)

〈e−ξS〉ρ (0) = Tr[
(ξ, t |ρ (0) )], (10)

where 〈· · ·〉π j ,ρ (0) in Eq. (9) denotes the expectation value
constrained by the initial state ρ (0), the state at time t taken to
be π j = | j〉〈 j|, and in Eq. (10) we summed over all possible
final states.

In the following we will mostly be interested in the case
ξ = 1 to evaluate the expectation value of exp(−S ). Letting

 (1)(t ) = 
(ξ = 1, t ), one finds

∂t

(1)(t ) = −i[H, 
 (1)(t )] +

∑
α

D∗
α[
 (1)(t )], (11)

where D∗
α is the dual of the dissipator Dα:

D∗
α[·] =

∑
λ

γα,λ

(
L†

λ · Lλ − 1

2
{L†

λLλ, ·}
)

. (12)

The details of the derivation of Eq. (11) are given in
Appendix A. Thus the time evolution of 
 (1), as given by
Eq. (11), has the same conservative part as in Eq. (1), but
the dissipative part (the dual of Dα) is the same as the one
found in the time evolution of an operator in the Heisenberg
picture: this observation reflects the fact that the operator 
 (1)

bears information on both the system state ρ(t ) and on the
quantity exp(−S ). As such, the operator 
 (1) is Hermitian
at any time if it is Hermitian at t = 0. Modified MEs of the
type (8) emerge quite naturally through the large deviation
approach used to study the long-time limit of thermodynamic
currents. Such an approach was first introduced in Ref. [42],
and became later quite consolidated in the field of stochastic
thermodynamics (see, e.g., Refs. [8,43,44]). A modified quan-
tum ME was first introduced in Ref. [16] and later in Ref. [45]
to study the long-time counting statistics in dissipative quan-
tum systems. While the modified ME (11) above has been
obtained by applying the integral transformation (7) on the
modified ME, Eqs. (5) and (6), in Sec. III we will provide
an alternative derivation of Eq. (11), based on the unitary
evolution of a system explicitly interacting with a set of baths.

Let us now introduce the operator 
 (1)(t ):


 (1)(t ) =
∑

j0


 (1)(t |π j0 ). (13)

Given that 
 (1)(t ) is a linear combination of solutions of
Eq. (8) with ξ = 1, it is a solution itself, with initial condition

 (1)(0) = ∑

j0
π j0 = I. Inspection of Eq. (11) suggests that


 (1)(t ) is a stationary solution at any time:


 (1)(t ) = 
 (1)(t | I) = I, ∀t � 0. (14)

The last equality for 
 (1)(t ) is the first important result of
the present paper. It is the operatorial counterpart of the in-
tegral theorem (3), and it involves the Hermitian operators

 (1)(t | π j0 ) expressing the joint dynamics of the system den-
sity operator and of the total jump current S . It does not
depend on the choice of the initial basis. Remarkably by
introducing an arbitrary basis {|b0〉}, and noticing that Eq. (8)
is linear, we can write the solution at time t , with the specific
initial condition πb0 as


 (1)(t | πb0 ) =
∑
j0, j′0

〈 j0|b0〉〈b0| j′0〉
 (1)(t | | j0〉〈 j′0|). (15)

From Eq. (15) one obtains
∑

b0

 (1)(t | πb0 ) = ∑

j0


 (1)(t |π j0 ) = 
 (1)(t ), using
∑

b0
|b0〉〈b0| = I. Furthermore

Eqs. (10), (13), and (14) imply
∑

j0
〈exp(−�SB)〉π j0

= d .
We now present the mathematical statement of the integral

FT which is the second main result of this paper, and later on
we discuss its physical significance. Such a FT reads

Tr

[∑
b0

ρ
(0)
b0b0


 (1)(t | πb0 )e− log ρ
(0)
b0b0 elog ρ (f)

]

= Tr[
 (1)(t )ρ (f)] = 1, (16)

where we have used Eqs. (13)–(15) and introduced an arbi-
trary but normalized final state ρ (f). This feature of the FT was
already noticed in Ref. [7] for the classical case: Eq. (16) holds
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for any normalized quantum final state ρ (f), not necessarily the
solution of Eq. (1) at time t .

Equation (16) has the form of the expectation value of the
Hermitian operator 
 (1) over the final state of the system.
We then recall the physical interpretation of the operator

 (1)(t | ρ (0) ): its jth diagonal element represents the expec-
tation value of exp(−S ) constrained by the initial ρ (0) and
final state π j , Eq. (9). We make no specific assumption on the
coherence in the initial and the final states ρ (0) and ρ (f): they
can both exhibit coherence in the jump operators’ basis {| j〉}
as well as in the energy eigenbasis. Let {|k0〉} and {|rf〉} be
the eigenbases of ρ (0) and ρ (f), respectively. Changing basis
from {| j〉} to {|rf〉} and recalling definition (7), we can rewrite
Eq. (16) as

1 =
∑
rf , j0

〈e−S〉πrf ,π j0 p(0)
j0

e− log ρ
(0)
j0 j0 elog ρ (f)

rf rf

=
∑
rf ,k0

∫
dS e−S+log ρ (f)

rf rf
−log ρ

(0)
k0k0 �rf (S, t |πk0 )p(0)

k0
. (17)

We notice that the last expression for the FT has the form of
the classical counterpart Eq. (3), with an average over the joint
probability distribution �rf (S ). Moreover, Eqs. (16) ad (17)
exhibit the structure of a double trace, one over the initial state
ρ (0) and one over the final one ρ (f), and as such their values
do not depend on the chosen basis. Notice that performing the
initial projection of ρ (0) in its eigenbasis preserves its quantum
coherence in other bases, e.g., in the energy eigenbasis. Using
Jensen’s inequality, one recovers the second law:

〈S〉 − (Tr[ρ (f) log ρ (f)] − Tr[ρ (0) log ρ (0)]) � 0. (18)

We can now establish the relation between the dynamics
of the system, as expressed by Eqs. (1) and (2) and the ther-
modynamics significance of our results in Eqs. (14), (16), and
(17). Such a relation follows immediately if the dissipation
rates γα,λ are taken to obey the local detailed balance con-
dition (LDBC): γα,λ(ωλ)/γα,λ(−ωλ) = exp(−βαωλ), where
ωλ = ω j′ j = Hj′ j′ − Hj j = �HD,λ, and βα is the inverse tem-
perature of the bath α. If the LDBC holds then �sα, j′ j in
Eq. (4) can be immediately interpreted as the entropy change
in the bath, given that −ω j′ j = β−1

α log(γα, j′ j/γα, j j′ ) is heat
flowing into a bath as a consequence of a jump. Thus the jump
current S entering Eqs. (5)–(7) can be identified, in this case,
with the total change of entropy in the baths, S = �SB. While
the LDBC is a standard assumption that allows to relate the
dynamics to the thermodynamics in systems in contact with
thermal baths, both in the classical and in the quantum regime
[5,22,42], our proof of the FT does not rely on it. When the
LDBC holds, evaluating the energy change −ω j′ j in the bath
is sufficient to evaluate the entropy change in it according to
Eq. (4). In case the LDBC does not hold, the rates γα, j′ j and
their relation to the ω j′ j need be estimated a priori.

Assuming the LDBC, since the heat flowing into a bath as
a consequence of a jump is −ω j′ j , involving only the diago-
nal part of the system Hamiltonian, we have 〈S〉 = 〈�SB〉 =
−∑

α βαQD,α and we can rewrite Eq. (18) as

�SS = −(Tr[ρ (f) log ρ (f)] − Tr[ρ (0) log ρ (0)]) �
∑

α

βαQD,α.

(19)

This is in accordance with the findings of Ref. [41], where
it was found that, for local MEs, only the diagonal part of
the heat currents, defined as Q̇D,α = Tr{ρD∗

α[HD]}, enters the
differential version of the second law, dt SS � ∑

α βαQ̇D,α ,
and flows to the environments as shown in Appendix B in
the Born-Markov approximation. Notice that both the diag-
onal and nondiagonal heat contributions enter the first law
already at operatorial level as dt H = ∑

α D∗
α[HD + HND] [41].

However, the nondiagonal part of the Hamiltonian, specifi-
cally the quantity Q̇ND,α = Tr{ρD∗

α[HND]}, enters the energy
balance of the interaction Hamiltonian, once a microscopic
model made of the system, the baths, and their interaction
mechanism is considered as detailed in Appendix B. While,
within the collisional model framework, this corresponds to
the work done when switching on and off the interaction
with the environment, how this current can be interpreted in
autonomous systems is left for future investigations.

Comparing Eqs. (17) and (19) we reach the conclusion
(and the third important result in this paper) that the change
in entropy in the bath, within the local ME framework, is only
determined by the diagonal part of the system’s Hamiltonian,
and only HD enters the FT (17) and the second law (19).
When the ME is global, HD = H , one recovers the standard
definition Q̇D,α = Q̇α = Tr{Dα[ρ]H} (see Ref. [46]).

In this respect, it is interesting to consider the case of ab-
sence of coherence at t = 0 and t . This situation occurs when
the ME (1) is global, and the initial state ρ (0) has no coherence
(i.e., the system is classical at any time), or when one performs
measurements of the system state at t = 0 and t , as in the
two-point measurement scheme. In this case, it makes sense
to introduce the concept of classical trajectories starting from
the state | j0〉 at t = 0 and ending in the state | j〉. From Eq. (16)
or Eq. (17) one then recovers immediately the classical FT (3)
with �SB + �SS = −∑

α βαQα + log ρ
(f)
j j − log ρ

(0)
j0 j0

.
Our results also hold when the system’s Hamiltonian

and/or the dissipation rates γα,γ , entering Eq. (4), are time
dependent. In the special case of a single bath at inverse
temperature β and choosing the final and initial states
to be the Gibbs states ρ (f) = exp(−βH (t ))/Zt and ρ (0) =
exp(−βH (0))/Z0, Eq. (16) becomes

Tr

[∑
j0

ρ
(0)
j0 j0


 (1)(t | π j0 )eβHj0 j0 (0)e−βH (t )

]

= Zt/Z0 = e−β�F , (20)

where �F is the difference in equilibrium free energy be-
tween the final and the initial thermal states. Furthermore,
by assuming the LDBC the last equation reduces to the JE.
Indeed, following the same procedure that leads to Eq. (17)
we find∑

j, j0

∫
dQ eβ(QD−Hj j (t )+Hj0 j0 (0))� j (QD, t |π j0 )p(0)

j0

=
∫

dWD P(WD)e−βWD = e−β�F , (21)

where we have set �SB = −βQD, and have defined work as
WD ≡ �HD − QD. Yet, it is worth noting that requiring the
local detailed balance for a time-dependent Hamiltonian as
we do in Eq. (21) is equivalent to requiring that the jump rates
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FIG. 2. QMC simulations of the two-spin system: 〈exp(−�Stot )〉tr and 〈exp(−�SB )〉tr as functions of t , with with �Stot = S + �SS .
Averages over 106 trajectories, g = 0.1, Ta = 1. (a) Diagonal ρ (0), J = 0, h = 0.2, Tb = 1 (classical case at equilibrium). (b) Diagonal ρ (0),
J = 0.1, h = 0.2, Tb = 1.2. (c) Nondiagonal ρ (0), J = 0.1, h = 0.2, Tb = 1.2. (d) Nondiagonal ρ (0), J = 0.2, Tb = 1.2, and time-dependent
field h(t ) = 0.4t/tf , with tf = 15. In panels (a)–(d) the LDBC is used, and thus S = �SB. (e) Nonthermal jump rates γα,λ that do not satisfy
the LDBC, with diagonal ρ (0), and J = 0.1, h = 0.2. See Appendix C for further details on the numerical simulations.

adjust instantaneously to the value of the energy level, which
in turn holds only for slow driving.

Numerical examples

While results (16) and (17) are exact, we resort to numeri-
cal simulations to exemplify them and gain physical insight
into their implications. Specifically, we consider a system
of two spin-1/2 particles, characterized by Pauli operators
σx,y,z, with Hamiltonian H = −Jσx,aσx,b − h(σz,a + σz,b). We
consider both the cases where each spin is connected to an
equilibrium reservoir at temperatures Ta and Tb, respectively,
and where the two baths are nonthermal, with the dissipation
rates not satisfying the LDBC. The jump operators “flip”
the individual spins: Lλ = σ−,a ⊗ Ib or Lλ = Ia ⊗ σ−,b. When
J �= 0 the quantum ME (1) is local (see Appendix C for further
details on the numerical simulations).

We numerically evolve the system’s state using the QMC
algorithm for the unraveling of the ME [47] provided by QUTIP

[48,49]. The QMC algorithm evolves the system’s state from
|ψ (0)〉 to |ψ (t )〉 with an alternation of continuous dynamics
and stochastic jumps [47]. Along each trajectory, we monitor
the individual jumps, driven by one of the two baths, and
collect the statistics for the generalized bath’s entropy:

S =
na∑

l=1

�sa, jl+1, jl (tl ) +
nb∑

m=1

�sb, jm+1, jm (tm), (22)

where tl is the time at which the lth jump (out of na total
jumps) induced by the bath a occurs, and analogously for
bath b. When the LDBC holds, the previous equation has the
simple interpretation S = �SB = −(βaQa,D + βbQb,D).

We evaluate the quantum FT in the form of Eq. (16) where
now the average is taken over the trajectories generated by
QMC. Within QMC, one can evaluate the solution ρ(t ) to
the ME (1) as ρ(t ) = 〈|ψ (t )〉〈ψ (t )|〉tr , where 〈· · ·〉tr is the
average over the QMC trajectories. Analogously, from the
definition of 
(ξ, t ) in Eq. (7), and from the sampling of
the generalized entropy (22) along the trajectories, we can
evaluate 
 (1)(t | πk0 ), for any chosen initial basis {|k0〉}, as
discussed in Appendix C.

The system’s entropy change �SS can be also evaluated
along the QMC trajectories as detailed in Appendix C, and
we can thus evaluate 〈exp(−�Stot )〉tr , with �Stot = S + �Ss.

We consider both the case where the baths are thermal,
with rates γα,λ obeying the LDBC, and the case of rates not
satisfying the LDBC. Our numerical results in Fig. 2 confirm

the quantum FT (16) for initially diagonal and nondiagonal
states in contact with thermal baths at the same temperatures
(Ta = Tb) or different ones. Moreover, in Fig. 2(d) we consider
the case of a time-dependent Hamiltonian, where the external
field is changed according to h(t ) = h0 + (h1 − h0)t/tf . In
Fig. 2(e) we show the results for nonthermal baths violating
the LDBC. In the same figure, we also show that, for all
the considered cases, 〈exp(−�SB)〉 � 1, thus demonstrating
the relevance of the system entropy variation for the FT to
hold.

III. FT AND LOCAL DETAILED BALANCE FOR
UNITARY DYNAMICS

The aim of this section is twofold. First we want to gener-
alize the results or Eqs. (16) and (17) of the previous section to
the case of unitary dynamics, in a setup made of the system of
interest interacting with a set of baths. We will then rederive
Eq. (11) governing the time evolution of the operator 
 (1)

under the same assumptions that lead the standard ME (1).
This approach will provide the reader with a more physical
intuition of the current S , that we introduced in the previous
section, and that enters the FT in the form of Eqs. (16) and
(17).

We consider a total system made of the system of interest
interacting through a Hamiltonian V with a set of baths with
Hamiltonian HBα

: the total Hamiltonian H thus reads

H = HB + H + V, (23)

HB =
∑

α

HBα
, (24)

V =
∑
α,λ

Vα,λ, (25)

where Vα,λ is the interaction Hamiltonian with the αth bath.
The strength of the bath system is taken to be arbitrary in the
following discussion, the standard weak-coupling limit being
considered only later in this section.

We assume that initially the system and the baths are in a
product state

�(0) = ρ(0) ⊗ ρB(0), (26)

ρB(0) = ρB1 (0) ⊗ ρB2 (0) ⊗ · · · ⊗ ρBNb
(0). (27)
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Furthermore, we introduce the operators

SBα
= − log ρBα

(0), (28)

SB =
Nb∑

α=1

SBα
, (29)

akin to an entropy operator for the single bath and for all the
baths, respectively. The case where some of eigenvalues of the
ρBα

(0) are zero does not pose an issue on the discussion below,
as we will be interested in the exponential of SBα

. We do not
assume, a priori, that the initial states of the baths ρBα

(0) are
thermal, although we will consider this specific case at a later
stage. We also assume that the baths’ Hamiltonians, and the
interaction Hamiltonian V , are time independent while the
system Hamiltonian can be time dependent as discussed later.

Having introduced the total system, we start the discussion
by deriving a rather obvious result, which will, however, set
the stage for later derivations. We introduce the time-reversal
operator for the total system θ , such that [θ,H] = 0 and
−iHθ• = θiH•, the latter equality expressing the antilinear-
ity of the operator θ [50].

We assume that the initial state for the total system is a
pure state |J0〉 (eigenstate of some observable). Here and in
the following |Jx〉 indicates states of the total system and
�x = |Jx〉〈Jx| the corresponding projectors, while | jx〉 and
πx = | jx〉〈 jx| are states and projectors of the system of interest
only as in the previous section.

The probability to observe the state |J f 〉 after the total
system evolves until time t is

P(J f , t |J0, t = 0) = Tr{� f Ut�0U
†
t � f }, (30)

where the unitary operator Ut reads

Ut = T exp

[
−i

∫ t

0
dt ′(HB + H (t ′) + V )

]
, (31)

and T is the time-ordering operator. We also introduce the
unitary operator when the global system evolves under the
time-reversed Hamiltonian HB + H (t − t ′) + V :

Ut̃ = T exp

[
−i

∫ t

0
dt ′(HB + H (t − t ′) + V )

]
. (32)

We now assume we can prepare the total system in the
state |J̃ f 〉 = θ |J f 〉 and evaluate the probability to find
the system in the state |J̃0〉 = θ |J0〉 after evolving under the
time-reversed dynamics for a time t ,

P(J̃0, t |J̃ f , t = 0) = Tr{�̃0Ut̃�̃ f U
†
t̃ �̃0}

= Tr{�0U
†
t � f Ut�0}

= P(J f , t |J0, t = 0), (33)

where we have used the antilinearity of θ . This result is not
surprising and expresses the conservation of the probability
under time reversal and for unitary dynamics.

We now imagine that only the system is accessible to our
measures, and assume the system and the baths are initially
(only initially) in a product state. Furthermore, we want to
do thermodynamics, and introduce a temperature (or a set of
temperatures); thus we assume the bath(s) to be in the thermal

state, ρB(0). We are then interested in the probability

P( j f , t | j0) = Tr{π f ⊗ IBUtπ0 ⊗ ρB(0)U †
t π f ⊗ IB}

= Trs{π f ρs(t )π f }, (34)

and where, here and in the following, we have omitted to indi-
cate the initial time t = 0. We then prepare the total system in
the time-reversed state �̃(0) = θπ f ⊗ ρB(0)θ−1, and ask what
is the probability that the system of interest is in the state | j̃0〉
after a time t . We remind the reader that θ is the time-reversal
operator for the whole system. A straightforward calculation
gives

P( j̃0, t | j̃ f ) = Tr{π̃0 ⊗ IBUt̃ π̃ f ⊗ ρ̃B(0)U †
t̃ π̃0 ⊗ IB}

= Tr{π0 ⊗ IBU †
t π f ⊗ ρB(0)Utπ0 ⊗ IB}

�= P( j f , t | j0). (35)

Compared to the case discussed above in this section, we
see that the lack of symmetry in the probability under time
reversal is due to the fact that we are now considering states of
the system alone. In other words, we are tracing over the bath,
before evaluating the transition probability of the system: this
is the origin of the irreversibility in the transition probability.
The goal is now to express the transition probability (35) in
terms of the forward dynamics, and find a relation between
the probability for the forward and backward dynamics that
can lead us to a FT, as is the case for classical dynamics [51].

In the following we will use the notation 〈A〉 j f , j0 to indicate
the time evolution of an observable with the forward dynam-
ics, with constraints on the initial and final states. We also
notice that the two-time correlation of the observables A and
B reads

〈A(t )B(0)〉 = Tr[U †
t AUt B�(0)]. (36)

Using the definition of SB in Eq. (29) we consider the two-
time correlation

〈e−SB (t )eSB (0)〉 j f , j0 = Tr
{
π f ⊗ ρB(0)Utπ0 ⊗ IBU †

t π f ⊗ IB
}

= P( j̃0, t | j̃ f ). (37)

This is a generalization of the Crooks’ quantum fluctuation
relation [52] to the case of arbitrary interaction strength be-
tween the system and the baths, and for an arbitrary number
of baths. Such a generalization relates the probability of the
time-reversed transition to the two-time correlation function
of the exponential of the baths’ entropy. For the classical case,
with each bath initially in a thermal state at temperature βα ,
Eq. (37) becomes

P( j f , t | j0)e−�SB = P( j̃0, t | j̃ f ) (38)

and �SB = ∑
α βα�HBα

is the change of entropy in the baths,
along any system trajectory connecting j0 to j f .

From Eq. (37) we obtain immediately∑
j0

〈e−SB (t )eSB (0)〉 j f , j0

=
∑

j0

Tr{π f ⊗ ρB(0)Utπ0 ⊗ IBU †
t π f ⊗ IB} = 1. (39)

We then continue along the lines of the previous section
and consider the arbitrary basis {|b0〉} and arbitrary initial and
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final states ρ (0) and ρ (f), and from Eq. (39) we obtain∑
b0

〈
elog ρ (f) (t )e−SB (t )eSB (0)e− log ρ

(0)
b0 ,b0

〉
b0

ρ
(0)
b0,b0

=
∑

b0

Tr
{
ρ (f) ⊗ ρB(0)Utπb0 ⊗ IBU †

t π f ⊗ IB
}

=
∑

b0

P(b̃0, t |ρ̃ (f) ) = 1. (40)

Equations (39) and (40) represent the FT for the joint
unitary evolution of the system and the baths: they generalize
Eqs. (16) and (17) obtained starting from the master equa-
tion of the system alone. This result for the global unitary
dynamics involves the two-time correlation of the entropy
in the bath, which is related to the backward dynamics as
expressed by Eq. (37). Furthermore, Eq. (40) involves the
two-time correlation function of the system entropy too. Yet
an initial measurement on the system is required, represented
by the projection onto the arbitrary basis state |b0〉. As dis-
cussed in the previous section, while the final state ρ (f) is
arbitrary, one can of course take the specific choice ρ (f) =
ρ(t ) = TrB�(t ), i.e., the final state of the system along the
forward dynamics. In this case, the FT involves the change
of entropy in the system.

In deriving the above results we explicitly assumed that
the system Hamiltonian is time dependent, H (t ), while the
bath and the interaction Hamiltonian are time independent.
Thus, even when work is done on or by the system on the
external agent changing the system Hamiltonian, the relevant
quantities to consider in the FT are the correlation between
the exponential of the baths’ entropy, as appearing on the
right-hand side (RHS) of Eqs. (39) and (40). As such, these
equations do not require the monitoring of the system en-
ergy change, or of the work done on or by the system, that
might disturb the quantum dynamics of the system. Such an
approach, requiring the monitoring of the environment only,
was already put forward in, e.g., Ref. [52].

Connection to the modified ME

We now connect the fluctuation relations for the unitary
dynamics, Eqs. (37)–(40), with the modified master equa-
tion (11) introduced and discussed in the previous section [see
also Eq. (A9) in Appendix A].

For the interaction Hamiltonian between the system and the
αth bath, introduced in Eq. (25), we choose the general form

Vα,λ = gα,λ(L†
λAα,λ + LλA†

α,λ), (41)

where Lλ are system operators, and Aα,λ are bath operators.
In the following we make a number of assumptions on the

baths’ properties and on the system-baths interaction, that are
usually introduced in the derivation of the standard quantum
ME (1) [53]. In particular we make the requirement that the
baths’ initial states commute with their corresponding Hamil-
tonians [HBα

, ρBα
(0)] = 0. Furthermore, we choose the bath

operators to be eigenoperators of the bath entropy operator
[54], [

SBα
, Aα,λ

] = �α,λAα,λ. (42)

It is always possible to express the interaction Hamiltonian
(41) in terms of eigenoperators of SBα

. Indeed if Aα,λ are
not eigenoperators of SBα

, by expressing them in terms of
the eigenbasis of SBα

one can write Vα in terms of new (ro-
tated) operators A′

α,λ which are eigenoperators of SBα
. In order

to ease the notation, in the following we consider the case
where the system Hamiltonian is time independent; the deriva-
tion of the corresponding results for the time-dependent case
follows the same lines discussed below.

By using the assumption in Eq. (42), one can show the
following equality to hold:

e− SB
2 e−itH = e−itHe− SB

2 (43)

with

H = HB + H + V (44)

and where

V =
∑
α,λ

V α,λ

=
∑
α,λ

gα,λ

(
e−βα�α,λ/2L†

λAα,λ + eβα�α,λ/2LλA†
α,λ

)
(45)

is a modified, non-Hermitian interaction Hamiltonian (see
Appendix D).

Let Ut be the nonunitary operator obtained from Eq. (31)
with the substitution V → V . Then comparing Eq. (43) with
Eq. (37), we finally find

P( j̃0, t | j̃ f , t = 0) = 〈e−SB (t )eSB (0)〉 j f , j0

= Tr{π f ⊗ IBUtπ0 ⊗ ρB(0)U †
t π f ⊗ IB},

(46)

resembling Eq. (33) that expresses the conservation of prob-
ability under time reversal for the total system. However, in
Eq. (46) the forward time evolution occurs with Ut .

Let us now consider the evolution of the system operator


(t + τ ) ≡ TrB{U τ
(t ) ⊗ ρB(0)U †
τ }, (47)

given an arbitrary (possibly mixed) initial state of the system

(t ). The projection of such an operator on the state j f is the
two-time correlation function after a time t + τ , as introduced
in Eqs. (37) and (46), given the system state at time t , 
(t ):

〈e−SB (t+τ )eSB (t )〉 j f ,
(t ) = 〈 j f |
(t + τ )| j f 〉. (48)

We make the Born-Markov approximation valid in the weak-
coupling limit, and assume that the global system is in
a product state at any time � = 
(t ) ⊗ ρB, and that the
baths’ state is time independent, ρB = ρB(0) [53,55]. Thus in
Eq. (47) we take the expansion up to the second order in τ :
some extra care is needed as V [see Eq. (45)], and thus H, is
not Hermitian. We thus obtain


(t + τ ) = TrB{U τ
(t ) ⊗ ρBU †
τ }

� TrB

{(
I − iτH − τ 2

2
V 2

)

×
(t ) ⊗ ρB

(
I + iτH† − τ 2

2
(V †)2

)}
. (49)
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A lengthy but straightforward calculation gives


(t + τ ) � 
(t ) − iτ [H, 
(t )] + τ 2
∑
α,λ

g2
α,λ(eβα�α,λLλ
(t )L†

λ〈Aα,λA†
α,λ〉B + e−βα�α,λL†

λ
(t )Lλ〈A†
α,λAα,λ〉B)

−τ 2

2

∑
α,λ

g2
α,λ({L†

λLλ,
(t )}〈Aα,λA†
α,λ〉B + {LλL†

λ,
(t )}〈A†
α,λAα,λ〉B). (50)

We now introduce the rates

γα ( j → j′) = τg2
α,λ〈Aα,λA†

α,λ〉B, (51)

γα ( j′ → j) = τg2
α,λ〈A†

α,λAα,λ〉B. (52)

We see that, by virtue of Eq. (42), Aα,λA†
α,λ and A†

α,λAα,λ

are projectors onto the eigenstates of SBα
, Eq. (28). Further-

more, by taking Aα,λ = |N ′
α〉〈Nα|, we have that the quantity

�α,λ introduced in Eq. (42) becomes an entropy gap �α,λ =
−(sN ′

α
− sNα

) = log rN ′
α
− log rNα

, where rNα
are the eigenval-

ues of the bath state ρBα
. Thus, we find that the jump rates for

the system dynamics appearing both in the system ME (1) and
in the modified ME (11) obey the following relation:

γα ( j → j′)
γα ( j′ → j)

= 〈Aα,λA†
α,λ〉B

〈A†
α,λAα,λ〉B

= e�α,λ . (53)

We remind the reader that, given our choice of the interaction
Hamiltonian (41) and the jump operators Lλ and Aα,λ, a jump
λ in the system j → j′ corresponds to a jump in the bath
N ′

α → Nα . Equation (53) determines the asymmetric part of
the system rates, and involves the entropy change in the bath
for a transition ( j → j′, N ′

α → Nα ), or equivalently the ratio
of the population between the two states Nα and N ′

α in the
initial bath state. Neither the entropy nor the energy of the
system appears in this relation.

Let ε j = Hj j be the diagonal elements of the system
Hamiltonian in the basis {| j〉}. Thus the quantities ε j are
eigenvalues of H only if the chosen basis is an eigenbasis
of H . Equation (53) becomes the standard local detailed bal-
ance condition involving the system energy gaps introduced in
Sec. II, γα ( j → j′)/γα ( j′ → j) = exp(−βαωλ), only under
two additional conditions: (i) the baths are initially in the ther-
mal state, thus �α,λ = −βα (EN ′

α
− ENα

), where ENα
are the

eigenvalues of HBα
, and (ii) the energy gaps in the baths and in

the system are resonant, i.e., EN ′
α
− ENα

= ωλ = Hj′ j′ − Hj j .
We call such a condition local, because we envisage the typ-
ical physical setup where a bath is locally connected to a
subpart of the system, possibly a single particle, through some
mechanism as embodied by the interaction Hamiltonian (41).
Condition (i) reminds us that the temperature (or the energy
scale kBTα) is a physical quantity associated with a bath at
thermal equilibrium. Condition (ii) leads to the global detailed
balance condition if, within the weak-coupling assumptions,
no energy is stored in the coupling mechanism. We see imme-
diately that this is the case when {| j〉} is an eigenbasis for H :
condition (ii) is then equivalent to assume that, given a change
of energy in the system, there is a corresponding change of
energy in the bath, with no energy released by or stored in the
interaction mechanism represented by the Hamiltonian V (see
also Appendix B).

Having settled the connection between the system dynamic
evolution and the underlying thermodynamic processes, as
represented by Eq. (53), we continue our analysis of Eq. (50).
Using the definition of the rates in Eqs. (51) and (52), the
detailed balance condition (53), and taking the limit τ → 0,
we obtain

∂t
(t ) = −i[H, 
(t )] +
∑

α

D∗
α[
(t )], (54)

i.e., the generalized ME Eq. (11) [see Eq. (A9) and
Appendix D for the details]. Had we taken the standard unitary
operator Ut in Eq. (49) [i.e., V replaced by V on the RHS
of Eq. (48)], we would have obtained the standard master
equation (1) in the same limit.

Thus comparing this last result with Eqs. (47) ad (48),
we conclude that the operator 
 (1)(t ) appearing in Eq. (11)
describes the joint evolution of the system state, and of the
two-time correlation of the baths’ entropy. For a single tran-
sition ( j → j′, N ′

α → Nα ), the change in the bath entropy is
given by �α,λ. We recall the definition of 
 (1)(t ) = 
(ξ =
1, t ), Eq. (7), and thus the quantity S introduced in Sec. II is
the total entropy change of the baths alone along a trajectory
of the total system, the contribution of a single jump being set
by the condition in Eq. (53). If the baths are initially thermal,
and conserve their state for the entire duration of the system
dynamics, �α,λ = −βα (EN ′

α
− ENα

), thus Eq. (53) implies that
the quantity S is the change in the baths’ energy multiplied by
the corresponding inverse temperature: S = ∑

α βα�Hα .
Even if the system Hamiltonian is time dependent, i.e.,

work is done on or by the system, making the standard as-
sumption that the baths are at equilibrium implies that the FT
(16) entails only the change of energy in the baths, which is
of course affected by the work done on the system.

IV. CONCLUSIONS

We have proved a quantum fluctuation theorem valid for a
quantum system evolving with a dissipative process and with
a time-dependent Hamiltonian. Our theorem goes beyond the
two-point measurement scheme by preserving quantum corre-
lations created by the nonequilibrium dynamics. Specifically,
our results are also valid for local master equations, and their
physical consistency is restored when one discerns between
the entropic and energetic balance between the baths, the
system, and the interaction mechanism. Our theorem provides
a convenient tool for the numerical and experimental explo-
ration of irreversible quantum coherent thermodynamics.

We have also shown that the derivation of the FT based
on the ME can be extended to the case of unitary dynamics,
when the explicit interaction between the systems and the
bath is taken into account. This approach has the advantage
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of highlighting the quantity that needs to be measured in a
possible experimental validation of the theorem: the two-time
correlation function of the exponential of the baths’ entropy.
In the case of weak coupling between the system and the
baths, under the standard assumptions that lead to the GKSL
ME, such a correlation function becomes a function of the
jump rates appearing in the ME.

Furthermore, starting from the joint unitary dynamics of
the system and the environment has the advantage of immedi-
ately setting the connection between the system dynamics and
the underlying thermodynamic processes. The ratio between
forward and backward jump rates originally depends on the
properties of the baths alone: whether this relation leads to the
global, local, or even to no detailed balance condition depends
on further assumptions on the baths’ and system’s properties.
Yet the FT does not require any detailed balance condition for
the jump rates appearing in the ME.

The experimental validation of our theorem requires the
monitoring of the environments and the observation of the
corresponding quantum jumps. This can be achieved, for in-
stance, in circuit and cavity QED [56], trapped-ion setups
[57], or noisy intermediate-scale quantum computers [58].

All data created during this research are openly available
from QUB-Pure [59].
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APPENDIX A: THE MODIFIED QUANTUM
MASTER EQUATION

Here we discuss the derivation of Eq. (5) in the main text.
Such a derivation follows the corresponding derivation of the
modified ME for classical stochastic systems discussed in
Ref. [8]. The time evolution of ρ(t ) is described by the GKSL
ME (1). We notice that the diagonal terms of the density
matrix ρ(t ) express the time evolution of the populations, i.e.,
the probability pj (t ) = ρ j j (t ) of observing the system in the
state | j〉 at time t . We are interested in the joint probability
distribution � j (S, t ) of finding the system in the state j with
a total generalized entropy S which has flowed into the reser-
voirs at time t as a consequence of the jumps between states
in the system. In the main text we have already introduced
the modified density matrix ρ(S, t ), such that its diagonal el-
ements describe the desired joint probability ρ j j = � j (S, t ).
We first observe that the dissipators in the ME, as defined in

Eq. (2), only couple diagonal elements of the density matrix
with diagonal elements and nondiagonal elements with non-
diagonal elements. The coupling between the diagonal and
nondiagonal elements of ρ occurs through the coherent part of
the dynamics, expressed by the commutator in Eq. (1). Thus
we can write

Dα[ρ] = DD,α[ρD] + DND,α[ρND], (A1)

where DD[ρD] and DND[ρND] contain only diagonal and non-
diagonal entries in their matrix representation, respectively,
and DD[ρND] = DND[ρD] = 0. This becomes evident when
one rewrites Eq. (1) as

dρ(t )

dt
= −i[H (t ), ρ(t )] +

∑
α,λ

γλ,α

(
| j′〉〈 j|ρ| j〉〈 j′|

−1

2
(π jρ + ρπ j )

)
, (A2)

where we remind the reader that λ = λ( j → j′) denotes a
transition between two states | j〉 and | j′〉. Isolating the diago-
nal part of Eq. (A2), one obtains

∂tρ j′ j′ = −i[H, ρ] j′ j′ +
∑
α, j

{γα, j′ jρ j j − γα, j j′ρ j′ j′ }. (A3)

The jump between the states | j〉 and | j′〉 occurs with rate
γα ( j → j′) = γα, j′ j , and the corresponding entropy change in
the bath α is given by

�sα, j′ j = − log(γα, j j′/γα, j′ j ), (A4)

which corresponds to Eq. (4) in the main text. Such jumps
in the ME (1) are described by DD[ρD] implicitly introduced
in Eq. (A3); thus only the coupling between the diagonal
elements in the ME contributes to the change in the bath
generalized entropy S . After the jump j → j′ the generalized
entropy changes as S → S + �sα, j′ j . Let us now suppose that
we know the modified density matrix ρ(S, t ) at time t , and let
us consider the time evolution of its diagonal and nondiagonal
parts. For the diagonal part, at time t + τ , we have

ρ j′ j′ (S, t + τ ) � ρ j′ j′ (S, t ) − iτ [H, ρ(S )] j′ j′

+ τ
∑
α, j

γα, j′ jρ j j (S − �sα, j′ j, t )

−γα, j j′ρ j′ j′ (S, t ). (A5)

For the nondiagonal part of the dynamics, that does not con-
tribute to S , we have

ρ lk (S, t + τ ) � ρ lk (S, t ) − iτ [H, ρ(S )]lk

+τ
∑

α

DND[ρND(S, t )]lk, l �= k. (A6)

Taking the limit τ → 0 in both Eqs. (A5) and (A6), and ex-
panding the right-hand side of Eq. (A5) in Taylor series of the
microscopic entropy change �sα, j′ j , we obtain the modified
quantum ME, Eqs. (5) ad (6) in the main text.

We introduce the operator 
(ξ, t ) defined as


(ξ, t ) =
∫

dS ρ(S, t )e−ξS , (A7)
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and, applying this integral transform to both sides of Eqs. (5)
and (6) in the main text, one obtains the equations for 
(ξ, t )

∂t
 j′ j′ (ξ, t ) = −i[H, 
] j′ j′ +
∑
α, j

{
γα, j′ j

(
γα, j j′

γα, j′ j

)ξ


 j j (ξ, t )

− γα, j j′
 j′ j′ (ξ, t )

}
, (A8)

∂t
lk (ξ, t ) = −i[H, 
]lk + DND[
ND]lk, l �= k. (A9)

We now take ξ = 1 in Eqs. (A8) and (A9), yielding

∂t

(1)
j′ j′ (t ) = −i[H, 
 (1)] j′ j′

+
∑
α, j

γα, j j′
{



(1)
j j (t ) − 


(1)
j′ j′ (t )

}
, (A10)

∂t

(1)
lk (t ) = −i[H, 
 (1)]lk + DND[
 (1)

ND]lk, l �= k. (A11)

The dual of the dissipator Dα[·] applied on an operator X
reads

D∗
α[X ] =

∑
j→ j′′

γα, j′′ j

(
Xj′′ j′′π j − 1

2
{π j, X }

)
, (A12)

and considering the diagonal element

D∗
α[X ] j′ j′ =

∑
j′′

γα, j′′ j′ (Xj′′ j′′ − Xj′ j′ ), (A13)

one finds that it corresponds to the term on the right-hand
side of Eq. (A10). For the nondiagonal part, one finds
D∗

α,ND[XND] = Dα,ND[XND]. All in all, one finds that 
 (1)(t )
obeys Eq. (11) in the main text.

APPENDIX B: ON THE HEAT EXCHANGED BETWEEN
THE SYSTEM AND THE BATH(S)

As in the main text, we consider the total system made of
the system of interest with Hamiltonian H and a set of baths
with Hamiltonians HBα

, interacting through a Hamiltonian V
[see Eqs. (23)–(25)]. Given an arbitrary orthonormal basis
{| j〉} for the system, we split its Hamiltonian into its diagonal
and nondiagonal parts,

H = HD + HND. (B1)

The time evolution of the total density matrix is thus given by

�(t + τ ) = e−iτH�(t )eiτH, (B2)

for any t and τ . To lighten the notation, here and in the follow-
ing we assume that all the above Hamiltonians, in particular V ,
are time independent. Here we do not consider the case where
H depends explicitly on the time, since in this section we are
only interested in the energy exchange between the system
and the baths, and not on the work done on the system by an
external agent. However, the case of a time-dependent H (t )
only requires a straightforward modification. As discussed in
the main text, we do not assume a priori that the states | j〉 are
eigenstates of the system Hamiltonian.

We recall the definition of the interacting Hamiltoni-
ans introduced in Eq. (25), Vα,λ = gα,λ(L†

λAα,λ + LλA†
α,λ),

with the system operators Lλ and the bath operators Aα,λ

satisfying

[HD, Lλ] = ωλLλ, (B3)

[HBα
, Aα,λ] = �α,λAα,λ, (B4)

with

ωλ = ω j′ j = 〈 j′|H | j′〉 − 〈 j|H | j〉 = HD, j′ j′ − HD, j j, (B5)

�α,λ = 〈N ′
α|HBα

|N ′
α〉 − 〈Nα|HBα

|Nα〉 = EN ′
α
− ENα

. (B6)

Equation (B3) follows immediately from the choice of the
jump operators Lλ = | j′〉〈 j|, while in this Appendix we
choose the operators Aα,λ to be eigenoperators of the αth
Hamiltonian, with Aα,λ = |N ′

α〉〈Nα|, and |Nα〉 the correspond-
ing energy eigenstates. We also notice that the choice of the
interaction Hamiltonian, Eq. (25), implies that different baths
can induce the same transition j → j′, as long as gα,λ �= 0.
Physically, this corresponds to the case where a bath can be
connected to more than a single subpart of the system, and
is therefore more general than the case where one has the
same number of baths and subparts, each bath only inducing
transitions in the corresponding subpart of the system. Yet,
we deem the approach as “local,” as the eigenkets defining the
jump operators are not taken a priori to be eigenkets of HS .

We can now study the energy balance for the baths and
the system. First we notice that, since the total Hamiltonian is
time independent, the total energy is always conserved for any
t and τ :

�Etot (t, t + τ ) = Tr[H(�(t + τ ) − �(t ))] = 0. (B7)

If we define

�Ex = 〈Hx〉t+τ − 〈Hx〉t = Tr[(eiτHHxe−iτH − Hx )�(t )],

(B8)

with x = B, S,V , energy conservation imposes

�EB + �ES = −�EV . (B9)

We have

eiτHHxe−itH = Hx + iτ [H, Hx] + (iτ )2

2
[H, [H, Hx]] + · · · .

(B10)

Let us first consider EB(t + τ ) − EB(t ) up to the second
order in τ . From Eq. (B10) we see that, in order to evaluate
the first-order contribution to the baths’ energy flow, we need
to evaluate [H, HB]. To this end, we introduce the operator

V ′
B = [H, HB] = [V, HB]

= −
∑
α,λ

gα,λ�α, λ(L†
λAα,λ − LλA†

α,λ). (B11)

To calculate the second-order term in �EB we need to
calculate

[H,V ′
B] =

[∑
α

HBα
+ HS + V,V ′

B

]
, (B12)
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where the individual commutators read

[H,V ′
B] =

∑
α,λ

gα,λ�α,λ(ωλ(L†
λAα,λ + LλA†

α,λ)

− ([HND, L†
λ]Aα,λ − [HND, Lλ]A†

α,λ])), (B13)[∑
α

HBα
, ṼB

]
= −

∑
α,λ

gα,λ�
2
α,λ(L†

λAα,λ + LλA†
α,λ),

(B14)

[V, ṼB] = −
∑

α

∑
λ,μ

[gα,λ(L†
λAα,λ + LλA†

α,λ), gα,μ�α,μ

× (L†
μAα,μ − LμA†

α,μ)], (B15)

where λ and μ are different transition indices. For future
reference, we notice that only the last commutator contains
quadratic terms of the types Aα,λA†

α,λ or A†
α,λAα,λ.

We now turn our attention to the system energy balance.
Let us introduce the operators

V ′
D = [V, HD] =

∑
α,λ

gα,λωλ(L†
λAα,λ − LλA†

α,λ), (B16)

V ′
ND = [V, HND]

=
∑
α,λ

gα,λ([L†
λ, HND]Aα,λ + [Lλ, HND]A†

α,λ).

(B17)

From Eqs. (B8)–(B10), we see that to the first order in τ we
need to evaluate

[H, H] = [V, HS] = V ′
D + V ′

ND. (B18)

To calculate the second-order term in Eq. (B10) we need the
commutator

[H,V ′
D + V ′

ND] = [HB + HD + HND + V,V ′
D + V ′

ND].

We have

[HB,V ′
D] =

∑
λ,λ

gα,λωλ�α,λ(L†
λAα,λ + LλA†

α,λ),

[HB,V ′
ND] = −

∑
α,λ

gα,λ�α,λ([HND, L†
λ]Aα,λ

− [HND, Lλ]A†
α,λ]),

[HS,V ′
D] =

∑
α,λ

gα,λωλ(−ωλ(L†
λAα,λ + LλA†

α,λ)

+ [HND, L†
λ]Aα,λ − [HND, Lλ]A†

α,λ]),

[V,V ′
D] =

∑
α

∑
λ,μ

[gα,λ(L†
λAα,λ + LλA†

α,λ), gα,μωμ(L†
μAα,μ

− LμA†
α,μ)], (B19)

[V,V ′
ND] =

∑
α

∑
λ,μ

[gα,λ(L†
λAα,λ + LλA†

α,λ),

× gα,μ([L†
μ, HND]Aα,μ + [Lμ, HND]A†

α,μ)].

(B20)
We notice that the only commutators that are quadratic in the
bath operators Aλ and A†

λ are the last two. In accordance with
the Born-Markov approximation used to derive the Markovian
master equation [55], we assume that the total density ma-
trix is factorized at any time, ρtot (t ) = ρS (t ) ⊗ ρB(t ), that the
bath density matrix is time independent, ρB(t ) = ⊗Nb

α=1 ρBα
,

and that [ρBα
, HBα

] = 0 even though ρBα
needs not be an

equilibrium state. Without these assumptions the master equa-
tion would not be valid or would be modified.

Armed with these assumptions on the baths’ state and
operators, we can finally calculate the energy flow for the bath
and for the system. From Eqs. (B8)–(B15), we have

�EB = iτ 〈V ′
B〉 − τ 2

2
〈[H,V ′

B]〉

= −τ 2
∑
α,λ

g2
α,λ�α,λ

(〈L†
λLλ〉S,t 〈Aα,λA†

α,λ〉B − 〈LλL†
λ〉S,t 〈A†

α,λAα,λ〉B
) + O(τ 4), (B21)

where 〈•〉S,t = Tr[•ρ(t )] and 〈•〉B = Tr[•ρB]. Similarly from Eqs. (B16)–(B20) we obtain

�ES = τ 2
∑
α,λ

g2
α,λωλ(〈L†

λLλ〉S,t 〈Aα,λA†
α,λ〉B − 〈LλL†

λ〉S,t 〈A†
α,λAα,λ〉B)

+ g2
α,λ

2
(〈L†

λ[HND, Lλ] + [L†
λ, HND]Lλ〉S,t )〈Aα,λA†

α,λ〉B

+ g2
α,λ

2
(〈Lλ[HND, L†

λ] + [Lλ, HND]L†
λ〉S,t )〈A†

α,λAα,λ〉B + O(τ 4). (B22)

A similar approach for the interaction Hamiltonian leads to

�EV = −τ 2
∑
α,λ

g2
α,λ

2
[2(ωα,λ − �α,λ)(〈L†

α,λLα,λ〉S,t 〈Aα,λA†
α,λ〉B,t − 〈Lα,λL†

α,λ〉S,t 〈A†
α,λAα,λ〉B,t )

+ (〈L†
λ[HND, Lλ] + [L†

λ, HND]Lλ〉S,t )〈Aα,λA†
α,λ〉B + (〈Lλ[HND, L†

λ] + [Lλ, HND]L†
λ〉S,t )〈A†

α,λAα,λ〉B] + O(τ 4). (B23)

The same result can be obtained by invoking energy conservation, Eqs. (B7)–(B9).
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Comparing Eqs. (B21) and (B22) we see that the amount
of energy exchanged by the baths and the system is a linear
combination of the ωα,λ, i.e., the difference between the di-
agonal elements of the system Hamiltonian [see Eq. (B5)].
The terms multiplying the energy differences ωα,λ in the first
line of Eq. (B21) or Eq. (B22) play the role of kinetic terms
expressing the rate of such an energy exchange. The nondiag-
onal part of the system Hamiltonian does not contribute to
heat currents to the baths but is associated with an energy
flow between the system and the mechanism connecting the
system to the baths, as represented by the Hamiltonian V [see
Eqs. (B22) and (B23)].

As in the main text we define the transition rate for a
transition j → j′ and its reverse:

γα ( j → j′) = τg2
α,λ〈Aα,λA†

α,λ〉B, (B24)

γα ( j′ → j) = τg2
α,λ〈A†

α,λAα,λ〉B. (B25)

Taking the limit τ → 0 in Eq. (B22), with τg2
α,λ = const, we

can distinguish the two heat currents on the RHS of Eq. (B22):

Q̇D,α =
∑

λ

ωλ(γα ( j → j′)〈π j〉S,t − γα ( j′ → j)〈π j′ 〉S,t ),

(B26)

Q̇ND,α = 1

2

∑
λ

[γα ( j → j′)(〈L†
λ[HND, Lλ] + [L†

λ, HND]Lλ〉S,t )

+ γα ( j′ → j)(〈Lλ[HND, L†
λ] + [Lλ, HND]L†

λ〉S,t )],

(B27)

where π j = L†
λLλ = | j〉〈 j| as in the main text. Thus, from

Eq. (B22) finally we obtain

ĖS =
∑

α

Q̇D,α + Q̇ND,α

=
∑

α

Tr(ρD∗
α[HD] + ρD∗

α[HND]), (B28)

which corresponds to the findings of Ref. [41], and it is the
result mentioned in the main text.

Inspection of Eqs. (B21)–(B23) can finally help us to ad-
dress the following question: which are the energy currents
that flow from and/or into the system and the baths? If we
assume the energy gaps in the baths and in the system to be
resonant, i.e.,

�α,λ = ωλ, (B29)

a part of the energy currents precisely matches the energy
current of the baths: such an energy current is the diago-
nal heat current (B26) and Q̇D,α = −ĖBα

holds. Yet, even if
Eq. (B29) holds, a part of the energy flows toward the inter-
action mechanism, represented by the Hamiltonian V , and we
find Q̇ND,α = −ĖVα

. Only when the chosen basis {| j〉} is the
eigenbasis of H and Eq. (B29) holds, the latter contribution
vanishes, and all the energy current flows from the system
into the baths. Furthermore, from Eq. (B22) we also obtain
Ės = ∑

α Q̇D,α + Q̇ND,α . The identical result is obtained by
considering ĖS = 〈Ḣ〉 and the dynamics in Eq. (1). Now, in
the steady state ĖS = 0, and thus the RHS of Eq. (B22) van-

ishes. Thus by comparing Eqs. (B21) and (B23) we conclude
that when the system reaches the steady state the equality
ĖBα

= −ĖVα
holds too.

We notice a difference with the notation of the main text:
the interaction Hamiltonian V as given by Eq. (25) entails both
the forward j → j′ jump (Lλ) and its inverse j′ → j (L†

λ).
Thus the sum over λ in Eqs. (B26) entails both the transitions,
while in the main text the sum over λ in, e.g., Eq. (2) involves
only the transition j → j′.

It is also worth noticing that, starting from Eq. (B2) and
using the Born-Markov approximation discussed above, after
calculating the difference ρ(t + τ ) − ρ(t ) up to the second
order in τ , one recovers the local master equations (1) and (2)
of the main text, with dissipation rates given by Eqs. (52) and
(51).

APPENDIX C: ADDITIONAL INFORMATION ON
THE NUMERICAL RESULTS

For each trajectory, the QMC algorithm evolves the sys-
tem’s state from an initial pure state |ψ (0)〉 to a final state
|ψ (t )〉. To initiate a QMC trajectory one thus needs to choose
an initial state |ψ (0)〉 compatible with the initial density ma-
trix ρ (0). One special choice is to take |ψ (0)〉 to be one of the
{|k0〉}, i.e., the eigenstates of ρ (0), with probability pk0 , such
that

ρ (0) =
∑

k0

pk0 |k0〉〈k0|. (C1)

This choice corresponds to a noninvasive measurement that
does not induce any back-action on the system. This is the
approach that we followed for the simulations whose results
are shown in Fig. 2 in the main text, and in Fig. 3 in this
Appendix. Given that the FT, Eq. (16), is independent of the
initial basis, we also consider below the case where the system
is initially projected on the basis {| j〉} defining the jump oper-
ators introduced in Eq. (2). In contrast to the previous choice,
in this case the measurement is indeed invasive and induces
measurement back-action. Nonetheless, our fluctuation theo-
rem is still valid.

We now discuss the evaluation of the system’s entropy
change with the QMC. We write the quantum FT, Eq. (16),
in the form of its classical counterpart, Eq. (3):

〈e−S−�SS 〉tr = 1, (C2)

where now 〈· · ·〉tr is the average over the QMC trajectories.
Given that the generalized entropy S along a trajectory is

well defined [see Eq. (22) in the main text], we are left with
the question of how to sample the system’s entropy change
�SS along the quantum trajectories. Inspired by what one does
in the classical case one can possibly sample two different
quantities along a single trajectory:

�SS,x = −〈ψ (t )| log ρ(t )|ψ (t )〉
+〈ψ (0)| log ρ (0)|ψ (0)〉, (C3)

�SS,y = − log (〈ψ (t )|ρ(t )|ψ (t )〉)

+ log(〈ψ (0)|ρ (0)|ψ (0)〉)), (C4)
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FIG. 3. QMC simulations of the two-spin system (C7): 〈exp(−�Stot )〉tr and 〈exp(−�SB )〉tr as functions of t , with �Stot = S + �SS . For
the system’s entropy variation we use the two possible definitions in Eq. (C3) and (C4). Averages over 106 trajectories, g = 0.1, Ta = 1.
(a) Diagonal ρ (0), J = 0, h = 0.2, Tb = 1 (classical case at equilibrium). (b) Diagonal ρ (0), J = 0.1, h = 0.2, Tb = 1.2. (c) Nondiagonal ρ (0),
J = 0.1, h = 0.2, Tb = 1.2. (d) Nondiagonal ρ (0), J = 0.2, Tb = 1.2, and time-dependent field h(t ) = 0.4t/tf , with tf = 15. See Appendix C
for the detailed description of ρ (0). In panels (a)–(d) the jump rates (C10) are used, which satisfy the LDBC, and thus S = �SB. (e) Nonthermal
jump rates γα,λ, as reported in Table I, that do not satisfy the LDBC, with diagonal ρ (0), and J = 0.1, h = 0.2.

where ρ(t ) is the solution of ME (1). In the classical case,
these two quantities are equivalent, as ρ(t ) is diagonal, and the
state |ψ (t )〉 is one of the states of the chosen basis. However,
these two possible definitions for the system entropy provide
a completely different result for a quantum nondiagonal state.
This is also evident in our numerical demonstration of the FT,
and we anticipate that the second definition is the correct one.
We can also provide a theoretical argument for this result.
With the QMC, one can evaluate the solution ρ(t ) to the ME
as

ρ(t ) = 〈|ψ (t )〉〈ψ (t )|〉tr. (C5)

Strictly speaking, the equality is exact when one considers the
whole ensemble of possible trajectories. In a QMC trajectory,
from |ψ (0)〉 = |k0〉 to |ψ (t )〉, one can sample S , Eq. (22). Let
us now consider the FT in the form of Eq. (16) and address the
question of how we can evaluate 
 (1)(t | πk0 ) with an average
over the MC trajectories. Inspection of Eq. (C5), and of the
definition of 
(ξ, t ), Eq. (7), suggests


 (1)(t | πk0 ) = 〈e−S ||ψ (t )〉,|k0〉|ψ (t )〉〈ψ (t )| 〉tr. (C6)

Comparison of the last equality with the FT in the form of
Eqs. (16) and (C2) suggests that �S(t )S,y as given by Eq. (C4)
must be used in the numerical evaluation of the FT.

This conclusion is confirmed by the results for the two-
spin system shown in Fig. 3 where the trajectory average
in Eq. (C2) is shown for different values of the system pa-
rameters and of the initial state ρ (0), and the two possible
definitions of system entropy change, Eqs. (C3) and (C4), are
used. In particular, in Fig. 3(d) we consider the case of a time-
dependent Hamiltonian, where the external field is changed
according to h(t ) = h0 + (h1 − h0)t/tf . While Figs. 3(a)–3(d)
correspond to the case where the baths are thermal, with dis-

sipation rates obeying the LDBC, in Fig. 3(e) we consider the
case where the dissipation rates violate the detailed balance
(see below for further details).

We can also check that the FT holds for an arbitrary initial
basis, as predicted by Eq. (16). In Fig. 4 we start the sim-
ulations from (i) the basis {|k0〉} that diagonalizes the initial
state ρ (0), and (ii) the basis {| j〉} defining the jump operators
introduced in Eq. (2). We see that the FT is numerically
satisfied for both choices.

FIG. 4. QMC simulations of the two-spin system (C7):
〈exp(−�Stot )〉tr and 〈exp(−�SB)〉tr as functions of t , with �Stot =
�SB + �SS . Nondiagonal ρ (0), J = 0.1, h = 0.2, Tb = 1.2. See Ap-
pendix C for the detailed description of ρ (0). We start the simulations
with (i) the basis {|k0〉} that diagonalizes the initial state ρ (0), and (ii)
the basis {| j〉} defining the jump operators introduced in Eq. (2). The
dissipation rates (C10) have been used.
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TABLE I. Dissipation rates for the different transitions with-
out the LDBC. We enumerate the standard basis as follows:
{|0〉, |1〉, |2〉, |3〉} = {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}.

γa(0 → 2) = 0.0813
γa(2 → 0) = 0.1335
γa(1 → 3) = 0.0976
γa(3 → 1) = 0.1407

γa( j → j) = 0.1
γb(0 → 1) = 0.1011
γb(1 → 0) = 0.1270
γb(2 → 3) = 0.1112
γb(3 → 2) = 0.1411
γb( j → j) = 0.12

Other information on the numeric results

We remind the reader that in the main text we consider a
system of two spin-1/2 particles with Hamiltonian

H = −Jσx,a ⊗ σx,b − h(σz,a ⊗ I2,b + ⊗I2,a ⊗ σz,b), (C7)

where each spin is connected to an equilibrium reservoir
at temperatures Ta and Tb, respectively. The jump operators
“flip” the individual spins: Lλ = σ−,a ⊗ Ib or Lλ = Ia ⊗ σ−,b.

The diagonal initial state for Figs. 2(a), 2(b), and 2(d)
in the main text and Figs. 3(a), 3(b), and 3(d) in this
Appendix reads ρ

(0)
D = (0.4, 0.275, 0.175, 0.15) in the basis

{| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}.
The nondiagonal initial state in Figs. 2(c) and 3(c) was

obtained as follows. We introduced the operator

H0 = −1

2
π|↑↑〉 − 1

4
π|↓↓〉 − 1

3
π|↑↓〉

−hσx,a ⊗ I2 + hI2 ⊗ σx,b, (C8)

then

ρ (0) = e−H0/2/Tr[e−H0/2]. (C9)

For the case where the LDBC holds, the bosonic bath
dissipation rates used to solve numerically the quantum ME
(1) and in the QMC algorithm read [55]

γα,λ = g|ωλ|
1 − eβα |ωλ|

{
e−βαωλ, ωλ � 0
1, ωλ � 0,

(C10)

where g is a microscopic frequency and ωλ is defined in
Eq. (B5). When the LDBC holds, the generalized entropy S ,
Eq. (22), takes the simple form

S = �SB = −(βaQa,D + βbQb,D)

= −
na∑

l=1

βaω jl+1, jl (tl ) −
nb∑

m=1

βbω jm+1, jm (tm), (C11)

where �SB is the entropy change in the bath.
For the case where the LDBC does not hold [Fig. 3(e) in

this Appendix and Fig. 2(e) in the main text], we choose the
dissipation rates as in Table I.

APPENDIX D: COMPLEMENT TO SECTION III

This Appendix complements the derivation of the results
in Sec. III.

We first prove Eq. (43). We start by introducing the non-
Hermitian operator

V ′
α,λ = gα,λ(L†

λAα,λ − LλA†
α,λ), (D1)

and notice that

[HB,H] = [HB,V ] =
∑
α,λ

�α,λV ′
α,λ, (D2)

[HB, [HB,H]] =
[

HB,
∑
α,λ

�α,λV ′
α,λ

]
=

∑
α,λ

�2
α,λVα,λ. (D3)

We proceed by noticing that for two noncommuting opera-
tors X and Y , the following equality holds:

eX eY = eY +[X,Y ]+ 1
2! [X,[X,Y ]]+ 1

3! [X,[X,[X,Y ]]]+··· eX . (D4)

We now turn our attention back to Eq. (35), and taking X =
−SB/2 and Y = H in the previous equation, we find

e− SB
2 e−itH

= e
−it

[
H+HB+∑

α,λ

∑∞
n=0 gα,λ

(
y2n
α,λ

Vα,λ
2n! −y2n+1

α,λ

V ′
α,λ

(2n+1)!

)]
e−βαHB/2

= e−it[H+HB+∑
α,λ V α,λ]e− SB

2 , (D5)

where yα,λ = βα�α,λ/2 and

V α,λ = gα,λ

(
e−βα�α,λ/2L†

λAα,λ + eβα�α,λ/2LλA†
α,λ

)
(D6)

is a modified, non-Hermitian interaction Hamiltonian that en-
ters in Eq. (45).

We now turn our attention to Eq. (50), and show how it is
equivalent to Eq. (54) and thus to Eq. (11) in the limit τ →
0. By using the definition for the rates γα ( j → j′) = γα, j′ j

introduced in Eqs. (51) and (52), Eq. (50) becomes


(t + τ ) − 
(t )

τ

� −i[H, 
(t )] +
∑
α,λ

γα, j′ je
βα�α,λLλ
(t )L†

λ

+
∑
α,λ

γα, j j′e
−βα�α,λL†

λ
(t )Lλ

−1

2

∑
α,λ

γα, j′ j{L†
λLλ,
(t )} + γα, j j′ {LλL†

λ,
(t )}

= −i[H, 
(t )]

+
∑
α,λ

γα, j j′Lλ
(t )L†
λ + γα, j′ jL

†
λ
(t )Lλ

−1

2

∑
α,λ

γα, j′ j{L†
λLλ,
(t )} + γα, j j′ {LλL†

λ,
(t )},

(D7)

where in the last equality we have used Eq. (53). A care-
ful inspection shows that the diagonal part of the RHS of
Eq. (53) corresponds to Eq. (A10), while the nondiagonal
part of Eq. (53) corresponds to Eq. (A11). This proves that
the nonunitary dynamics introduced in Eq. (47) leads to the
modified ME (11) under the same approximations that lead to
the GKSL ME (1).
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