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In this paper, we consider a population of digital nodes (such as phones, computers, etc.) that are under the attack of two competing malware. These malware infect the nodes in order to exploit their computational resources for specific purposes such as mining crypto-currency, cloud computing, etc. We suppose that each virus spreads following the susceptibleinfected-susceptible (SIS) compartmental model. Additionally, we assume that the malware designers can tune the percentage of resource utilization from their host nodes. A higher resource utilization implies a higher instantaneous profit but will also lead to faster detection and elimination (node recovery) of the malware. Once the malware is detected, complete protection of the infected node by means of anti-malware software is also possible at a smaller rate. The proposed setup results in a non-cooperative game between the two players (the malware designers) trying to maximize their profit i.e., the resources utilized from the infected nodes. We characterize and analyze the Nash equilibrium for such a game using a time-scale separation approximation. Finally, we numerically validate the approximation and we compute the price of anarchy.

I. INTRODUCTION

With the ever-growing importance of networked or cloud computing, crypto-mining, and other applications, the computational resources available on a network have become an important target for malicious software, known as malware. Malware is often built by cyber-criminals, and it typically aims to compromise target computers with the ultimate goal of stealing sensitive data or gaining access to private systems. However, in this work, we focus on malware that desires to exploit the computational resources for the profit of their creator, such as by mining crypto-currency. Defense mechanisms such as firewalls and anti-viruses have been developed in order to defend against malicious software but the powerful ones often require investment from the end-users. Moreover, most defense techniques are focused on intrusion detection systems (IDS) [START_REF] Kemmerer | Intrusion detection: a brief history and overview[END_REF] and not on supervision systems.

To the best of our knowledge, no work has studied the problem of smart malware that tries to maximize resource utilization without being detected. Specifically, in our setup, a high computational resource utilization will result in large instantaneous profits for the malware designer but will slow the infected targets. Consequently, the owner will be able to easily detect that the device is corrupted. Understanding this trade-off and its impact is essential to design anti-malware strategies from the network point of view. To study this tradeoff, we need to analyze the impact of resource utilization in the spread and persistence of the malware on the network. Epidemiological models have been widely and efficiently used to describe the dynamics of malware proliferation over a computer network as seen from [START_REF] Peng | Smartphone malware and its propagation modeling: A survey[END_REF], [START_REF] Yu | Malware propagation in large-scale networks[END_REF]. Game theoretical models have also been used to study how the defending nodes may utilize their resources and invest in securing their device or not [START_REF] Spyridopoulos | Game theoretic approach for cost-benefit analysis of malware proliferation prevention[END_REF], [START_REF] Hayel | Complete game-theoretic characterization of sis epidemics protection strategies[END_REF], [START_REF] Hota | Game-theoretic vaccination against networked sis epidemics and impacts of human decision-making[END_REF].

Since we consider that the network is under attack by two (competing) malware, classical 1-virus models are insufficient, and we need to look at bi-virus models. In the literature on SIS epidemiological models, a very well known result for the two (competing) virus case is that of the "Winner takes all" [START_REF] Prakash | Winner takes all: competing viruses or ideas on fair-play networks[END_REF]. In this case, depending on the initial conditions and the contamination rates of the viruses, one of them becomes extinct and the other propagates all over the network. Note that the term competing here implies that the presence of one virus on a node makes it inaccessible to the other virus. This is the case for some biological viruses. This model has been well studied in the SIS literature and control strategies for reaching the disease-free equilibrium have been proposed in [START_REF] Liu | Analysis and control of a continuous-time bi-virus model[END_REF].

Unlike the above mentioned works, which study protection strategies with the network agents as the decision makers against an epidemic with fixed parameters, what we study in our paper is the interaction framework between two malware designers in a game-theoretic setting. The decision makers (players) in our work are the malware designers, who, before releasing the malware to infect the network, are able to tune the resource utilization parameter which impacts their instantaneous profits from an infected node, but also increases the chance for the malware to be detected and removed. Note that similar problem formulations can be encountered in other application domains. For instance, we can consider the opinion dynamics over a social network under the influence of competing marketers. While the SIS model is geverned by nonlinear dynamics, in [START_REF] Masucci | Strategic resource allocation for competitive influence in social networks[END_REF] and [START_REF] Varma | Marketing resource allocation in duopolies over social networks[END_REF], the authors consider a very basic linear opinion dynamics model ( [START_REF] Degroot | Reaching a consensus[END_REF]) under the influence of competing entities. They used game-theoretical tools to characterize the Nash equilibrium of the network and the resource allocation in terms of the initial conditions and the node centrality of each individual.

To analyze the game we first emphasize that under a realistic assumption, the overall dynamics evolves on two time scales. Consequently, we first use a rather classical result (see [START_REF] Khalil | Nonlinear Systems[END_REF] for instance) to decouple the slow and fast dynamics leading to good approximations of the original states. With this decoupling the analysis of the game is easier to analyze. The methodology is numerically validated.

The rest of the paper is organized as follows. In Section II, we provide the epidemiological model for the malware spread and the framework for the game between the two competing malware. In Section III, we apply time-scale separation (TSS) on the malware spread to approximate and derive closed-form expressions for the utilities. Next, in Section IV we analyze the resulting non-cooperative game between the two malware and under certain assumptions, provide a characterization of the Nash equilibrium. In Section V numerical examples justify the TSS and demonstrate the feasible utilities, Nash equilibrium, and the price of anarchy for the game. Finally, we provide concluding remarks and perspectives for future research in Section VI.

Notation. Let R ≥0 = [0, ∞) denote the set of non-negative real numbers. For the ease of exposition, when k ∈ {1, 2} is a player index, to refer to the index of the other player as -k, i.e. -k := 3-k. We say that a function f : R → R is of order and denote this by O( ) if there exist a constant M ∈ R ≥0 such that |f (x)| < M , ∀x.

II. PROPOSED PROBLEM FORMULATION A. Malware infection model

Our model is inspired by the well-known compartmental epidemic modeling in [START_REF] Bailey | The mathematical theory of infectious diseases and its applications[END_REF]. In particular two types of infection are considered, which are not often studied in such models and for this feature, we refer to the model in [START_REF] Prakash | Winner takes all: competing viruses or ideas on fair-play networks[END_REF]. We use S(t) ∈ [0, 1] to denote the population fraction of susceptible nodes in the network, I 1 (t), I 2 (t) ∈ [0, 1] to denote nodes infected with the first and second malware respectively and finally we use P (t) ∈ [0, 1] to denote the population of fully protected nodes at any given t ∈ R ≥0 . As all these variables denote the population fractions, we must have S(t) + I 1 (t) + I 2 (t) + P (t) = 1 at any time t ≥ 0. For ease of exposition, we will skip explicitly denoting the time dependence for the rest of the paper. The two (competing) malware "susceptible-infectedsusceptible-protected" (SISP) model is written as follows.

Ṡ = -γ 1 SI 1 -γ 2 SI 2 + δ 1 (u 1 )I 1 + δ 2 (u 2 )I 2 İ1 = +γ 1 SI 1 -δ 1 (u 1 )I 1 -µ 1 (u 1 )I 1 İ2 = +γ 2 SI 2 -δ 2 (u 2 )I 2 -µ 2 (u 2 )I 2 Ṗ = µ 1 (u 1 )I 1 + µ 2 (u 2 )I 2 . (1) 
Here, γ 1 , γ 2 ∈ R ≥0 are the infection rates of malware one and two respectively. The resource utilization by malware k ∈ {1, 2} is given by u k ∈ U, which is the decision variable for malware k. We consider |U| < ∞ and U ⊂ R >0 (a finite discrete set with positive real elements), with u min = min(U) > 0 the minimum amount of resources that must be utilized for a malware to be useful. The functions δ k : U → R ≥0 and µ k : U → R ≥0 denote the recovery rate and protection rates, respectively. A higher resource utilization implies a higher chance of the malware being detected and therefore being purged from the host or for the host to install powerful anti-malware software, making it permanently free of infection from all malware. Thus, δ k and µ k are strictly increasing functions.

B. The non-cooperative game model

The revenue (or profit/utility) accumulated by each malware k after it's deployment at time t = 0 is given by

R k (u 1 , u 2 ) = ∞ 0 u k I k (t)dt. (2) 
This expression corresponds to the total amount of computational resources exploited by malware k from the population of nodes over an infinite horizon of time. Clearly, malware interact through the number of infected devices. We define the non-cooperative game G := ({1, 2}, {U, U}, {R 1 , R 2 }) where

1) The set of players (malware designers) is given by {1, 2}, 2) the action set for each player is U and 3) the utility function for each player

k is R k (u 1 , u 2 ).
Our objective is to characterize the Nash equilibrium (NE) of this game and to numerically study the price of anarchy, i.e., the loss of total revenue at the social optimum when compared to the NE. To recall, a strategy

(u * 1 , u * 2 ) is said to be a pure NE if and only if R k (u k , u * -k ) ≤ R k (u * 1 , u * 2 ) (3) 
for all u k ∈ U and for all k ∈ {1, 2}. That is, no player can increase its revenue by unilaterally deviating from the NE strategy.

III. REVENUE APPROXIMATION UNDER TIME-SCALE

SEPARATION

Evaluating R k (u 1 , u 2 ) analytically is challenging due to the non-linear dynamics [START_REF] Kemmerer | Intrusion detection: a brief history and overview[END_REF]. Thus, we apply TSS in order to approximate the revenue under the following assumption.

Assumption 1. There exists a small ∈ R ≥0 (we write << 1) such that for all k ∈ {1, 2} and u k ∈ U one has

µ k (u k ) ≤ δ k (u k ) (4) 
The practical meaning of Assumption 1 is that deleting a detected malware is free of cost as the host can uninstall or delete the associated program (at rate δ k ) as soon as it is detected. On the other hand, installing a powerful anti-malware software (at rate µ k ) as soon as a malware is detected is rare since it is not free. Thus, we typically have that

µ k (u k ) is much smaller than δ k (u k ).
Now, we denote the winning malware by

k * (u 1 , u 2 ) = k ∈ {1, 2} δ k (u k ) γ k < min δ -k (u -k ) γ -k , 1 
(5) For convenience, we will drop the dependence of k * on (u 1 , u 2 ) and we will simply call it k * . Note that k * becomes an empty set (no winner or loser) if δ1(u1) γ1 = δ2(u2) γ2 . We use φ k (u 1 , u 2 ) to denote the success of malware k given by Fig. 1. Phase portrait, i.e., the vector field associated to ( İ1 , İ2 ) for each value of (I 1 , I 2 ), of (1) with γ 1 = γ 2 = 0.1, δ 1 = 0.05, δ 2 = 0.03 and

φ k (u 1 , u 2 ) =    1 if k * = k 0.5 if k * = ∅ and δ k (u k ) γ k < 1 0 otherwise. ( 6 
)
µ 1 = µ 2 = 0.
Theorem 1. Under Assumption 1, we have

R k (u 1 , u 2 ) = φ k (u 1 , u 2 ) 1 - δ k (u k ) γ k u k µ k (u k ) + O( ) (7)
for any I 1 (0) > 0, I 2 (0) > 0.

Proof. First, note that we consider δ k (u k ) < γ k for at least one k ∈ {1, 2} as otherwise both the malware will die out quickly, making it a trivial case resulting in almost zero revenue for both. This implies that for any u 1 , u 2 , we can write γ k := -1 µ k g k and δ k := -1 µ k d k where g k , d k are functions of O(1) under assumption 1. We omit the dependence on actions (u 1 , u 2 ) for ease of exposition for the rest of the proof as they do not change during the course of the dynamics. We apply time-scale separation according to methodology described in the chapter on singular perturbations in [START_REF] Khalil | Nonlinear Systems[END_REF]. Since O(γ) = 1, we say that t f = t is the fast time scale and t s = t is the slow time scale. This allows us to rewrite (1) in the slow time scale as follows.

dS dts = -µ 1 g 1 SI 1 -g 2 µ 2 SI 2 + d 1 µ 1 I 1 + d 2 µ 2 I 2 dI1 dts = µ 1 I 1 (g 1 S -d 1 ) -µ 1 I 1 dI2 dts = µ 2 (g 2 SI 2 -d 2 I 2 ) -µ 2 I 2 dP dts = µ 1 I 1 + µ 2 I 2 . ( 8 
)
We can similarly rewrite (1) in the fast time scale as

dS dt f = -γ 1 SI 1 -γ 2 SI 2 + δ 1 µ 1 I 1 + δ 2 µ 2 I 2 dI1 dt f = I 1 (γ 1 S -δ 1 ) -γ1 g1 I 1 dI2 dt f = µ 2 (g 2 SI 2 -d 2 I 2 ) -γ2 g2 I 2 dP dt f = γ1 g1 I 1 + γ2 g2 I 2 . (9) 
It is noteworthy that the dynamics of the fast states S, I 1 , I 2 do not depend on the slow state P . This simplifies the expression of the slow and fast approximations. In the sequel we use S f , I f 1 , I f 2 and P s to denote the approximations of S, I 1 , I 2 and P after the decoupling of the slow and fast dynamics.

Fast dynamics: Setting → 0 in (9), we have the following dynamics.

dS f dt f = -γ 1 SI 1 -γ 2 SI 2 + δ 1 I 1 + δ 2 I 2 dI f 1 dt f = +γ 1 SI 1 -δ 1 I 1 dI f 2 dt f = +γ 2 SI 2 -δ 2 I 2 dP s dt f = 0 (10)
This dynamics corresponds to the classical two competingvirus SIS model studied in Section 4.2 of [START_REF] Prakash | Winner takes all: competing viruses or ideas on fair-play networks[END_REF], which has exactly one stable equilibrium at S f = δ k * γ k * , I f k * = 1-S f -P s and I f -k * = 0 when k * = ∅ (there is a clear winner). We illustrate this result with a phase portrait of the fast dynamics in Figure 1. On the other hand, if there is no clear winner, i.e., k * = ∅, co-existence of the two malware becomes possible. In this case, we will assume symmetric initial conditions which results in an equilibrium of the fast dynamics at I f k (T ) = 0.5 -0.5 δ1 γ1 for both players and S s = δ1 γ1 . Slow dynamics: Without any loss of generality, let's consider that k * = 1. Setting → 0 in (8), we obtain S f = δ1 γ1 = g 1 /d 1 and I f 2 = 0 to satisfy the first three lines. All that remains is the slow dynamics

dI f 1 dt s = -µ k I f 1 = - dP s dt s (11) 
Since P (0) = 0, applying the results in [START_REF] Khalil | Nonlinear Systems[END_REF], we obtain

I k * (t) = I f k * (t)+O( ) = 1 - δ k * (u k * ) γ k * exp(-µ k * t)+O( )
for all t > 0. Additionally as I k (t) is exponentially converging to 0, even the integral of the approximation term should be bounded and of the order of . Thus, we have

Rk * (u 1 , u 2 ) = ∞ 0 u k * 1 - δ k * (u k * ) γ k * exp(-µ k * t)dt (12) with Rk * (u 1 , u 2 ) -R k * (u 1 , u 2 ) = O( ).
Thus results in [START_REF] Prakash | Winner takes all: competing viruses or ideas on fair-play networks[END_REF] for all cases with a clear winner and half of this expression in case of a tie. Indeed, it is clear that when the two malware do not co-exist on the same host, the analysis is much simpler as the only stable equilibrium is that of the one with the smaller recovery rate for the reduced-order dynamics. On the other hand, when both malware may co-exist, there are two (locally) stable equilibria for the reduced-order dynamics and thus the equilibrium reached depends a lot on the initial conditions as will be demonstrated in Section V.D. Since I 1 (0), I 2 (0) are assumed to be non-controllable, we consider that I 1 (0) = I 2 (0) when we evaluate the revenue during a "tie" (both malware have the same ratio between their recovery and spreading rates). Next, we study the game G when the revenue function is given by the results in Theorem 1.

IV. NON-COOPERATIVE GAME ANALYSIS

In this section, we characterize the NE of the noncooperative game G defined in Section II. The results from Theorem 1 provide a closed-form expression for the utility functions, and this allows us to write the best response of player k to an action u -k by the other player as

BR k (u -k ) = arg max U 1 - δ k (u k ) γ k u k µ k (u k ) φ k (u 1 , u 2 )
Next, we characterize the NE of the game G as stated in the following.

A. Existence of pure NE

The existence of pure NE is usually not guaranteed in noncooperative games, whereas in our setting we have the proof of its existence. Additionally, for some cases, the non-cooperative game may have several pure NE.

Proposition 1. The game G admits at least one pure NE given by

1) (u min , u min ) if δ1(umin) γ1 = δ2(umin) γ2 , 2) All (BR 1 (u min ), u 2 ) with u 2 ∈ U such that k * (BR 1 (u min ), u 2 ) = 1, when δ1(umin) γ1 < δ2(umin) γ2 , 3) All (u 1 , BR 2 (u min )) with u 1 ∈ U such that k * (u min , BR 2 (u min )) = 2 otherwise.
Furthermore, any additional NE (u 1 , u 2 ) if they exist, must satisfy δ1(u1) γ1(u1) = δ2(u2) γ2(u2) .

Proof. We prove this case by case. First, if δ1(umin) γ1

= δ2(umin) γ2 we have that δ k (u k ) γ k > δ -k (umin) γ -k
for any u k > u min as δ k is a strictly increasing function. This implies that R k (u k ; u -k = u min ) = 0 for all u k > u min , proving that (u min , u min ) is a NE for this case.

In the second case, player 1 is playing its best response to player 2 and so by definition can not improve his utility by deviating. On the other hand, player 2 is losing and has 0 revenue for all u 2 ∈ U as u min is already the smallest action playable. Thus, it can not improve its utility either. Thus,

(BR 1 (u min ), u min ) is a NE if k * (BR 1 (u min ), u min ) = 1.
Similar arguments hold for case 3.

Next, consider that there exists some NE (u 1 , u 2 ) such that δ1(u1) γ1(u1) = δ2(u2) γ2(u2) . This excludes the additional NE case mentioned in the proposition statement. Without loss of generality let's say δ1(u1) γ1(u1) > δ2(u2) γ2(u2) . This means that player 2 is the winner of the epidemic and thus R 1 (u 1 , u 2 ) = 0. If, u 1 = u min , then BR 2 (u min ) is by definition the best choice for player 2 and so all the NE are fully captured by case 3).

Otherwise, if u 1 > u min and u 2 / ∈ BR 2 (u min ), and (u 1 , u 2 ) is an NE, then u 2 ∈ BR(u 1 ) by definition of the NE and the best response. This implies that δ1(umin) γ1 < δ2(u2) γ2 as the best responses must match otherwise. Then player 1 can deviate to u min and improve his utility as u 2 = BR 2 (u min ), and (u 1 , u 2 ) is therefore not an NE by contradiction.

The previous proposition shows the existence of at least one pure NE, but non-cooperative games generally allow for multiple Nash equilibria [START_REF] Fudenberg | Game Theory[END_REF]. In next section, we are able to determine them explicitly by assuming linear recovery and protection rates.

B. Special cases for the recovery and protection rates

Consider two adjacent elements of U (recall that U is a finite discrete set), i.e., any U 1 , U 2 ∈ U with U 1 < U 2 such that there exists no other U ∈ U such that U 1 < U < U 2 . Now, we say that the action set is dense with order α > 1 if

U 2 ≤ αU 1 for all U 1 , U 2 adjacent. Assumption 2. δ k (u k ) := a k + b k u k ( 13 
)
and µ k (u k ) = δ k (u k ) with a k , b k ∈ R ≥0 , ∈ (0, 1) and small.
Since is taken to be small, Assumption 2 automatically implies that Assumption 1 is satisfied. Now, we have the following result for the uniqueness of the NE. Proposition 2. Under Assumption 2, the only pure NE for game G are the ones stated in Proposition 1 items ( 1)

-(3) if U is of order α ≤ 2.
Proof. Consider that there exists some NE (u 1 , u 2 ) other than the ones described in Proposition 1 items 1)-3). That is consider that (u 1 , u 2 ) is an NE with δ1(u1) γ1(u1) = δ2(u2) γ2(u2) . Due to there being no winner, the utility for player 1 is given by

R 1 (u 1 , u 2 ) = (1 - a 1 + b 1 u 1 γ 1 ) u 1 2 (a 1 + b 1 u 1 ) (14) 
Now, consider that player 1 deviates his strategy to u 1 = u 1 -∆. His new utility is given by

R 1 (u 1 -∆, u 2 ) = (1 - a 1 + b 1 u 1 -∆ γ 1 ) u 1 -∆ (a 1 + b 1 u 1 -b 1 ∆) (15 
) as he wins. We have

R 1 (u 1 -∆, u 2 ) -R 1 (u 1 , u 2 ) > C u1-∆ (a1+b1u1-b1∆) -0.5 u1 (a1+b1u1) > C u1-∆ (a1+b1u1) -0.5 u1 (a1+b1u1) (16) where C = -1 1 -a1+b1u1-∆ γ1 which is positive if ∆ ≤ u 1 /2. Since u 1 ≤ 2u 1 for any u 1 , u 1 adjacent, (u 1 , u 2 )
can not be an NE, resulting in a contradiction.

V. NUMERICAL PERFORMANCE ANALYSIS A. Validity of TSS approximation

First, we demonstrate that (1) is well approximated by the TSS done in Theorem 1. For this purpose, we take γ 1 = γ 2 = 0.1, δ 1 (u 1 ) = 0.01 + 0.05u 1 , δ 2 (u 2 ) = 0.01 + 0.03u 2 with u 1 = u 2 = 1. We then take µ k (u k ) = 0.1δ k (u k ) in the first figure and µ k (u k ) = 0.02δ k (u k ) in the second figure, i.e., the TSS factor = 0.1 and 0.02 respectively to represent relatively higher and lower protection rates.

In the simulation for Figure 2, we compute that R 1 (u 1 , u 2 ) = 10.5 and R 2 (u 1 , u 2 ) = 134 versus R2 (u 1 , u 2 ) = 150, where R denotes the TSS approximation from Theorem 1. This indicates a relative error, i.e. R2(u1,u2)-R2(u1,u2) R2(u1,u2) of 11%. On the other hand, in Figure 3, we observe R 1 (u 1 , u 2 ) = 13 and R 2 (u 1 , u 2 ) = 727 with the TSS approximation R2 (u 1 , u 2 ) = 750 indicating a relative error of around 3%. Simulations with other values of ∈ {0.005, 0.01, 0.05, 0.2} suggest that the relative error is of the order of .

B. NE analysis of the game G

Next, we will take γ 1 = γ 2 = 0.1, δ 1 = δ 2 = 0.01+0.03u 1 , µ k = 0.02δ k (u k ), U = {0.1, 0.2, .., 1} and plot all the feasible utilities in Figure 4, with the NE marked in red. Note that these rate functions satisfy Assumption 2. Indeed, as proven in Proposition 1, (u min , u min ) is a NE and is in fact the only NE as proven in 2 for this case as U is of order 2. Next, we remove some of the elements of the action set and demonstrate that when the order of the set is higher than two, multiple NE may exist. First, we look at all the resulting utilities with U = {0.1, 0.2, 0.7} in Table I, which allows exactly one pure NE at (0.1, 0.1). However, removing the element 0.2 from the action set results in multiple NE as can be seen from Table II with (0.7, 0.7) being an additional NE. The two tables above highlight an effect similar to the famous Braess' Paradox, allowing additional options results in a poor NE for both players. In the second case, if both malware play u k = 1 they don't gain anything by deviating. On the other hand, allowing the action 0.2 as in Table I allows either player to deviate and improve their utility. 

C. Interpretation and discussion

Typically in game theory, the "social optimum" is defined as the strategy profile maximizing the sum of the individual utilities. Then, the price of anarchy compares the sum of the utilities at the NE to that at the social optimum. However, in this context, where the players are malicious entities, the objective of the network and of the public, in general, is to minimize the profits earned by the malware. In this sense, anarchy is something desired.

In the example studied in Table I, (0.7, 0.7) is the strategy maximizing the sum utility of the two players which results in R 1 = R 2 = 390. However, due to the competition between the malware, the only NE is one with R 1 = R 2 = 167. In a broader sense, the implication here is that when multiple malware or viruses compete on a common network, the one utilizing the least resources "wins" as it is harder to detect or is not worth it for the users to be protected against. If the software or hardware allows for a much smaller u min and the malware can be tuned well (U is of sufficiently small order), the NE will be correspondingly worse. For example, if U = {0.05, 0.1, 0.2, 0.7} the NE utility becomes 96 for both players. Therefore, allowing malware more freedom in their choice of creating codes that utilize a smaller value of resources may result in intensifying the competition between the malware, resulting in them earning smaller profits, consequently improving the end-user welfare.

D. Alternate virus model

The model [START_REF] Kemmerer | Intrusion detection: a brief history and overview[END_REF] assumes that the two malware can not coexist on the same computer. This kind of epidemiological model is perfectly suited for certain virus strains but may not always be suitable for computer viruses and malware. Thus, we will also provide a brief analysis of the two non-interacting virus SISP model written as follows.

Ṡ = -γ 1 SI 1 -γ 2 SI 2 + δ 1 (u 1 )I 1 + δ 2 (u 2 )I 2 +δ M (u 1 , u 2 )I M İ1 = +γ 1 SI 1 -γ 2 I 1 I 2 -δ 1 (u 1 )I 1 -µ 1 (u 1 )I 1 İ2 = +γ 2 SI 2 -γ 1 I 1 I 2 -δ 2 (u 2 )I 2 -µ 2 (u 2 )I 2 İM = (γ 1 + γ 2 )I 1 I 2 -(δ 1 (u 1 ) + δ 2 (u 2 ))I M -(µ 1 (u 1 ) + µ 2 (u 2 ))I M Ṗ = µ 1 (u 1 )I 1 + µ 2 (u 2 )I 2 + µ M (u 1 , u 2 )I M (17) 
This model allows for both malware to co-exist on the same computer, however, the presence of the two malware will imply a higher recovery and protection rate as the user will easily detect the presence of malware. The TSS approximation for (17) can be done in a similar fashion as in Theorem 1 to obtain the fast dynamics

Ṡ = -γ 1 SI 1 -γ 2 SI 2 + δ 1 (u 1 )I 1 + δ 2 (u 2 )I 2 + δ M I M İ1 = +γ 1 SI 1 -δ 1 (u 1 )I 1 -γ 2 I 1 I 2 İ2 = +γ 2 SI 2 -δ 2 (u 2 )I 2 -γ 1 I 1 I 2 İM = (γ 1 + γ 2 )I 1 I 2 -(δ 1 + δ 2 )I M Ṗ = 0 (18) First, note that S = δ k γ k , I k = 1 -S, I -k = 0, I M =
0 are two equilibria for this dynamics. However, unlike the previous system, when δ k γ k < 1 for both the malware, the two endemic equilibria are locally stable as seen from the phase portrait in Figure 5 obtained by setting I M → 0. While this is not the main focus of the paper, it is interesting to note that even in the case where both malware may co-exist in the same computer, there is still a clear "winner takes all" behavior, with the winner being decided by both the epidemiological parameters as well as the initial conditions. Thus, to simplify, we assume that I 1 (0) = I 2 (0). Now, if δ1 γ1 < δ2 γ2 , for any I 1 ≥ I 2 , I 1 < 1 -δ1 γ1 , we have İ1 -İ2 = +γ 1 SI 1 -δ 1 (u 1 )I 1 -(γ 2 SI 2 -δ 2 (u 2 )I 2 ) (19) which is positive as I 1 (t) ≥ I 2 (t) inductively and δ1 γ1 < δ2 γ2 . Therefore, the equilibrium with I 1 = 0 is never reached and since the only other stable equilibrium is the one with S = δ1 γ1 , I 1 = 1 -S, I 2 = 0, this equilibrium is reached. Similar arguments hold for the winner being player 2 when δ1 γ1 > δ2 γ2 . Thus, the results of this case correspond with that of Theorem 1 when the initial conditions are symmetric and maybe obtained in a similar fashion following the proof of Theorem 1.

VI. CONCLUSION

In this paper, we study a game model which characterizes the competition between two malware trying to take over a network. We use an epidemiological model to characterize the spread of each malware as a function of their resource utilization rate and then provide a closed-form expression for the malware revenue using time-scale separation. We are then able to characterize the Nash equilibrium for the resulting game under the assumption that both malware starts with the same number of infected nodes. Numerical simulations demonstrate the validity of the time-scale approximation and the features of the game such as the price of anarchy. In future works, we would like to consider several regions or clusters in the network with a given interaction graph between these regions to have a more realistic model of the network as studied in [START_REF] Liu | Analysis and control of a continuous-time bi-virus model[END_REF].
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 23 Fig.2. The first malware is seen to die out faster than the second but still gains some revenue due to being not so small.

Fig. 4 .

 4 Fig. 4. All the feasible utilities with the NE marked in red.

2 Fig. 5 .

 25 Fig. 5. Phase portrait of (17) with γ 1 = γ 2 = 0.1, δ 1 = 0.05, δ 2 = 0.03 and µ 1 = µ 2 = 0.

TABLE I (

 I REVENUE 1, REVENUE 2) WITH SEVERAL CHOICES OF ACTIONS. THE ONLY PURE NE STRATEGY IS (0.1, 0.1).

	Actions	u 1 = 0.1 u 1 = 0.2 u 1 = 0.7
	u 2 = 0.1 (167,167)	(0,334)	(0,334)
	u 2 = 0.2	(334,0)	(262,262)	(0,525)
	u 2 = 0.7	(334,0)	(525,0)	(390,390)

TABLE II (

 II REVENUE 1, REVENUE 2) FOR A SMALLER SET OF ACTIONS.

	Actions	u 1 = 0.1 u 1 = 0.7
	u 2 = 0.1 (167,167)	(0,334)
	u 2 = 0.7	(334,0)	(390,390)
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