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M. Cavelier1,2, B.-J. Gréa1 †, A. Briard1 and L. Gostiaux2

1 CEA, DAM, DIF, F-91297 Arpajon, France
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We study the development and the breaking process of standing waves at the interface
between two miscible fluids of small density contrast. In our experiment, a subharmonic
wave is generated by a time-periodic vertical acceleration via the Faraday instability. It
is shown that its wavelength may be selected not only by the linear process predicted by
the Floquet theory and favoring the most unstable modes allowed by the tank geometry,
but also by a nonlinear mode competition mechanism giving the preference to subcritical
modes. Subsequently, as the standing wave amplitude grows, a secondary destabilization
process occurs at smaller scales and produces turbulent mixing at the nodes. We explain
this phenomenon as a subcritical parametric resonance instability. Different approaches
derived from local and global stability analysis are proposed to predict the critical wave
steepness. These theories are then assessed against various numerical and experimental
data varying the frequencies and the amplitudes of the forcing acceleration.

Key words: Faraday instability, mode selection, wavebreaking

1. Introduction

The triggering of waves at the interfaces between fluids of different densities by vertical
vibrations is a well known phenomenon first observed by Faraday (1831) and extensively
reviewed in Miles & Henderson (1990). It constitutes a classical example of parametric
instability in fluids and it has greatly helped the understanding of pattern formation in
nonlinear systems (Edwards & Fauve 1994; Kudrolli & Gollub 1996; Godrèche & Man-
neville 2005; Kahouadji et al. 2015). In this context, a considerable number of studies
successfully characterized the instability onset using linear Floquet theory. We mention
here only the major contributions of Benjamin & Ursell (1954) and Kumar & Tuck-
erman (1994). In addition, the development of new weakly-nonlinear approaches was
of paramount importance to predict the saturation amplitudes of the Faraday waves
(Douady 1990; Zhang & Viñals 1997; Chen & Viñals 1999; Skeldon & Rucklidge 2015),
to disentangle the multi-modal interactions leading to spatiotemporal chaos (Ciliberto
& Gollub 1985; Meron & Procaccia 1986; Gollub & Ramshankar 1991) or to evidence
the bifurcations and hysteresis phenomena (Rajchenbach & Clamond 2015; Périnet et al.
2016).

By contrast, the Faraday instability in the turbulent regime has been less studied. On
the one hand, this is possibly due to a lack of theoretical tools as strong nonlinearities still

† Email address for correspondence: benoit-joseph.grea@cea.fr
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Figure 1: The breaking of a Faraday wave in the FARAMIX experiment. (a): Visualization
showing the tank geometry and the configuration (also presented in Briard et al. (2020)).
(b): Time series images from the camera zooming on one wavelength and presenting
two oscillation periods of the primary wave. This illustrates the different stages of the
wavebreaking with first a ‘blurring’ of the interface at the node followed by a ‘roll-up’.
This case corresponds to the b5 experiment which parameters are detailed in table 1. (c):
Visualisation of the interface at wavebreaking in the direct numerical simulation DNSd3
(the parameters are given in table 2). The reference frame as well as the acceleration
direction are also indicated.

lie ‘almost entirely outside the realm of available analytical techniques’, as commented
by Miles & Henderson (1990). On the other hand, there are few Faraday experiments
dedicated to the subject as most of them are conducted in small apparatus with high
viscosity fluids to better control the dissipation process (Bechhoefer et al. 1995). Besides,
the turbulent regime has been investigated, in particular for miscible fluids with small
density contrast (see Zoueshtiagh et al. 2009; Amiroudine et al. 2012) where it is ob-
served that the turbulent mixing layer driven by vertical vibrations grows and eventually
saturates. This indeed occurs as the natural frequencies of the system decrease with the
enlargement of the layer and are no longer parametrically excited by the periodic forc-
ing. By retaining only the nonlinear interactions of turbulence with the mean flow (Gréa
2013), the final size of the turbulent mixing layers can be predicted analytically (Gréa &
Adou 2018). This prediction has been recently confirmed experimentally in Briard et al.
(2020).

Concerning more specifically the transition to turbulence in the Faraday problem, it is
known since Ciliberto & Gollub (1985) and Meron (1987) that chaotic behaviours often
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The subcritical transition to turbulence 3

appear for parameters in the vicinity of the neutral branch intersections of the stability
diagram. The experiments presented in Briard et al. (2020) postulate several scenarios of
transition to turbulence. For instance, due to the large dimensions of the tank allowing
viscous effects to be negligible, harmonic and subharmonic modes can interact to generate
mixing at small scales as also reported in numerical simulations (Briard et al. 2019).
However this experimental campaign also evidences that turbulence can result from the
breaking process of a single Faraday mode. This phenomenon is illustrated in figure 1 (see
also online movies) showing a growing subharmonic primary Faraday wave subjected to
a destabilization process occurring at the nodes and rapidly producing turbulent mixing.
The objective of this work is to investigate and explain this mechanism.

The breaking of Faraday waves at free surfaces is known to appear at the wave crest and
leads to the formation of jets (as shown by Jiang et al. 1998; Wright et al. 2000; Longuet-
Higgins 2001; Kalinichenko 2009). This comes from the modulation of the primary wave
interacting with its first temporal harmonics. More generally, the crests of the waves
in the ocean are also subject to destabilization. This topic due to its importance is
well documented, shedding light on the many instability mechanisms which can develop
(Banner & Peregrine 1993; Kiger & Duncan 2012). Yet, the breaking process of free
surface waves differs sensitively from the observations reported in figure 1. By contrast,
our problem presents very close similarities with the destabilization of standing waves
described by Thorpe (1968), also in the context of miscible fluids with small density
variations. While the primary wave in Thorpe’s experiment is not generated by vertical
vibrations but by lateral plungers, a vortex is still produced at the wave node as in figure
1. More precisely, several phases can be identified for the instability with a ‘blurring’ of the
interface preceding its ‘roll-up’. Kalinichenko (2005) has also observed and investigated
experimentally the breaking process of a Faraday wave between miscible or immiscible
fluids. In particular, he reported that the secondary instability starts for wave steepness
ka ∼ 0.4, with k the wavenumber and a the amplitude of the Faraday wave. The Rayleigh-
Taylor type instability does not seem to play a role in the process as the acceleration
induced by the primary wave displacement is not sufficient to invert the gravity. In place,
both Thorpe (1968) and Kalinichenko (2005) convenes that a sort of Kelvin-Helmholtz
instability, ‘although not in a simple form’, is at work. Due to the strong time dependence
of this configuration, evaluating locally the Richardson number at the node cannot be
sufficient to assess the importance of the shear instability. Additionally, in the context
of internal gravity waves, the role of subharmonic secondary parametric instabilities in
the breaking process has been explored (McEwan & Robinson 1975; Bouruet-Aubertot
et al. 1995; Benielli & Sommeria 1998; Staquet & Sommeria 2002; Sutherland 2010; Yalim
et al. 2020). Can this mechanism also apply to Faraday waves?

This paper is organized as follows: we give in section 2 a brief description of the
experiments and numerical simulations used for this study. In section 3, we analyze the
characteristics of the primary Faraday wave, emphasizing in particular the mode selection
mechanism. The section 4 is dedicated to the wavebreaking process with two theoretical
approaches proposed and shedding light on the importance of a subharmonic secondary
instability. We then detail our methodology in order to measure the wavebreaking am-
plitudes in section 5. Finally, the analysis and discussion of the results in view of the
theoretical predictions are provided in section 5.3.

2. Generalities

This work, dedicated to the wavebreaking of Faraday waves, relies on several experi-
ments already presented in Briard et al. (2020) and initially designed to study the turbu-
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lent mixing driven by vertical vibrations. We first detail the configuration used and the
parameters considered. Next, we present the direct numerical simulations which allow
us to explore an even broader range of parameters and to identify how the transition to
turbulence takes place.

2.1. Experimental set-up and parameters

The experimental set-up is now briefly introduced since the details can be found in Briard
et al. (2020). We fill a cuboidal tank of inner length W = 94.6 cm, width D = 11 cm,
and height H = 67 cm, with salt and fresh water (see figure 1). The salt water density
takes the values ρ1 = 1030, 1060 or 1090 kg m−3 while, for the fresh water, we get
ρ2 = 998 kg m−3. This corresponds to various Atwood numbers, expressing the density
contrast, A = (ρ1 − ρ2)/(ρ1 + ρ2) ∈ {0.015; 0.03; 0.045}. The heavier salty water layer
is initially placed at the bottom. It is separated from the lighter fresh water by a thin
diffuse interface of thickness δ = 0.5 − 1.5 cm located at half the height of the tank.
This thickness may vary due to the filling procedure of the tank. The values of δ can be
measured either by the initial image from the camera or by the vertical density profiles
obtained from a probe before the experiment starts.

Series Number A F ω [rad s−1] km,n [m−1] Mode (m,n) δ [cm]

EXPa 1 0.015 0.30 2.555 13.28 (4, 0) 1.3∗

2 0.015 0.30 2.953 16.60 (5, 0) 0.8
3 0.015 0.30 3.462 23.25 (7, 0) 1.0
4 0.015 0.30 3.924 33.21 (9, 0) 1.1
5 0.015 0.40 2.457 13.28 (4,0) 1.7
6 0.015 0.40 3.462 23.25 (7,0) 0.6
7 0.015 0.40 3.942 29.89 (9,0) 0.6
8 0.015 0.50 3.142 19.93 (6,0) 1.4
9 0.015 0.50 3.924 26.57 (8,0) 0.5

EXPb 1 0.03 0.30 4.524 19.93 (6,0) 0.6∗

2 0.03 0.40 3.462 9.96 (3,0) 0.8
3 0.03 0.50 4.524 19.93 (6,0) 0.8
4 0.03 0.69 4.290 16.60 (5,0) 0.4∗

5 0.03 0.69 4.290 16.60 (5,0) 0.5∗

6 0.03 0.69 4.290 19.93 (6,0) 0.5∗

EXPc 1 0.045 0.50 3.066 6.64 (2,0) 1.2
2 0.045 0.69 4.290 13.28 (4,0) 0.3∗

3 0.045 0.69 4.290 13.28 (4,0) 0.7∗

Table 1: Label (series and number), Atwood number, forcing parameter and frequency
considered for the experiments in this work. The wavenumbers and mode types corre-
sponding to the primary Faraday wave are also indicated. The initial interface thickness
δ is either measured by a probe when available or directly from the camera (labelled with
∗).

An hexapod oscillates the tank along the z-vertical direction (for the horizontal di-
rections, x corresponds to the length W and y is along the width D of the tank).
This generates a well-controlled time dependent vertical acceleration of intensity G(t) =
G0(1 + F cosωt). Here G0 = 9.81m s−2 is the usual gravitational acceleration, ω the
frequency, and F the forcing parameter. This forcing parameter is related to the vertical
displacement amplitude of the hexapod, ah, as F = ahω

2/G0. In the experiments, the
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acceleration does not change sign since F < 1, although the displacement amplitude of
the vessel can be as large as ah = 45 cm.

Series Number A F ω [rad s−1] Mode (m,n) r ε / ε1 [cm] δ = 3σ [cm]

DNSa 1 0.015 0.70 3.500 (6,0) 1.5 0.9
2 0.030 0.60 2.800 (2,0) 1.5 0.9
3 0.030 0.80 2.340 (2,0) 1.5 0.9
4 0.030 0.80 2.800 (2,0) 1.5 0.9
5 0.030 1.00 2.340 (2,0) 1.5 0.9
6 0.045 0.50 4.900 (4,0) 1.5 0.9
7 0.045 0.69 3.200 (2,0) 1.5 0.9
8 0.045 0.694 4.29 (4,0) 1.5 0.9

DNSb∗ 1 0.03 0.8 2.4 (2,0)/(3,0) 0.5 1.5 1.8
2 0.03 0.8 2.5 (2,0)/(3,0) 0.5 1.5 1.8
3 0.03 0.8 2.6 (2,0)/(3,0) 0.5 1.5 1.8
4 0.03 0.8 2.7 (2,0)/(3,0) 0.5 1.5 1.8
5 0.03 0.8 2.8 (2,0)/(3,0) 0.5 1.5 1.8
6 0.03 0.8 2.9 (2,0)/(3,0) 0.5 1.5 1.8
7 0.03 0.8 3.07 (2,0)/(3,0) 0.5 1.5 1.8

DNSc∗ 1 0.03 0.8 3.07 (2,0)/(3,0) 0.1 1.5 1.8
2 0.03 0.8 3.07 (2,0)/(3,0) 0.1 3 1.8
3 0.03 0.8 3.07 (2,0)/(3,0) 0.25 3 1.8
4 0.03 0.8 3.07 (2,0)/(3,0) 0.5 3 1.8
5 0.03 0.8 3.07 (2,0)/(3,0) 1 3 1.8

DNSd 1 0.045 0.5 4.29 (4,0) 1.5 0.9
2 0.045 0.694 4.29 (4,0) 1.5 0.9
3 0.045 1 4.29 (4,0) 1.5 0.9
4 0.045 1.5 4.29 (4,0) 1.5 0.9
5 0.045 2 4.29 (4,0) 1.5 0.9
6 0.045 2.5 4.29 (4,0) 1.5 0.9
7 0.045 3 4.29 (4,0) 1.5 0.9
8 0.045 3.5 4.29 (4,0) 1.5 0.9
9 0.045 4 4.29 (4,0) 1.5 0.9
10 0.045 4.5 4.29 (4,0) 1.5 0.9
11 0.045 5 4.29 (4,0) 1.5 0.9

DNSe 1 0.03 0.3 2.8 (2,0) 1.5 1.8

DNSf 1 0.045 1 4.29 (4,0) 1.5/0.015 0.9

Table 2: Label (series and number) and parameters in physical units (Atwood number,
forcing parameter and frequency) taken for the direct numerical simulations presented
in this work. The cases DNSa, d and e correspond to the wavebreaking detection. The
series DNSb and c are dedicated to the competition between mode (2, 0) and (3, 0) where
the selected mode appears underlined. The parameter r expresses the initial amplitude
ratio (r = 0 corresponding to a pure (2, 0) mode). The initial amplitude ε of the inter-
face perturbation, the y-spanwise perturbation amplitude ε1 for DNSf together with the
interface thicknesses δ are also detailed. The computation domain is of cubic size with
length W = 94.6 cm or 2W for the series labelled with ∗. All the DNSs have a 10243 grid
resolution.
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We select in Briard et al. (2020) the experiments with sharp initial interfaces and
developing a single Faraday wave. The cases exhibiting different modes appearing simul-
taneously are not considered. Therefore, our study is based on 18 experiments shown in
table 1, and grouped by values of A.

The primary standing Faraday waves observed in these experiments are characterized

by a horizontal wavenumber, km,n =
√
k2
x + k2

y, associated with the mode index in the

x and y directions, respectively m = kxW/π, and n = kyD/π. So for instance m = 2
corresponds to a wavelength equalling the width W of the tank. As the primary wave is
“two-dimensional”, this implies a zero mode index n = 0. It can be seen in table 1 that
configurations with odd and even modes have been investigated.

2.2. Direct numerical simulations

In this work, we also provide direct numerical simulations (DNS) in order to explore a
broader panel of parameters and to investigate the inner mechanisms of wavebreaking.

These simulations solve numerically the Navier-Stokes equations under the Boussinesq
approximation. They express the dynamics of the incompressible fluid velocity U(x, t)
and the concentration of heavy fluid C(x, t). Here for miscible fluids with small Atwood
number, the dimensionless concentration C(x, t) ∈ [0 1] is related to the density as
ρ(x, t) = ρ2 + (ρ1 − ρ2)C(x, t). In the reference frame attached to the container, this
leads to the classical system of equations

∂tU + U · ∇U = −∇Π− 2AG(t)Cez + ν∇2U, (2.1a)

∂tC + U · ∇C = D∇2C, (2.1b)

∇ ·U = 0. (2.1c)

In (2.1a-2.1c), Π refers to a reduced pressure and ν,D are the kinematic viscosity
and molecular diffusion coefficients respectively. This set of equations constitutes our
theoretical framework in order to predict the wavebreaking. It also describes reasonably
well the flow dynamics at large scale in the experiments despite the variations of the
viscosity and diffusion coefficients, < 20%, between fresh and salt water.

The simulations are performed in a triply periodic cubic box of size W (or 2W ) us-
ing the code already described in Briard et al. (2019, 2020). Therefore, we do not seek
at reproducing the tank’s walls which do not play a direct role in the wavebreaking
phenomenology (although the walls can play a decisive role in the final transition to tur-
bulence). The code is based on a pseudo-spectral collocation method with two-third rule
dealiasing. The time advancement is realized through a third-order low-storage strong-
stability-preserving Runge-Kutta scheme, with implicit viscous terms. All the simulations
use a 10243 grid box with a slab-decomposition on 1024 cores. Due to the vertical period-
icity, a thin penalization layer is applied to freeze the velocity and concentration fields at
the top and bottom of the computational domain. This method is extensively described
in appendix B of Briard et al. (2020). Several tests varying the width of the penalization
band have been conducted in order to ensure that this vertical treatment has no impact
on the dynamics of the interface. In all the simulations presented, the amplitude of the
Faraday wave is less than half of the vertical height of the non-penalized domain.

The simulations parameters are presented in table 2. In order to have a well resolved
flow field, the viscosity and diffusion are fixed at ν = D = 2.26 × 10−6m2s−1. This
corresponds roughly to twice the real viscosity of water but largely overestimates the
molecular diffusion (the Schmidt number is 1 instead of 700 for salt water). Due to the
dimensions of the tank, this limitation does not prevent to properly capture at least the
first stages of secondary instabilities developing on the Faraday wave.
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The subcritical transition to turbulence 7

We now detail the initial conditions taken in the simulations. While the initial velocity
is U = 0 in the simulations, the initial concentration profile is taken two-dimensional
(2D) of the form (for the DNSa, d and e series and outside the penalization band)

C(x, z) =
1

2

(
1 + tanh

[
z − ξ(x)

σ

])
, with ξ(x) = ε sin(km,0x). (2.2)

The parameter σ in (2.2) sets the initial width δ of the interface (δ ≈ 3σ). The function
ξ(x) indicates the initial perturbed interface position of sinusoidal shape with wavelength
k and of small amplitude ε = 1.5 cm. Therefore, the initial interface is slightly more
diffused and has a larger amplitude in the simulations compared to the experiments.
This is to have at least 10 grid points across the interface layer and to ensure grid
convergence of the simulations.

Without ambiguity, the initial wavenumber km,0 for DNSa, d, and e also corresponds
to the observed wavenumber at later times indicated in table 2 and characterizing the
subharmonic Faraday wave. This is due to our choice for the forcing frequency taken
nearly as twice the value of the dispersion relationship of an inviscid interface ω =
2
√
AG0km,0.

In order to explore more broadly the effect of mode selection, we also propose simula-
tions DNSb and c with an initial interface position defined as

ξ(x) = ε[r cos(k3,0x) + (1− r) cos(k2,0x)]. (2.3)

Here, the parameter r thus expresses the initial ratio amplitude between the modes (3, 0)
and (2, 0). These simulations are conducted in a computational domain twice the size of
the tank, 2W , in order to allow the development of odd modes otherwise forbidden due
to the periodic boundary conditions. Also, the interface thicknesses δ are doubled to keep
at least 10 grid points across the interface while the viscosity and diffusion coefficients
are multiplied by 4 still to ensure grid convergence of these simulations.

In the simulation series DNSa-e, the flow remains two dimensional even after the sec-
ondary instability starts. In order to study the full transition to turbulence, we consider
simulations DNSf where the interface position is slightly perturbed in the spanwise di-
rection y. Introducing the normalized white noise function f , the interface position is
given by

ξ(x, y) = ε sin(km,0x) + ε1f(y). (2.4)

In practice, the y disturbance amplitude is set such that ε1 = 10−2ε. However, we have
also tested various simulations varying the ε1 parameter, not presented as exhibiting the
same phenomenology as DNSf. The breaking of the spanwise symmetry invariance in
DNSf can also be produced by the lateral boundary layers in the experiments. Therefore,
various simulations mimicking the lateral boundary layers were also conducted using the
penalization method introduced in Briard et al. (2020). These simulations (not presented)
give also similar results as DNSf which will be discussed in section 5.3.3.

3. Mode selection mechanism of the Faraday wave

In this part, we discuss the primary wave characteristics and try to figure out which lin-
ear or nonlinear mechanism eventually selects the dominant wavelength of the instability
in the experiments.

3.1. Linear theory

It is well-known since Benjamin & Ursell (1954) that, when modelling the Faraday in-
stability, the amplitudes, ηk, for the interface modes of wavenumber k are ruled by a
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Mathieu equation

η̈k + 2γ(k)η̇k + Ω2(k)(1 + F cosωt)ηk = 0. (3.1)

In (3.1), we define the inviscid frequency of the diffuse interface Ω and the viscous
damping term γ, both of which depend on the horizontal wavenumber k. Note that the
decoupling of each inviscid mode is only true in the limit of small damping. However, the
full analysis of this problem can be performed using the method proposed by Kumar &
Tuckerman (1994).

The inviscid frequency Ω(k) within the deep water approximation is thus a growing
function of k and can be evaluated for a given vertical density profile, see for instance
Briard et al. (2020) for piecewise linear profile

Ω(k) =

( AG0k

1 + kδ/2

)1/2

. (3.2)

For small wavenumbers, i.e. kδ � 1 with δ the thickness of the interface, the classical
dispersion relationship for an interface within the deep water approximation Ω =

√
AG0k

is recovered. In the large wavenumber limit, kδ � 1, the interface mode reduces to
Ω(k) =

√
2AG0/δ corresponding to the local buoyancy or Brunt-Väisälä frequency at

the interface.
Mode (2, 0) (3, 0) (4, 0) (5, 0) (6, 0) (8, 0)

γw = 9.75× 10−3 1.08× 10−2 1.15× 10−2 1.22× 10−2 1.28× 10−2 1.36× 10−2

γb = 1.16× 10−4 2.60× 10−4 4.62× 10−4 7.22× 10−4 1.04× 10−3 1.85× 10−3

γδ = 1.74× 10−3 2.61× 10−3 3.48× 10−3 4.35× 10−3 5.22× 10−3 7.27× 10−3

Table 3: Values for the damping coefficients, γw, γb, γδ, in s−1 and evaluated for the largest
wavelengths developing in the experiment. We assume here that the Atwood number is
A = 0.03 and the thickness of the interfacial layer is δ = 0.5 cm. Here, the top boundary
is taken as a wall to evaluate γh (the values would be nearly the same for a free surface).

The viscous dissipation term, γ(k), expressing the small interfacial mode damping,
can have different origins. The damping coming from the bulk flow for a sharp interface
takes the form γb(k) = 2νk2 (Lamb 1945; Landau & Lifshitz 2013). However, due to the
velocity gradients, a significant damping can also occur within the thin layer separating
the two fluids. Assuming a piecewise linear vertical density profile, Briard et al. (2020)
obtained the expression γδ(k) = AG0νk

2/Ω2δ ≈ νk/δ for kδ � 1. In this linear theory,
we wish also to account for the damping generated by the boundary layers at the various
walls (top, bottom and laterals) existing in the experiments. The boundary layer widths
in the experiment can be evaluated using δw = (2ν/Ω)1/2. This gives values around
δw ∼ 1 − 2 mm using the parameters of the experiments, showing that the boundary
layer widths are much smaller than the characteristics wavelengths of the instability and
the size of the tank. In this condition, Keulegan (1959); Miles & Benjamin (1967) have
derived an expression for the damping of free surface waves in a rectangular basin due
to the laminar boundary layers. This result has also been generalized to our problem by
Thorpe (1968) as detailed in appendix B and leads to the following expression for the
damping coefficient

γw ≈
ν

Dδw
=

√
νΩ√
2D

. (3.3)

Page 8 of 38

Cambridge University Press

Journal of Fluid Mechanics



The subcritical transition to turbulence 9

1.5 2.0 2.5 3.0 3.5 4.0
ω/
√
AG0k2,0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F

(2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0) (9,0)

A = 0.015

A = 0.030

A = 0.045

A = 0.015

A = 0.030

A = 0.045

Figure 2: Stability diagram for (3.1) in a non dimensional frequency ω/
√
AG0k2,0 and

forcing F plane. The colored regions correspond to the first subharmonic instability
band associated with the different modes of the tank (the mode number is indicated
in the figure). The diagram is obtained using the damping coefficient γ = γδ + γw at
three different Atwood numbers A and considering an interface thickness δ = 1 cm.
The neutral curves (thick plain lines) have a slight dependence on the Atwood number
explaining that they are not completely superimposed. The symbols correspond to the
parameters taken in the experiment in table 1. The shapes indicate the Atwood number
and the colors reveal which mode is eventually selected.

Here, (3.3) thus expresses the dominant contribution of the lateral walls (in the plane
z-x) to the damping.

We gather in table 3 the numerical values of the damping coefficients originating from
the bulk, the interfacial layer separating the fluids and from the boundary layers at
the wall. It can be shown that these values do not vary more than several percents if
we account for the viscosity contrast between fresh and salt water. Therefore, it clearly
indicates that the dissipation occurs essentially in the viscous layers at the walls as γw
is larger than the other contributions. The damping γw scales indeed like ν1/2 in (3.3)
while it is linear in ν for the dissipation γb or from the interfacial layer γδ. Bechhoefer
et al. (1995) have extensively discussed this aspect and they suggest to use fluids with
high viscosity in order to better control the dissipation in experiments dedicated to the
study of the instability threshold. By contrast, our study is focused on the wavebreaking
mechanism explaining why we favor the use of low viscosity fluids. Note that for larger
wavenumber k, the contributions from the interface layer regain in importance and cannot
be neglected.

The stability diagram corresponding to the first subharmonic tongue is represented in
figure 2. It is plotted for the different large scale modes of the tank and derived using
the damping γw from (3.3) and γδ (the latter contribution being smaller). The neutral
curves of (3.1) are computed using the method proposed by Kumar & Tuckerman (1994)
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and also used in Briard et al. (2020) assuming different Atwood number values A and an
initial interface thickness δ = 1 cm. For a given mode k, the minimum forcing Fth able to
destabilize the interface occurs at the frequency corresponding to the first subharmonic
resonance, Ω(k) = ω/2. The classical asymptotic theory of the Mathieu equation, in
the limit of small damping, allows the derivation of the threshold as Fth = 8γ/ω (see
Rajchenbach & Clamond (2015) for instance). The threshold Fth varies very weakly for
the different modes presented in figure 2. Indeed the contribution due to the damping
from the viscous layer at the walls scales like γw ∼ ω1/2 leading to a decrease of Fth at
larger ω. However this effect is compensated at larger k by the contribution from the
damping at the interface scaling like γδ ∼ ω2.

The parameters taken in the experiments with F > 0.3, also indicated in figure 2, are
situated in unstable regions well above the viscous thresholds determined by the linear
Floquet theory. As a consequence, at least two or more modes can be simultaneously
subharmonically unstable in these experiments.

3.2. Linear or nonlinear mode selection?

In this section, we investigate the mechanisms leading to the mode selection of the pri-
mary wave. As shown in figure 2 and due to the large acceleration forcing F , several
modes can be linearly unstable and play a role in the interface dynamics. Surprisingly, a
single mode, corresponding nearly always to the smallest unstable wavelength, emerges
from this process; there is a clear tendency to favor the modes pertaining to the right
unstable tongues in figure 2 (the mode reported in table 1 is also indicated by the color
of the symbol in figure 2). In addition, the selection mechanism does not apparently
discriminate the even or the odd modes of the tank as both can be observed in the
experiments.

One would expect the modes with the largest linear growth rates to be selected first:
this is why only the modes in the first subharmonic band are considered here, as the
higher resonance regions exhibit much smaller amplification rates. For a given mode,
the Floquet theory shows that the maximum amplification occurs for parameters close
to the subharmonic resonance frequency located at the center of the instability tongue.
However, the results in figure 2 reveal that in many cases, the selected mode does not
have the largest linear growth rate. Even more, some of the observed modes are hardly
unstable and should have very small growth rate from linear theory (such as EXPa1 for
instance). This statement stands even if we account for some experimental uncertainties
in term of Atwood number (±0.001) or initial interface width (±0.5 cm). It can be shown
that these effects only slightly modify the instability tongues of figure 2. In particular,
a larger interface thickness would left-shift a bit the instability tongues of figure 2 as
the natural frequencies Ω are decreased (the damping dominated by the viscous layer at
the wall remains unchanged). Besides, we have checked that the hexapod movement is
well controlled and remains sinusoidal. Therefore, it is unlikely to have spurious forcing
frequencies in the system which may change the linear stability of the problem.

The initial perturbation of the interface may also play a role in the mode selection
mechanism. A large initial amplitude on a given mode can explain why it appears even
if it has not the largest growth rate during the linear phase. This would suggest that
an initial condition at small scales is at work in the experiments although we have not
observed such disturbance or could not identify a source able to generate it. Besides, this
cannot shed light on the appearance of linearly stable modes.

By contrast, Faraday experiments with immiscible fluids have revealed the ability of
nonlinearities to select modes and generate transient chaotic regimes (see for instance
Ciliberto & Gollub 1984, 1985). Using weakly nonlinear approaches, Meron & Procaccia
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(1986) and Meron (1987) have already detailed how the mode suppression phenomenon
can occur. Considering two modes close to the first subharmonic resonance, the nonlinear
cubic coupling terms in each amplitude equation have a sign determined by the detuning

parameter ∆ = Ω2

ω2 − 1
4 . Here, the detuning parameter for a given mode expresses the

departure of the forcing frequency from the first subharmonic resonance. Therefore, when
two modes are in competition, their respective detuning parameters ∆ generally have an
opposite sign because the forcing frequency ω lies between the two subharmonic resonance
frequencies (see figure 2). This explains the mode suppression since one mode can develop,
even being linearly stable, by pumping energy from the other one. The theory indeed
shows that the vanishing mode, ∆ < 0, is supercritical as the nonlinear coupling damps
the instability while the dominant one, ∆ > 0, is subcritical as it is being reinforced
by the nonlinearities. As the wave amplitude grows, the frequency of the wave tends to
diminish (Thorpe 1968) as well as the detuning parameter of each modes (Godrèche &
Manneville 2005). Hence, this left-shifts the instability bands of figure 2 and favors the
subcritical modes at smaller wavelength.

3.3. Numerical analysis of the mode competition

At this stage, the mode suppression due to a nonlinear coupling between competing
modes can explain the mode selection evidenced in figure 2. Besides, the mode amplitude
is no longer negligible compared to its wavelength when the selection process is at work,
suggesting that the nonlinear effects are an important ingredient to account for. We wish
to assess further this hypothesis by the mean of direct numerical simulations (DNS)
with well-characterized initial conditions. Two series of DNS have been performed using
10243 grid points (Series DNSb and c in Tab. 2), with A = 0.03. The frequency ω and
the forcing F taken in the simulations are also represented in the phase diagram of
figure 3. It is important to stress here that the phase diagram does not account for the
wall damping as simulations are performed in a triply periodic box. The two series of
DNS start from the same location in the phase diagram (point A) with F = 0.8 and
ω = 3.07 (or equivalently ω/

√
AG0k2,0 = 2.2). This corresponds to parameters with the

two unstable modes having nearly the same exponential growth rate as ∼ eλωt. Indeed,
the Floquet exponent λ takes the value 0.09 for mode (3, 0) and 0.07 for mode (2, 0).
We fix the forcing parameters in one series and vary the amplitude ratio r. In the other
series, the relative amplitude is set at r = 0.5 and we decrease the forcing frequency ω in
order to explore more deeply the (2, 0) subharmonic instability tongue. The simulations
are stopped when the wavebreaking occurs and we report which of the (2, 0) or (3, 0)
mode prevails at this moment in figure 3. This procedure is performed both visually and
by computing the Fourier modes of the interface.

The simulations clearly evidence the mode suppression phenomenon to the benefit
of the modes with the smallest wavelength. The results reported in figure 3 show the
dominance of mode (3, 0) even starting from a small initial amplitude (transition occurs
at r = 0.1) or developing in a region where it is linearly stable (for small ω). The
phenomenon can be scrutinized in more detail on the snapshots extracted from the two
series in the figure 4 where the mode (3, 0) emerges from cases with initial r = 0.25, 0.5
or with the frequencies ω = 2.6, 2.8. Indeed, in the last row of figure 4, one can observe
that mode (2, 0) prevails only for ω = 2.4 (ω/

√
AG0k2,0 = 1.72) and for larger ω, say

ω = 2.6 (or ω/
√
AG0k2,0 = 1.86) mode (3, 0) is visible despite being linearly stable. As a

consequence, the mode competition greatly enhances the sensitivity to initial conditions
in the experiment. As importantly, this process breaks the symmetry of the primary wave
as can be seen in both the experiments (figure 1) and the simulations (figure 4).

Some specificities of the mode suppression in our Faraday experiment with miscible
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Figure 3: Parameters of the DNS (symbols) in the stability diagram ω-F . The colored
areas correspond to the subharmonic instability tongues for the modes (2, 0) and (3, 0)
accounting for viscosity and diffused interface δ = 1.8 cm (as no walls are present in the
DNS, the damping coefficient γ ≈ γδ and critical thresholds Fth are very small). The
symbols’ color indicates which mode emerges from the simulation, the mixed colors ex-
press that both modes can be observed. Two series of DNSb, c (see table 2) are presented
here starting from point A. In the DNSb group, the initial amplitude ratio r between
modes (3, 0) and (2, 0) is set at r = 0.5 and we decrease the forcing frequency ω. In the
DNSc group, the frequency and forcing are fixed and we vary r. The point corresponding
to DNSe is also placed.

fluids are now addressed. We have not observed oscillations between two specific modes
as in Ciliberto & Gollub (1984, 1985) or similarly Yalim et al. (2019) in the context of
a stable stratification. This is notably because, at large forcing parameter, the interface
irreversibly grows allowing continuously new modes to be destabilized. The modes can
change in our experiment as already reported in Briard et al. (2020). But it always
corresponds to a one way transition from large to small wavelength for interface modes.
The more complex transitions evidenced in figure 14 of Briard et al. (2020), for instance,
refer to modes pertaining not to the same instability band or being of different nature.
The irreversible mixing produced by the rapid breaking of the primary waves also explains
this aspect.

Another difference with past Faraday immiscible experiments conducted in a shal-
low basin is that in our case the dominant waves correspond to those with the smallest
wavelength as already discussed. Noticeably this point clearly agrees with the nonlinear
theory of mode suppression. It can be shown that within the deep water approxima-
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r = 0.1 r = 0.25 r = 0.5

t

Cases with r varying

ω = 2.4 ω = 2.6 ω = 2.8

t

Cases with ω varying(b)(a)

Figure 4: Mode selection in 6 DNS of figure 3. (a) Cases corresponding to DNSc (see
table 2) with r varying and A = 0.030, ω = 3.07, F = 0.8. The amplitude of the
interface deformation is ε = 3 cm. (b) Cases corresponding to DNSb (see table 2) with
ω varying and A = 0.030, F = 0.8, r = 0.5, ε = 1.5 cm. We put the slices of width W
of the concentration field at four instants starting from the initial interface at t = 0 and
ending when the wavebreaking occurs; pure fluids remain in white while mixed fluid with
C = 0.5± 0.15 is in black.

tion, the subcritical modes are indeed those with small wavelength, see Rajchenbach &
Clamond (2015) for details.

In this part, it has been evidenced that the mode selection of the primary wave may
result from a complex nonlinear mode competition process. When this is the case, the
subcritical mode is eventually selected. In the following, we try to explain the breakdown
of the Faraday waves.

4. Modelling the breakdown of Faraday waves

We now present two heuristic models dedicated to the breakdown of Faraday waves
initiating the transition to turbulent mixing. The objective is to evaluate the critical wave
steepness at which the breakdown may occur. By emphasizing two simple approaches, we
aim at exploring various frameworks for the breakdown and at disentangling the inner
mechanisms responsible for the instability.

Both models, although relying on different assumptions, suggest that the breakdown
results from a subharmonic secondary instability at small scales. Therefore, one key
ingredient in these approaches is to account for the unsteadiness of the primary wave.
This aspect differs from secondary instability analysis relying on a frozen base flow used
for instance in the context of Kelvin-Helmholtz instability (Salehipour et al. 2015).

The first approach, hereafter referred as global, is based on the fact that the breakdown
of the Faraday waves changes the monotony of horizontally averaged density profiles (this
point is more specifically detailed later in section 5.2). We therefore seek at identifying
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Figure 5: Frameworks applied to model the wavebreaking of the primary wave (a) and
detailed in section 4. For the global approach (b), we consider the stability of the hor-
izontally averaged concentration profiles. For the local approach (c), we study the de-
velopment of small perturbations of wavenumber kwb at the node of the primary wave.

the conditions for a small disturbance to develop around the mean profile characterizing
a Faraday wave of given amplitude (see figure 5). By contrast, the second model proposed
relies on the local analysis of small perturbations at the interface node of the primary
wave (see also figure 5).

4.1. The global approach

4.1.1. A simple model equation

In order to derive a simple model for the breakdown of Faraday waves, the concentra-
tion and velocity fields are decomposed into a mean and a fluctuating part as C = C + c
and U = U + u. A mean quantity ∗ is obtained by averaging along the horizontal x,
y directions. The system (2.1) is classically averaged also in order to find the equations
for the mean flow and its fluctuations. It can be directly shown that the mean velocity
is zero, U = 0, due to the symmetries and the incompressibility condition. The mean
vertical concentration profile C(z, t) evolves principally due to the vertical buoyancy flux
wc as

∂tC + ∂zwc = D∂2
zzC. (4.1)

In this global approach, the primary Faraday wave is thus embedded in the mean vertical
concentration profile C(z, t) but also has fluctuation components satisfying (4.1).
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Further simplifications are now made in order to obtain a more tractable model. We
seek a ‘rapid’ secondary instability occurring at small scales and located at z = 0. In this
context, the rapid acceleration theory initially developped by Hunt & Carruthers (1990)
and applied to turbulent mixing layer in Gréa (2013) provides a convenient framework for
expressing the dynamics of small scale disturbances. We thus discard all the dissipative
and the non linear terms, except for the coupling between the fluctuations and the mean
concentration field. In addition, the small scale disturbance only sees a uniform mean
concentration gradient at z = 0 determined by the length L = −1/∂zC(0, t). Within this
quasi-homogeneous approximation, the small scale fluctuating quantities and pressure p
are determined by

∂tu = −∇p− 2AG(t)cez, (4.2a)

∂tc =
w

L(t)
, (4.2b)

∇ · u = 0. (4.2c)

One recognizes in (4.2) the classical equations for an internal gravity wave, except it
is driven by a time varying acceleration and mean density gradient. When it is uniform
across the layer, this mean gradient can be evaluated from the mixing layer length Lint =
6
∫ +∞
−∞ C(1 − C)dz introduced by Andrews & Spalding (1990) and previously used in

Briard et al. (2020) for the fully turbulent regime. However, this property is lost when
the flow takes the form of a single laminar wave. In this case, the inverse concentration
gradient is maximum at z = 0, and we will discuss in a next section different ways to
evaluate it.

These waves depends on their orientations but for this heuristic model we focus only on
waves with a wavevector in the horizontal plane. Differently oriented modes are thought
to be less relevant in the secondary instability partly because they are less likely to
modify the mean concentration profile; the feedback of the fluctuations to the mean
concentration profile is indeed controlled by the vertical buoyancy flux term wc which
is weaker for vertically oriented modes. Eliminating w in (4.2), we obtain the following
Mathieu-like equation (see a more detailed derivation in Gréa & Adou (2018))

c̈+
L̇

L
ċ+

2AG(t)

L
c = 0. (4.3)

The concentration fluctuations c are therefore fully determined by L expressing the
amplitude of the primary Faraday wave. We need to determine the condition on L for
which the perturbations may develop. Indeed, the rise of the perturbation foreshadows
the breaking process of the primary wave and the onset of turbulence. More precisely,
the equation (4.3) exhibits the buoyancy frequency defined as ΩB = (2AG0/L)1/2 and a
damping term L̇/L expressing the variations of ΩB as the mixing zone width L evolves.
As will be seen in section 4.2, the ΩB frequency is relevant for the secondary instabil-
ity because the shear at the nodes of the primary wave is directly driven by the wave
amplitude.

We now detail the implications of this model equation regarding the wavebreaking
phenomenology as observed in figure 1.

4.1.2. The subcritical nature and the criterion for the wavebreaking

The stability of the model equation (4.3) has been extensively discussed in Gréa &
Adou (2018) and Briard et al. (2020) allowing the prediction of the final widths of the
turbulent mixing zones. This saturation criterion evaluates when the subharmonic in-
stability stops or equivalently when the inner frequencies of the layer are no longer in
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Figure 6: Stability analysis of (4.3) with L(t) = L0(1 + β cos(ωt)) and represented in
the plane (Ω2

0B/ω
2, F ) (with Ω0B = (2AG0/L0)1/2). The two colored areas indicate the

first subharmonic tongues with β = 0 and β = 0.7 respectively. The dashed blue lines
correspond to the approximation (4.4) while the red dashed dotted ones correspond to
(B 9).

resonance with the forcing. Thus, it did not seek to account for the unsteadiness of L.
Conversely, we wish to interpret the wavebreaking as the development of a secondary
subharmonic instability at small scales. For a small disturbance characterized by the
buoyancy frequency ΩB , we thus aim at finding when it becomes parametrically unsta-
ble as the result of both the forcing and the primary wave oscillations. The enlargement
of the primary wave amplitude determines not only the instability threshold, but also
the later amplification of the secondary instability growth rate. This explains why the
secondary instability rapidly develops at the interface and sheds light on the subcritical
nature of this secondary instability. This peculiarity is indeed well-known for non linear
Mathieu systems such as (4.3) as detailed in Soliman & Thompson (1992) or Godrèche
& Manneville (2005).

In order to derive an analytic criterion for the wavebreaking, we consider the inverse
mean concentration gradient L having the following simple form L(t) = L0(1+β cos(ωt)).
The length L is thus expected to be proportional to the amplitude ηp of the primary Fara-
day wave, L(t) ∼ |ηp| in the laminar phase. Here, the proportionality coefficient depends
on the shape of the nonlinear primary wave. Also, the parameter β expresses the relative
amplitude of the Faraday wave oscillations while L0 is the mean over one oscillation pe-
riod. This expression does not account for the primary mode growth, which is assumed
small over an oscillation period. It also expresses that for a subharmonic instability, L os-
cillates at the frequency ω while ηp oscillates at the frequency ω/2. However, the higher
temporal harmonics of L(t) or ηp for the primary wave, are discarded. In addition, it
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is important to note that the primary Faraday mode amplitude is in phase with the
acceleration G(t).

In this context, we use the Floquet analysis detailed in appendix B to find the secondary
subharmonic instability onset. The results are represented in the stability diagram of
figure 6 exhibiting the instability tongues for β = 0 and β = 0.7. Note that the case
β = 0 corresponds indeed to the classical stability diagram of a Mathieu equation. In
this representation, the right-hand sides of the neutral branches (solid black lines of
figure 6) determine the critical amplitude of the primary wave and the beginning of the
secondary instability as L0 grows. This gives a critical threshold Lcrit which should be
close to the one characterizing the wavebreaking Lwb if the instability develops quickly
(we still have Lcrit 6 Lwb).

An analytical approximation for the critical threshold Lcrit is also derived in ap-
pendix B leading to

Lcrit ≈
(4− 2F )

1 + β/2

2AG0

ω2
, for F � 1 and β � 1. (4.4)

As shown in figure 6 (blue dashed line), the criterion (4.4) slightly underestimates Lcrit

at small F and large β while being reasonably correct for the parameters taken in the
experiment. However, it becomes very bad at large F , even leading to negative values
for F > 2. Despite being more complicated, a better approximation can be derived
corresponding to (B 9) and shown by the red dashed dotted lines of figure 6.

In (4.4), we see that the forcing F together with the movement of the primary wave
characterized by β contribute to the destabilization of the primary wave. In particular,
even without acceleration forcing (F = 0), the secondary instability can be triggered by
the primary wave oscillations. This also leads to striking differences in terms of growth
rates. For instance, for the subharmonic resonance at F = 0.7 we find a Floquet exponent
λ = 0.09 for β = 0 (also corresponding to the growth of the primary wave), while λ = 0.2
for the case with β = 0.7. Therefore, the acceleration induced by the primary wave
increases sensibly (but not drastically) the growth rate of the secondary modes. This
effect explains why the breakdown occurs in a time scale much shorter than the growth
of the primary wave.

4.2. The local approach

The previous global approach has the main advantage of being relatively simple through
relying on the horizontal averaging process. The drawback, however, is the loss of track
of the physical mechanism responsible for the secondary instability. Also, it assumes
that the secondary instability mode only results from the interaction with the mean
component of the primary wave. This assumption may appear excessive and it motivates
us to propose a complementary method. We therefore perform a stability analysis of the
flow generated at the node of the primary wave.

The equations driving the evolution of an interfacial perturbation amplitude, η, at
the node of the primary wave, are given in the inviscid limit by (see the derivation in
appendix C)

η̈ − 2iAkwbUη̇ +
(
AG(t)kwb − k2

wbU
2 − iAkwbU̇

)
η = 0. (4.5)

In (4.5), kwb represents the wavevector modulus of the perturbation, and U is the oscil-
lating tangential velocity induced by the primary wave at the node. Not surprisingly, we
recover the equation in the Boussinesq limit first derived by Kelly (1965) and expressing
the dynamics of an oscillating sheared interface. In fact, supposing the instability am-
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plitude and wavelength are small, respectively kη � 1 and κ = kwb/k � 1, this allows
us to neglect the interface tilting at the node and to assume the quasi-homogeneity of
the perturbation. Note that often at least two vortices may appear in the experiments
at the node of the primary wave during the breaking process suggesting the validity of
the homogeneity assumption.

Many works have been dedicated to the stability analysis of (4.5) in the case of G con-
stant and U oscillating at a single frequency ω. In addition to the parametric resonant
modes Kelly (1965) identified, Lyubimov & Cherepanov (1987) and Khenner et al. (1999)
have shown and derived a criterion for the existence of Kelvin-Helmholtz type modes at
the interface. These latter modes generate a longwave instability observed in most ex-
periments and which may exhibit frozen wave patterns at high forcing frequency (Wolf
1970; Wunenburger et al. 1999; Yoshikawa & Wesfreid 2011; Gaponenko et al. 2015; Lyu-
bimov et al. 2017; Gréa & Briard 2019). Noticeably, frozen waves are completely steady
structures analogous to the inclined equilibrium positions of a strongly and horizontally
oscillated pendulum.

The local analysis emphasizes the importance of the shear in the breakdown process
of the primary wave. Although the works of Thorpe (1968) and Kalinichenko (2005)
have early recognized this aspect, the nature of the instability, either Kelvin-Helmholtz
(KH) or parametric resonance (PR) type, has not been fully identified in this Faraday
wave context. The results of Kelly (1965) and Khenner et al. (1999), do not apply to
our specific configuration where the acceleration oscillates at frequency ω while the shear
velocity is subharmonic with frequency ω/2. We thus reconsider the problem of (4.5) by
taking a primary wave of the form ηp(t) = a cos(ωt/2) leading to

U(t) = −ωa
2

sin(ωt/2), and U2 =
ω2a2

8
(1− cosωt) =

1

2

AG0k

1 + 4∆
a2(1− cosωt), (4.6)

where in the last expression, the subharmonic resonance condition ω2 = 4AG0k/(1+4∆)
for an inviscid interface is used. In order to study the stability of (4.5), it is further

convenient to introduce the new variable Y defined as η = Y e
∫ t
0
iAkwbU(t′)dt′ giving (at

leading order in A)

Ÿ +
(
AG(t)kwb − k2

wbU
2
)
Y = 0. (4.7)

Due to the change of variable expression and that U oscillates at ω/2, the response in η
will be also subharmonic. However, for small Atwood number, η ≈ Y and the response
can be also nearly synchronous. Indeed, by substituting the expression for U(t) into (4.7),
we obtain a simple Mathieu equation on the form

Ÿ + (P +Q cos(ωt))Y = 0, (4.8)

with P = AG0k

(
κ− 1

2(1 + 4∆)
κ2(ka)2

)
and Q = AG0k

(
κF +

1

2(1 + 4∆)
κ2(ka)2

)
.

In figure 7, we show the stability diagram of (4.8) in a κ-ka plane (the subharmonic
resonance condition for the primary wave is again used). The instability tongue corre-
sponding to the KH type modes appears for P 6 0 which stands as the classical criterion
for the inviscid KH instability, kwbU2 > AG0 (Chandrasekhar 1961). The parametric
resonance zones start for P > 0 but have also a continuation in the opposite half-plane.
Remarkably, the instability zones exhibit a very weak dependence on κ for κ � 1.
Therefore, at given κ and as the primary wave amplitude grows, the perturbation passes
through the successive instability zones, first the PR types then lately the KH one. The
growth rates can be computed with the Floquet exponent and show a maximum approx-
imately in the middle of each zone. The KH and PR1 growth rates are larger compared
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Figure 7: Stability curve of (4.8) for F = 0.7 and ∆ = 0 in the κ-ka plane or the P -
Q plane (insert) corresponding to the classical representation of the Mathieu equation.
The blue colored areas show the Kelvin-Helmholtz (KH) and parametric resonance (PR)
instability regions. The dashed curve corresponds to P = 0. The area corresponding to
P < 0 is located above the dashed curve in the κ-ka representation. The critical wave
steepness value indicated by the black dotted curve corresponds to criterion (4.9).

to the other instability zones. Therefore, the breakdown of the Faraday wave is expected
to occur when the wave steepness, ka, lies in the instability KH or PR1 zones. This local
theory is inviscid which explains that the growth rates are higher at large κ. Of course,
the viscosity and the thickness δ of the interface should play a role and moderate this
aspect.

Similarly to the global approach, we can propose an approximation for the critical
wave steepness corresponding to the onset of the PR1 instability. Using the asymptotic
expression for the neutral curves of the Mathieu equation in the limit P → −∞, Q→ +∞
detailed in Abramowitz & Stegun (1965), we obtain

kacrit ≈
1

3
(1 + 4∆)(1 + F ). (4.9)

This simple expression (4.9) corresponds indeed to the plateau (it does not depend on
κ) separating the PR1 and PR2 bands in the small perturbation wavelength limit κ� 1
as shown in figure 7 (black dotted line).

At this stage, two theoretical approaches have been proposed to study the breaking
process of Faraday waves. Before assessing the validity of these approaches, it is first
necessary to detail how we detect the wavebreaking in both the experiments and simu-
lations.
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5. Data analysis of the experiments and simulations

In this section, we detail the methodology used in order to measure the primary wave
amplitudes and the inverse mean density gradients. We then investigate various strategies
to detect the instants at which the wavebreaking occurs. In the last part we discuss
the validity of the global and local wavebreaking theories against the data from the
experiments and DNS.

5.1. Primary wave amplitude and inverse mean density gradient

The global and local approaches detailed in section 4 rely on different scales characteriz-
ing the primary wave. These correspond respectively to the inverse mean concentration
gradient L(t) at the rest interface position z = 0 and the wave amplitude ηp(t) (see
also figure 5). It is therefore important to link these two quantities in order to com-
pare the global and the local theories in the experiments. As already remarked, we can
expect the proportionality between the inverse mean gradient and the wave amplitude,
L(t) = κ|ηp(t)|. This assumes that the shape of the primary wave is frozen which also
determines the coefficient κ. By considering the position ξp(x, t) = ηp(t) sin kx of a sharp
sinusoidal interface, as for the standing wave in appendix C, we can easily show that
κ = π (the wave amplitude is supposed larger than the interface thickness δ). This
choice is also motivated by the expression for the finite amplitude standing wave profile
given by Thorpe (1968) in deep water approximation and showing that the higher order
corrections are negligible even at moderate wave steepness.

The global theory assumes an inverse density gradient oscillating as L(t) = L0(1 +
β cosωt) while in the local theory the primary wave amplitude evolves as ηp = a cosωt/2.
By expanding |ηp(t)| in Fourier series and truncating at leading order, we simply get
L0 = 2κa/π and β = 2/3. This allows to express the results from the global theory
in terms of critical steepness as for the local theory. In particular, the critical wave
steepness for the global theory expressed by (4.4) in the limit of small F , using the
resonance condition and taking κ = π (sinusoidal interface) gives

kacrit =
3

8
(2− F )(1 + 4∆). (5.1)

We now detail how to measure the inverse local gradient L and the wave amplitude
ηp in practice in the experiments. The inverse local gradient is a difficult quantity to
obtain directly from the mean concentration profile. The latter, resulting from the post-
processing of the images of the camera as detailed in Briard et al. (2020), can be a
bit noisy, particularly when the secondary instabilities start at the node. The quantity
|ηp| can be obtained either from the crest-to-crest amplitude of the wave on the raw
camera images, or from an arbitrary threshold on the mean concentration (here taking
the height where 0.1 6 C̄ 6 0.9). Again this method suffers from being sensitive to small
variations in the mean concentration profile. Therefore, we find it more convenient to
measure these quantities indirectly using the integral length Lint previously introduced
in section 4.1.1. By assuming the shape of the concentration profiles frozen, we can
deduce all the characteristic lengths from Lint which for a sinusoidal interface gives
Lint = 2.4|ηp| = 0.76L.

To ensure that these relations apply in our problem, we have measured the amplitude
|ηp| at a local maximum just before the wavebreaking using the threshold method on C̄,
the inverse mean concentration gradient L and the integral length Lint. In figure 8a-b, we
see that the sinusoidal profile is a good fit of the interface position and provides a good
evaluation of the mean concentration profile. If the amplitude is too small though, the
fit is less satisfactory probably because the interface thickness should be accounted for
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Figure 8: (a) Visualisation of the interface in experiment EXPa7 (see table 1) at the
amplitude maximum just before the wavebreaking and compared to a sinusoidal profile
(red line). (b) Mean concentration profile from experiment and sinusoidal interface. (c)
Lint plots as a function of |ηp| at a maximum amplitude just before the wavebreaking for
all the experiments of table 1. The values for |ηp| are evaluated from the crest-to-crest
distance of the wave measured directly on the images or using the mean concentration
profiles. The two arrows correspond to the EXPa7 case shown in (a) and (b).

in the evaluation of the mean concentration profile. The method shows that the inverse
mean concentration gradient is maximum at the center of the layer z = 0, in accordance
with the fact that the wavebreaking starts at the nodes of the primary wave. Besides,
we recover the expected relation between L and the wave amplitude |ηp|. Therefore,
the different lengths L and |ηp| can be correctly evaluated from Lint. In figure 8c, we
further check that the relation between Lint and |ηp| holds on multiple experimental
data before but close to the wavebreaking. The correlation is thus satisfactory and gives
us confidence in our method to extract the amplitudes and the inverse concentration
gradients necessary to explore the wavebreaking phenomenon.
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Figure 9: Procedure for the wavebreaking detection. Left: Visual criterion from the cal-
ibrated camera image. Right: The Thorpe displacements δT evaluated by sorting the
concentration field in each vertical transect of the calibrated image. The colorbar indi-
cates the displacement in [mm].

5.2. Wavebreaking detection

In this part, we detail the strategy in order to identify the instants corresponding to the
wavebreaking in the experiments and the simulations.

The wavebreaking phenomenon can be defined as a local overturning of the interface
at the node. This can be directly observed in the images from the camera by noticing
the appearance of vortices giving birth to a mushroom-like structure (see figure 9). Since
this visual criterion is somewhat subjective, we also propose an automated detection
procedure using a simple algorithm based on the Thorpe displacement (introduced by
Thorpe 1977). Indeed, this displacement characterizes the distance a parcel of fluid has
to move vertically in order to be in stable equilibrium with the surrounding water. Hence,
a completely stable profile would have zero displacements whereas the existence of some
local overturns generates non zero Thorpe displacements. Accordingly, we compute for
each 1D vertical transect the displacements δT = z∗ − z, where z is the position of
a fluid parcel on the instantaneous concentration field, and z∗ is the position of the
same parcel on the vertically sorted concentration field (see figure 9). We detect when
this displacement |δT| exceeds a certain threshold (here |δT| > 5 − 12 px = 5.5 − 13.2
mm) chosen a bit smaller than the initial interface widths. For a given experiment, this
algorithm provides almost the same image (and thus same time and value for L) as the
one chosen by eyes only (see figure 9). However, it is not possible to detect from this
method the beginning of the ‘blurred’ region as defined in Thorpe (1968) and indicating
the secondary instability onset leading to the wavebreaking at the nodes.

The Thorpe displacement can also be used to measure the vortex size at wavebreaking
and thus gives the ratio κ = kwb/k necessary for the local theory. To determine kwb,
we take the maximum displacement δT evaluated at the image given by the Thorpe
displacement method. By construction, this measurement cannot be smaller than the
arbitrary threshold chosen for the wavebreaking detection. In practice, δT exceeds by
more than three times this value. As a summary, we illustrate in figure 10 the whole
procedure allowing for the wavebreaking detection and the measurements of the wave
amplitudes and inverse concentration gradients.

The time evolution of the integral length Lint in a simulation revealing the subharmonic
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Figure 10: Time evolution of the mixing zone width and the mean concentration profiles
at different instants extracted from the DNSd2 (see parameters in table. 2). (a) Evolution
of the integral lengths Lint and Lint,s computed from the mean and sorted concentration
profiles, respectively, as a function of ωt. The dashed line corresponds to the integral
scale Lint,d expressing the thickening of the interface by diffusion only. The star symbol
at ωt = 17.75 indicates the wavebreaking detected by the Thorpe displacement. The
horizontal lines correspond to the theoretical wavebreaking predictions, here converted in
terms of integral length. (b) Mean concentration profiles at different times corresponding
to the local maxima of Lint in (a) and renormalized by the integral mixing zone width
Lint. The inserted images illutrate the state of the interface at the same instants.

oscillations (thus Lint oscillates at frequency ω) and the growth of the primary wave are
presented in figure 10a. The instant corresponding to wavebreaking is determined by
evaluating the Thorpe displacement. This corresponds to the apparition of the vortices
at the nodes. In addition, we show the evolution of the integral length Lint,s computed
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from the sorted concentration profiles as in Briard et al. (2019). This quantity expresses
the evolution of irreversible mixing by distinguishing the available and the background
potential energies (see also for instance Winters et al. 1995; Peltier & Caulfield 2003;
Davies Wykes & Dalziel 2014). Noticeably, we observe that the growth of the irreversible
mixing starts just after the wavebreaking time. In figure 10, we verify further that this
process is due to wavebreaking as the curve of Lint,s gets detached from the interface
width Lint,d expressing the thickening of the interface by pure diffusion. However, the
slow evolution of Lint,s would make it difficult to build a wavebreaking detection cri-
terion from it. In figure 10b, we also present the different mean concentration profiles
before and after the wavebreaking time and renormalized by Lint. This confirms that
the mean concentration profiles can be considered as frozen and well represented by a
sinusoidal interface before the wavebreaking. This aspect is important in order to link
the inverse concentration gradient to the wave amplitude and to compare the global and
the local approaches. At and after the wavebreaking, the mean concentration profiles are
drastically distorted, and exhibit inversions of the stratification due to the roll-up of the
interface. The predictions from the local and global theories are also plotted in figure 10a
showing a good agreement with the measured amplitude at the wavebreaking. Again this
is expected to have Lwb > Lcrit for both theories. We discuss more thoroughly this point
in the next section.

5.3. Results and discussion

5.3.1. Critical steepness values

We now analyze the experimental and numerical measurements of wavebreaking in
order to assess the global and local theories presented in section 4. The instants corre-
sponding to the wavebreaking are detected using the procedure detailed in section 5.2.
They are usually close but not necessarily exactly located at a maximum of the primary
wave. Therefore, we perform a linear interpolation between two successive maxima in
order to evaluate the amplitude a at the wavebreaking (thus deduced from the integral
scale Lint as explained in section 5.1). In figures 11 and 12, the wavenumber ratio κ and
the wave steepness ka corresponding to the wavebreaking are reported and superimposed
to the stability curves obtained from the local and the global approaches.

The wave steepness measured at the wavebreaking detection is roughly ka ∼ 0.75 from
the experiments and the DNS. These values are thus located inside the parametric reso-
nance instability band above the thresholds provided by the local and global approaches.
Some points are slightly below the critical steepness provided by the global theory at
∆ = 0.04 in figure 11d and 12d but it corresponds to negative detuning cases which
have a lower critical steepness value. For the moderate F parameters investigated in this
work, both theories predict roughly the same critical steepness value, around kacrit ∼ 0.5.
This result clearly gives a strong credit to a wavebreaking process due to a secondary
subharmonic instability appearing when the primary wave reaches a critical amplitude:
it is therefore subcritical. Conversely, we have conducted a simulation (DNSe case, see
table 2 and figure 3) with parameters close to the neutral curve and where the primary
wave reaches a saturation amplitude below the critical steepness value. This kind of wave
does not experience wavebreaking as expected from the theory.

A tendency emerges from figure 11, that the critical wave steepness slightly decreases
at large wavenumber ratio κ. This observation stands despite the difficulty to evaluate
κ in the experiments but is less obvious in the DNS results of figure 12. Although the
neutral curves depend very weakly on κ (they do not depend on it with the global the-
ory), the instability growth rates evaluated from Floquet theory increase when the small
perturbation wavelength κ becomes large in the local theory. This result is characteristic
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(a) (b)

(c) (d)

Figure 11: Parametric instability bands (colored regions) and experimental data (sym-
bols) corresponding to the wavebreaking in a κ-ka representation. The parameters for
the experiments are detailed in table 1. The left (a, c) diagrams correspond to the local
theory (PR1 instability band). The right (b, d) ones are associated with the global theory.
We place the theoretical instability zones with ∆ = 0 in the (a, b) figures and ∆ = 0.04
for the (c, d) figures both with F = 0.3 and 0.7. The symbol colors indicate successively
(a) the forcing parameter F , (b) the Atwood number A, (c) the detuning ∆, and (d) the
primary wave mode in the experiments.

of classical inviscid theories such as for the KH instability. It is therefore not surprising to
see that the wavebreaking occurs earlier, i.e. at smaller ka, when the secondary instabil-
ity is initiated at smaller wavelengths. Also, one cannot exclude the possibility that the
unstable modes from the higher parametric bands (PR2 for instance) play a role in the
destabilization process of the primary wave. More precisely it may explain the blurring
of the interface already observed by Kalinichenko (2005) well before the wave breaking at
ka ∼ 0.4. These PR bands are however expected to be seriously damped by the viscosity
in addition of having a lower growth rate. Conversely, the growth rates of the PR1 modes
as computed in the local theory are very large compared to the primary Faraday wave
ones. We find indeed Floquet exponents λ, varying between 2 and 8, corresponding to
an amplification > 500 over one oscillation period (by contrast the primary wave has
Floquet exponents around 0.08). This is due to the additional forcing generated by the
primary wave and explains why the breaking process develops over one or two oscillation
periods. It seems also justified to neglect in the theory the growth of the primary wave
amplitude for these parameters. By contrast, the growth rates evaluated by the global
approach are much more modest (∼ 0.2). This point is probably due to the assumption
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(a) (b)
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Figure 12: Same as figure 11 but for the DNS data corresponding to the series DNSa (see
table 2).

linking the local mean concentration gradient to the amplitude of the primary wave de-
tailed in section 5.1. Indeed, as soon as the secondary instability develops, the shape
of the mean concentration profile is distorted due to the perturbation feedback. This
aspect is well demonstrated in the simulation result of figure 10. It eventually leads to
a local change of sign in the stratification which would in return considerably increase
the instability growth rate. However this effect is not accounted for in the present global
approach which still remains effective at predicting the secondary instability onset.

A large range of κ values has been found in the experiments and simulations, which
comes equally from the primary and secondary wavelength measurements. Noticeably,
the simulations provide larger κ (up to 110 in figure 12) partly because the primary
wavelength is large. Therefore, an important question raised is how the wavenumber kwb

is selected. Neither the global theory (which does not depend on kwb) nor the local theory
(which relies on the analysis of an infinitely thin interface) can explain this aspect. When
the interface thickness reaches comparable size with the secondary instability wavelength,
the natural frequency becomes bounded and the instability growth rate is expected to
be limited. By analogy, the pure KH instability (represented by the Taylor-Goldstein
equation) has a maximum growth rate around kwbδ ∼ 1 at low Richardson number.
This also depends on the shear and density profiles considered for the analysis (see for
instance Taylor 1931; Hazel 1972; Caulfield 1994). The same process for the PR mode
seems at work in our experiments as suggested by the measurements of kwb. This has
been also evidenced theoretically by Poulin et al. (2003) on oscillatory uniform shear
layer configurations. However, the local analysis accounting for the interface thickness is
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Figure 13: Wave steepness at wavebreaking as a function of the forcing parameter F
for the DNSd cases (symbols) with ω = 4.29 rad s−1 and A = 0.045 (see table 2). The
dashed and dotted curves correspond respectively to the local and global criteria. Inserts:
Visualisation of the concentration field in DNSd3 and 11 just after the wavebreaking.

rendered complex by the coupling between the internal layer modes induced by the time
varying shear and acceleration.

5.3.2. Exploring further the forcing parameter effect

Despite performing well for the parameters corresponding to the experiments, the local
and global approaches differ sensitively in their dependence on the forcing parameter.
While the critical wave steepness grows linearly in F in the local theory as shown by (4.9),
the F dependence in the global criterion is more complex, even exhibiting a diminution of
the wave steepness at small F as stated by (5.1). In order to investigate this dependence,
we show in figure 13 the results from the simulations corresponding to the DNSd cases
(see table 2). These simulations are conducted using the same initial conditions and
frequency ω, varying only the forcing parameter F . The results show a critical wave
steepness globally evolving linearly with F . This trend seems reasonably well predicted by
the local approach although underestimating the wave breaking at large F . By contrast,
the global approach clearly underestimates the critical wave steepness. As an explanation,
it should be stated that both the global and local approaches become limited when F
is large because the growth of the primary wave amplitude a cannot be neglected over
one oscillation period. In the DNSd cases of figure 13, the wavebreaking occurs during
the first oscillation for F > 3, when the sign of gravity is inverted. Therefore at large
F the secondary instability is expected to change nature as becoming triggered more by
the growth of the primary wave than its oscillations. In that respect, the wavebreaking
process is no longer parametric but becomes of KH type similar to the one appearing in
Rayleigh-Taylor instability (Birkhoff 1962; Daly 1967; Baker et al. 1993).

5.3.3. The final transition to turbulence

So far, we have not demonstrated that the secondary instability developing at the
node of the primary wave triggers the full transition to a turbulent regime. Indeed, the
simulations with a 2D interface initialization are unable to develop the cascading process
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Figure 14: Visualization of the interface at different times of DNSd3 (left) and DNSf
(right) corresponding to the parameters in table 2. The wavebreaking is detected at
ωt = 14.5 for both simulations.

leading to turbulence. We thus provide as an example the simulation DNSf where the 2D
initialization is perturbed by a small random white noise in the spanwise y direction.

In figure 14, we compare at different times DSNf with the simulation DNSd3 using the
same parameters (see table. 2) but having a simple 2D initial condition.

Both simulations evolve similarly until wavebreaking (here at ωt = 14.5). This means
also that the critical amplitude is not modified by the small spanwise y perturbation,
hardly visible since its amplitude is two orders of magnitude smaller than that of the x
2D perturbation. This feature has been reproduced on other simulations at different ε1

parameters or in simulations where the spanwise invariance is broken by the presence of
lateral walls (not presented for the sake of conciseness). After wavebreaking, the simu-
lations differ sensitively as DNSf (or simulations with the spanwise invariance broken)
exhibits a rapid transition to turbulent mixing. The process is so violent that turbulence
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does not stay bounded to the node of the Faraday wave and spreads around the whole
layer. The images of figure 14 at ωt = 25.7 (see also online movie of DNSf) reveal that the
final mechanism leading to turbulent mixing is related to the merging and the stretching
of the secondary vortices at the node forced by the oscillations of the Faraday wave.

In order to identify the specificity of this transition, we evaluate the Reynolds and
bulk Richardson numbers as classically introduced for the Kelvin-Helmholtz instability
(Caulfield 2021). Taking for the interface half width σ and for the half shear velocity
U = aω/2, we find Re = Uσ/ν = 313 at the wavebreaking ωt = 14.5. For the bulk
Richardson number we obtain Ri = AG0σ/U

2 = 0.023. While the low value of the
Richardson number is consistent with the existence of a strong shear instability, the
Reynolds number is unexpectedly small for a mixing transition. This is despite being
probably underestimated due to the blurring of the interface before the wavebreaking.
Perhaps the fact that the transition does not result from a convective secondary instability
inside the vortices as often observed for the Kelvin-Helmholtz instability (Salehipour et al.
2015) may explain this aspect. By contrast, we can consider a global Reynolds number
based on the width and velocity of the layer. This gives Re = a2ω/ν ∼ 104 and agrees
with a mixing transition criteria of Re > 104 proposed by Dimotakis (2005).

6. Conclusion

In this work, we have studied experimentally, numerically and theoretically the wave-
breaking mechanism leading to turbulence of growing Faraday waves at the interface
between miscible fluids of small density contrast. The Floquet linear theory reveals that
several subharmonic modes can be simultaneously unstable due to the quantification in-
duced by the tank geometry and the large forcing accelerations considered. It is shown
that, by accounting for the viscous damping at the walls and from the bulk flow, the pa-
rameters in our experiments are located well above the instability threshold, suggesting
that the inviscid theory provides a good first approximation for this problem. We have
evidenced that the mode selection of the Faraday wave results not only from a linear
process but also a nonlinear competition favoring the modes with smaller wavelength.
More precisely, the natural frequencies of the system decrease as the mode amplitude
grows. Therefore, the subcritical modes are those with positive detuning which are fa-
vored when the primary wave amplitude has reached a critical value. By contrast, those
with negative detuning are supercritical and become damped as being less in parametric
resonance with the forcing frequency. This mode competition phenomenology also ex-
plains the sensitivity to initial conditions and the symmetry breaking of the dominant
mode which has been observed in our experiments.

The idea of considering the nonlinear mode interaction as a linear process but with a
time evolving reference state was first successfully introduced to describe the saturation
of turbulent Faraday waves. In addition to use it for describing the mode competition
phenomena, we also employ this approach to explain the breakdown of the primary
wave as the appearance of a secondary subharmonic instability at small wavelengths.
This theory, referred to here as ‘global’ as resulting from a horizontal averaging process,
reveals that the secondary instability is principally due to the oscillations of the primary
wave, thus explaining why it develops very rapidly compared to the growth rate of the
primary Faraday wave. We then also propose a criteria giving the critical steepness of the
primary wave at which the wavebreaking is expected to appear. Due to its simplicity, this
theory cannot explain why the secondary instability occurs at the node of the primary
wave nor how it depends on its wavelength. This is why we study the flow in a local
frame attached to the node of the primary wave leading to a local approach. This reveals
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the importance of the shear in the development of the secondary instability leading to
the wavebreaking. It is shown from a stability analysis that the unstable modes can be
of either Kelvin-Helmholtz or of parametric resonant type, the latter occurring earlier
during the growth of the primary wave.

In order to assess the global and local theories, we evaluate the primary wave ampli-
tudes in the experiments and in the numerical simulations, together with the wavenum-
bers associated with the wavebreaking phenomenon. This is done using the Thorpe dis-
placement indicating a local overturning of the interface, as well as extracting the back-
ground density profiles evolving due to an irreversible mixing. The results reveal the
subcritical nature of the wavebreaking detected roughly for wave steepnesses ka ∼ 0.75.
These values are consistently larger than ka ∼ 0.4 reported by Kalinichenko (2005) but
associated with the earlier ‘blurring’ stage of the instability. Remarkably, both theories
indicate that this should correspond to a parametric resonant subharmonic instability de-
veloping when the primary wave amplitude reaches a critical value. Therefore the present
mechanism for Faraday waves presents similarities with the breaking process of internal
gravity waves. However, when the forcing parameter is increased, our approaches come
to a limitation as the wavebreaking process changes in nature resulting more from the
amplitude growth of the primary wave than its oscillations. In this case, the phenomenon
becomes similar to the secondary vortices appearing in the classical Rayleigh-Taylor in-
stability.

Simulations with 2D initial conditions perturbed along the spanwise direction evidence
that the final transition to turbulence originates from the secondary instability at the
node of the Faraday wave. The stretching and merging of the secondary vortices driven by
the oscillations of the primary wave is an efficient mechanism to produce mixing, differing
sensitively with the transition scenarios observed in the context of the Kelvin-Helmholtz
instability.
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Appendix A. The damping of a gravity waves in a rectangular tank

In this appendix, we evaluate the contributions from the walls to the damping of
an interfacial wave in a rectangular tank. The geometry corresponds to the experiment
detailed in section 2.2. We consider a wave with horizontal wavenumber k and a small
amplitude a, oscillating at the frequency Ω (the damping is thus supposed to be very
small). The rest interface position is located in the middle of tank and we study the two
cases depending if the top boundary is a wall or a free surface. This result has already
been established by Keulegan (1959) in the context of a free surface wave and generalized
by Thorpe (1968) for two fluids configurations. The objective here is to disentangle the
various contributions from the walls, in particular to show that the damping comes
principally from the lateral boundaries in our experiment.
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We assume potential flow away from the walls. If the viscous boundary is very thin,
the potential φ for the wave can be expressed by

φ = − aG0

Ω cosh kH/2
cosh k(z +H/2) cos kx cos Ωt, for z < 0, (A 1)

= − aG0

Ω cosh kH/2
cosh k(z −H/2) cos kx cos Ωt, for z > 0.

Hence, the 2D velocity field (for z < 0) is given by u0 = ∇φ
{
u0 = −akG0

Ω
cosh k(z+H/2)

cosh kH/2 sin kx cos Ωt,

w0 = akG0

Ω
sinh k(z+H/2)

cosh kH/2 cos kx cos Ωt.
(A 2)

For z > 0 one obtains the same expression but using z −H/2 in the cosh.
Classically (Landau & Lifshitz 2013), the damping coefficient can be evaluated from

the total mechanical energy of the system as

γ =
〈Ėmech〉
2〈Emech〉

, (A 3)

where Emech is the sum of kinetic and potential energy, and the symbol 〈∗〉 corresponds
to the mean over one oscillation period of the wave.

In an oscillating system, the mean mechanical energy is provided by twice the mean
kinetic energy. Therefore, using that kinetic energy comes principally from the potential
flow, we have

〈Emech〉 =

∫

V

ρ
(〈
u2

0

〉
+
〈
w2

0

〉)
dV. (A 4)

In the limit of small Atwood number, the mechanical energies in the upper and lower
parts of the tank are the same so we can restrict the integration over the lower part of
the tank. Also, taking the mean over a period of time of cos2(Ωt) brings a factor half,
we get

〈Emech〉 = ρWD

(
akG0

Ω cosh kH/2

)2
sinh kH

4k
. (A 5)

In order to compute the damping coefficient, we determine the mean value of the
energy dissipation due to the walls. To this aim, it is necessary to evaluate the velocity
field in the Stokes layers which should match the potential solution u0, w0 oscillating at
frequency Ω away from the walls. Following Landau & Lifshitz (2013), we use the fact
that the oscillations of a viscous liquid around a solid body is equivalent to the oscillations
of a solid body immersed in a viscous liquid. Hence, each wall can be assimilated to a
plate oscillating in its own plane.

The mean mechanical energy dissipated in the layers adjacent to the wall is equal to the
mean kinetic energy dissipated in those layers. For this, we use that the wavelength and
dimensions of the tank are large compared to the Stokes layer thickness δw =

√
2ν/Ω.

Contribution from the vertical walls at y = 0 and y = D

First, we consider the vertical wall at y = 0 with z 6 0. The fluid velocities in the viscous
layer are given by

{
u = akG0

Ω
cosh k(z+H/2)

cosh kH/2 sin kx
[
e−y/δw cos(Ωt− y/δw)− cos Ωt

]
,

w = −akG0

Ω
sinh k(z+H/2)

cosh kH/2 cos kx
[
e−y/δw cos(Ωt− y/δw)− cos Ωt

]
.

(A 6)

So the velocity is zero at the wall and we recover the potential solution u0 away from it.
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The wall contribution to the mean dissipation of mechanical energy can be expressed
by

〈
Ė1

〉
= ρν

Ω

2π

∫ 0

−H/2

∫ W

0

∫ ∞

0

∫ 2π/Ω

0

[
(∂yu)2 + (∂yw)2

]
dtdydxdz. (A 7)

Taking the square of the y-derivative, we get at leading order in 1/δw,

〈
Ė1

〉
= ρ

ν

2δw
W

(
akG0

Ω cosh kH/2

)2
sinh kH

4k
. (A 8)

Therefore, the full contribution to the mean mechanical energy dissipation of the two

vertical walls along x, summing the bottom and the upper part, leads to
〈
Ėmech

〉
=

4
〈
Ė1

〉
. So the damping coefficient γw1 corresponding to the two lateral walls at y = 0

and y = D is simply given by

γw1 =
ν

δwD
. (A 9)

Vertical walls x = 0 and x = W

Similarly, near the vertical wall at x = 0 and z 6 0, the velocity in the viscous layer is
given by

{
u = 0,

w = −akG0

Ω
sinh k(z+H/2)

cosh kH/2

[
e−x/δw cos(Ωt− x/δw)− cos Ωt

]
.

(A 10)

The amount of energy dissipated on this wall is

〈
Ė2

〉
=
ρν

δ2
w

(
akG0

Ω cosh kH/2

)2 ∫ ∞

0

e−2x/δwdx

∫ D

0

dy

∫ 0

−H/2
sinh2 k(z +H/2)dz,

=
ρνD

2δw

(
akG0

Ω cosh kH/2

)2(
sinh kH

4k
− H

4

)
. (A 11)

Again considering the upper part of the tank and the opposite wall at x = W we

obtain a dissipation of 4
〈
Ė2

〉
. This gives the following damping coefficient

γw2 =
ν

δwW

(
1− kH

sinh kH

)
. (A 12)

Bottom and upper walls at z = −H/2, H/2
Considering the bottom wall at z = −H/2, the fluid velocities in the viscous layer are

{
u = akG0

Ω cosh kH/2 sin kx
[
e−(z+H/2)/δw cos(Ωt− (z +H/2)/δw)− cos Ωt

]
,

w = 0.
(A 13)

At leading order in 1/δw we obtain the energy loss as

〈
Ė3

〉
=
ρν

δ2
w

(
akG0

Ω cosh kH/2

)2 ∫ ∞

−H/2
e−2(z+H/2)/δwdz

∫ D

0

dy

∫ W

0

sin2 kxdx

=
ρν

4δw
WD

(
akG0

Ω cosh kH/2

)2

. (A 14)
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The same amount of energy is dissipated on the upper walls z = H/2. So the damping
coefficient accounting for the bottom and the upper wall is

γw3 =
ν

δw

k

sinh kH
or, (A 15a)

=
ν

2δw

k

sinh kH
for a free surface. (A 15b)

Summing all the contributions from the wall we finally obtain the damping coefficient
γw = γw1 + γw2 + γw3.

Appendix B. Stability analysis of the global approach equation

In this part, we detail the Floquet analysis of (4.3). After choosing L(t) = L0(1 +
β cosωt) one gets

(1 + β cos(τ))c̈− β sin(τ)ċ+
Ω2

0B

ω2
(1 + F cos(τ))c = 0, (B 1)

with τ = ωt and Ω2
0B = 2AG0/L0.

The Floquet theorem states that the solution of (B 1) is on the form

c =
+∞∑

n=−∞
Yne

(λ+i(n+α))τ , (B 2)

with λ the real Floquet exponent characterizing the growth rate of the instability and
α = 0 or 1/2 depending if the instability is harmonic or subharmonic. By setting λ = 0,
we can determine the neutral branches of the instability. Inserting the solution in (B 1),
we get

+∞∑

n=−∞

[
−(n+ α)2

(
1 +

β

2
(eiτ + e−iτ )

)
Yne

i(n+α)τ − β

2
(eiτ − e−iτ )(n+ α)Yne

i(n+α)τ

]

+
+∞∑

n=−∞
s

(
1 +

F

2
(eiτ + e−iτ )

)
Yne

i(n+α)τ = 0, (B 3)

introducing s = Ω2
0B/ω

2. Reorganizing the sums, we obtain for each n

Yn(n+ α)2 +
β

2
[Yn−1(n− 1 + α)(n+ α) + Yn+1(n+ 1 + α)(n+ α)]

= s

[
Yn +

F

2
(Yn−1 + Yn+1)

]
. (B 4)

This constitutes a generalized eigenvalues problem of the form AX = sBX where X
is constructed from the real and imaginary parts of the vector Y . Following Kumar &
Tuckerman (1994) to express the condition for c being real and truncating the solution,
we restrict the problem to 0 6 n 6 N leading to (2N + 2)× (2N + 2) matrix sizes for A
and B. Furthermore, we focus on the subharmonic instability corresponding to α = 1/2.
In this case, the pentadiagonal matrices A and B are written as
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A =



d+0 0 β
2
b0 0

0 d−0 0 β
2
b0

. . .

β
2
a1 0 d1 0

. . .
. . . 0

0 β
2
a1 0 d1

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . . dN−1 0 β
2
bN−1 0

. . .
. . . 0 dN−1 0 β

2
bN−1

0 . . . β
2
aN 0 dN 0
0 β

2
aN 0 dN



, (B 5)

and

B =



1 + F
2

0 F
2

0

0 1− F
2

0 F
2

. . .

F
2

0 1 0
. . .

. . . 0
0 F

2
0 1

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . . 1 0 F
2

0
. . .

. . . 0 1 0 F
2

0 . . . F
2

0 1 0
0 F

2
0 1



. (B 6)

with an = (n− 1 + α)(n+ α), bn = (n+ 1 + α)(n+ α). For the diagonal terms in matrix A, we

have dn = (n+ α)2 for all n > 0 and for n = 0, we have d±0 = α2 ± β
2
a0.

In order to get a simple analytic approximation for the neutral branch for F and β � 1, we
take N = 0 and solve[

1/4− β/8− s(1 + F/2) 0
0 1/4 + β/8− s(1− F/2)

] [
Y r0
Y i0

]
= 0, (B 7)

with one of the solutions given by

Lcrit =
2Ag
ω2

(4− 2F )

1 + β/2
. (B 8)

However, this expression is not completely satisfactory to approximate the neutral branch
corresponding to the onset of the subharmonic instability for larger β and F as shown in figure 6.
A better expression can be found with N = 1 which leads to

Lcrit =
2Ag
ω2

4F 2 + 8F − 16

F (9 + 3β)− (β + 20) +M
, (B 9)

with M =
√

9(13 + 8β)F 2 − 6(48 + β(17 + 4β))F + 256.

Appendix C. Derivation of the local approach equations
In this part, we detail the derivation of (4.5), first recalling the flow field generated by the

primary wave and then the equations for a perturbation at the node.

Page 34 of 38

Cambridge University Press

Journal of Fluid Mechanics



The subcritical transition to turbulence 35

C.1. The flow induced by the primary wave at the node

The equations describing the field generated by an insviscid interfacial wave of small amplitude
can be found in many classical textbooks (see for instance Sutherland 2010). We recall briefly
the procedure, expressing a 2D incompressible velocity disturbance by its stream function as

(up, wp) = (−∂zψp, ∂xψp). Seeking modal solutions on the form ψp(x, z, t) = Ap(t)ψ̂p(z)e
ikx,

and for the interface deformation ξp(x, t) = ηp(t)e
ikx, we thus obtain the degenerate Rayleigh

equation :

∂2
zzψ̂p − k2ψ̂p = 0, (C 1)

leading to ψ̂p = e±kz on each side of the interface. Discarding the second order terms, the
condition expressing the interface dynamics is

wp = ikψp =
Dξp
Dt

= ξ̇p, (C 2)

giving the continuity of ψp across the interface and ikAp = η̇p The equation for the horizontal
momentum writes (again discarding the quadratic terms)

∂tup = −∂2
tzψp = − 1

ρi
ikp. (C 3)

We turn our attention to continuity of pressure on each side:

−ρ1G(t)ξp + ρ1
∂2
tzψp
ik

= −ρ2G(t)ξp + ρ2
∂2
tzψp
ik

, (C 4)

leading to

η̈p +AG(t)kηp = 0. (C 5)

For a standing wave, we thus have

ξp(x, t) = ηp(t) sin kx, wp(x, t) = η̇p(t)e
∓kz sin kx,

ψp(x, t) = − η̇p(t)
k

e∓kz cos kx and up(x, t) = ±η̇p(t)e∓kz cos kx. (C 6)

At this stage, we wish to perform the stability analysis of this flow in the vicinity of the
node, x = 0, z = 0. We thus rescale the dimensions with the typical wavenumber kwb of the
secondary instability. Therefore, in the small perturbation wavelength limit of κ = kwb/k � 1,
the flow induced by the primary wave simply reduces to an horizontal interface subjected to a
discontinuous tangential velocity

ξp = 0, up = ±η̇p = ±U and wp = 0. (C 7)

C.2. Secondary instability

We perform the linear stability analysis of the base flow coming from the primary wave and
defined by (C 7). We consider the small velocity perturbation (u,w) = (−∂zψ, ∂xψ). Again,

seeking modal solutions on the form ψ±(x, z, t) = A±(t)ψ̂±(z)eikwbx, and for the interface
deformation ξ(x, t) = η(t)eikwbx. We obtain the degenerate Rayleigh equation

∂2
zzψ̂

± − k2wbψ̂
± = 0. (C 8)

Using boundary conditions this gives ψ̂+ = e−kwbz and ψ̂− = ekwbz. The condition at z = 0 is
therefore

w = ikwbψ =
Dξ

Dt
= ξ̇ ± Uikwbξ, (C 9)

such that

A+ =
η̇

ikwb
+ Uη, (C 10a)

A− =
η̇

ikwb
− Uη. (C 10b)

At the interface, the continuity of pressure gives

p+ − ρ1G(t)η = p− − ρ2G(t)η. (C 11)
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The momentum equation for u writes

−ikwbp
+ = ρ2

(
kwbȦ

+ + ik2wbUA
+
)
, (C 12a)

−ikwbp
− = ρ1

(
−kwbȦ

− + ik2wbUA
−
)
. (C 12b)

By combining the previous conditions, we obtain the equation already derived by Kelly (1965)
and here expressed in the Boussinesq limit

η̈ − 2iAkwbUη̇ +
(
AGkwb − k2wbU

2 − iAkwbU̇
)
η = 0. (C 13)

It should be stressed that this equation is derived in the context of a small primary wave
amplitude, kη � 1, and small perturbation wavelength, κ� 1, in order to consider the primary
wave solution corresponding to (C 7).
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Briard, A., Gréa, B.-J. & Gostiaux, L. 2019 Harmonic to subharmonic transition of the
faraday instability in miscible fluids. Phys. Rev. Fluids 4, 044502.

Caulfield, C.P. 2021 Layering, instabilities, and mixing in turbulent stratified flows. Annual
Review of Fluid Mechanics 53 (1), 113–145.

Caulfield, C.-C. P. 1994 Multiple linear instability of layered stratified shear flow. Journal of
Fluid Mechanics 258, 255285.

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability . Dover Publ.
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