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Solitons attract a great deal of interest in many fields, ranging from optics to fluid mechanics,
cosmology, particle physics and condensed matter. However, solitons of these very different types
rarely coexist and interact with each other. Here we develop a system that hosts optical solitons
coexisting with topological solitonic structures localised in the molecular alignment field of a soft
birefringent medium. We experimentally demonstrate and theoretically explain optomechanical in-
teractions between such optical and topological solitons, mediated by the local transfer of momentum
between light and matter and the nonlocal orientational elasticity of the liquid-crystal phase used
in our system. We show that the delicate balance arising from these different contributions to the
optomechanical force enables facile dynamical control and spatial localisation of topological soli-
tons. Our findings reveal unusual solitonic tractor beams and emergent light-matter self-patterning
phenomena that could aid in creating new breeds of nonlinear photonic materials and devices.

This version of the article has been accepted for
publication, after peer review (when applicable) and is
subject to Springer Nature’s AM terms of use, but is
not the Version of Record and does not reflect post-
acceptance improvements, or any corrections. The Ver-
sion of Record is available online at: https://doi.org/
10.1038/s41566-022-01002-1

INTRODUCTION

Solitons are ubiquitous in nature and technology [1].
They are found as water waves, pulses of light, wave-
functions of Cooper pairs in superconducting Josephson
junctions, propagating pulses in biomembranes and ner-
vous systems [1–4], models of elementary particles [5] and
even cosmological objects like black holes [6–8]. An op-
tical soliton generally refers to an optical waveform that
maintains its shape when evolving over long distances
and/or times, and even after collisions. This concept now
encompasses a broad class of wavepackets with multiple
spatial and temporal dimensions [9]. Having a particle-
like nature, optical solitons can mutually attract, repel
or yield fusion, fission, and annihilation in media with
nonlocal optical nonlinearities [10].

Many recent studies focused on optical solitons in liq-
uid crystals (LCs). These soft birefringent media exhibit
giant nonlinear and nonlocal optical responses, with a
facile reorientation of their optical axis fields under exter-
nal stimuli, allowing the generation of optical solitons at
powers as low as ∼ 1 mW. An archetypal example of opti-
cal solitons in LCs is the so-called nematicon, which prop-
agates without diffracting by creating its own waveguide
in the LC’s optical axis field [11–13]. Trajectories of ne-

maticons may be modified using optical reflections from
dielectric interfaces and various deformed regions of the
background optical axis field [14–17]. Their potential for
photonics applications has been recently demonstrated
with mode transformations [18], bistability [19, 20] and
soliton-assisted random lasing [21]. Other types of op-
tical solitons in LCs include discrete solitons [22], op-
tothermal and dark solitons in dye-doped LCs [23, 24],
self-focused beams with fast-evolving polarisation states
and spin-orbit interactions [25–27], and optical solitons
in non-frustrated [28] or frustrated chiral LCs [29]. At
the same time, chiral LCs are known also to host a fas-
cinating variety of topological solitons like skyrmions,
hopfions, torons, and fingers [30–34], which correspond
to localised and topologically protected patterns of opti-
cal axis embedded within their uniform backgrounds n0.
These robust structures can be created on-demand with
strong external stimuli [35, 36], are stable without exter-
nal fields, and cannot be continuously deformed into the
uniform background n0.

Discoveries of different types of laser light and matter
interactions had a strong impact on the development of
fundamental science and technologies throughout recent
history, from laser surgery to laser trapping of tiny parti-
cles, to laser cooling of atomic gasses, and to the genera-
tion of Bose-Einstein condensates. However, to the best
of our knowledge, none of these diverse forms of light-
matter interactions exploited the regime when both light
and matter take solitonic embodiments.

Here, we experimentally discover and theoretically ex-
plain fascinating interactions between topological soli-
tons and two classes of optical solitons in LCs, thus show-
ing how the particle-like nature of optical solitons en-
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Figure 1. Host system with coexisting topological and optical solitons. (a) Optical axis pattern of a baby skyrmion.
Each nonpolar orientation of optical axis is associated with a single colour. (b) Toron embedding the optical axis pattern of
(a) in the mid-sample-plane. The confining plates impose the far-field optical axis orientation n0. The inner black circles in
(a,b) have a one-to-one correspondence and the red balls represent topological point singularities on which the baby skyrmion
terminates while embedded in the uniform far-field background. The coloured surfaces are isosurfaces with fixed angles between
n and n0. (c) Schematic representation of the spin-orbit (top) and bouncing (bottom) optical solitons. The small spheres with
pink converging arrows represent equilibrium points of the optical force field. (d) The force F L arises from the conservation
of momentum, when light rays are deflected by the toron’s birefringent pattern. (e) The force FNL is related to the nonlocal
elastic interactions between the optical axis patterns δnTS (red isocontours) and δnEM (black isocontours).

ables optomechanical interactions with topological soli-
tons. By focusing on a regime where each type of soli-
tons are not too much perturbed, we experimentally
characterise these interactions and theoretically explain
them in an elegant and accurate manner with an effec-
tive Langevin equation that accounts for optical forces
similar to the ones of optical traps, as well as nonlocal
effects associated with the light-induced realignment of
the optical axis field. The surprising findings within this
new regime of light-matter interactions reveal that the in-
terplay of nonlinear effects that stabilizes these different
solitons can lead to self-assembly of topological solitons

beside the optical solitons. Such interactions yield ex-
ceptionally rich behaviors that may find practical uses
ranging from nonlinear optics to nanophotonic devices
and spatial light-matter co-patterning.

RESULTS

Physics of inter-solitonic interactions and
co-assembly

Our experimental investigations show that topological
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solitons in the optical axis of a uniaxial chiral nematic
LC can not only be attracted or pushed away from the
optical solitonic beam’s axis but also coassemble in highly
nontrivial ways (Fig. 1c) when forming one-dimensional
arrays of topological solitons localising on the sides of
the optical soliton. We experimentally reveal that this
behavior stems from the elaborate dynamical trajectories
of topological solitons navigating their way when guided
by particular optical solitons (Fig. 1c, bottom). What is
the physical underpinning of this unexpected behavior?

Our unwound chiral LC system is confined between
glass plates imposing an optical axis orientation n0 nor-
mal to the surfaces (see Methods). These samples host
localised patterns of optical axis embedding an emblem-
atic example of a topological soliton: the baby skyrmion,
whose optical axis field is shown in Fig. 1a and whose
name refers to Skyrme’s topological solitons used to de-
scribe subatomic particles with different baryon numbers
[5]. It covers twice the order parameter space of nonpo-
lar unit vectors n with antipodal symmetry n↔ −n, i.e.
antipodal points on a sphere (Fig. 1a, right). To empha-
sise the topological and nonpolar properties of these opti-
cal axis patterns, we introduce a colour scheme that asso-
ciates an optical axis orientation with a colour. Our topo-
logical colouring is used for all cylindrical-glyph-based or
continuous colour plots of topological solitons and is de-
tailed in Supplementary Sec. II.C, where we explain all
the subtleties. For the skyrmion of Fig. 1a, one can eas-
ily check that white corresponds to the far-field optical
axis n0 and that the primary colours blue, red, and green
(associated with tilted cylinders) appear twice. Each of
these colors are associated with antipodal peaks on the
sphere of Fig. 1a, right. The two-dimensional structure
of Fig. 1a corresponds to the mid-sample-plane of the
three-dimensional structure of Fig. 1b, which shows a
few isosurfaces with fixed angles between n and n0. The
quantity δnTS corresponds to the deviation of the op-
tical axis field nTS with respect to the far-field optical
axis n0 ≡ ex imposed by the confining plates and fully
defines this class of topological structures called torons
[32], where "TS" refers to topological solitons. While
more complex torons [32] and other solitons [30–34] can
be realized, our study in this work focuses solely on the
simplest type of elementary torons depicted in Fig. 1.
Further details are given in Supplementary Sec. II.A.

We consider the light-matter interactions of torons
with two classes of optical solitons. The first class
(Fig. 1c, top) corresponds to a beam propagating parallel
to the confining plates of the sample, with a polarisation
state evolving in the xy plane orthogonal to the axis of
propagation z. The second class (Fig. 1c, bottom) cor-
responds to a beam bouncing between the two confining
plates thanks to total internal reflection, with a polarisa-
tion state evolving in the xz plane aligned with the axis
of propagation. Thanks to the facile response of LCs
to fields, both types of beams, when associated with an

optical power sufficiently high (typically 1-100 mW), in-
troduce a nonzero deviation δnEM of the optical axis field
nEM with respect to the far-field n0, which allows their
self-focusing. However, the physical origins of the self-
focusing are different: in the first class, the self-focusing
is due to the giant spin-orbit interactions arising from
the Pancharatnam-Berry phase of uniaxial LCs [25, 26],
which define an effective waveguide for the mutually cou-
pled and orthogonal photonics mode of propagation with
extraordinary/ordinary polarisation; in the second class,
the self-focusing arises from the optically-induced modu-
lation of the effective refractive index of a single photonics
mode with an extraordinary polarisation, boosted by the
medium’s chirality [29]. We call the first class spin-orbit
optical solitons (as they are associated with spin-orbit
couplings) and the second class bouncing optical solitons,
with the index EM referring to either class.

When a toron and an optical soliton coexist, the to-
tal optical axis field can be obtained by summing the
deviations δnTS and δnEM and the far-field n0. Since
the toron contains all optical axis field orientations, the
general order of magnitude of optical axis deviations for
the topological soliton is ∼ 1. To reveal the physical
mechanisms behind our system, we focus here on experi-
mental and theoretical settings for which the magnitude
of optical axis deviations for the optical soliton are weak
(typically below 0.04)

Optical solitons exert a mechanical action on torons, as
visible by the dynamical trajectories they adopt in our ex-
periments (Fig. 1c). We model this optomechanical inter-
action by integrating the densities of force and writing an
overdamped Langevin equation for the in-sample-plane
trajectory R of a toron (see Supplementary Sec. III.A):

γ
dR

dt
= F L + FNL +

√
2γkTξ. (1)

Here γ is the dissipation coefficient associated with vis-
cous damping, kT is the thermal energy, ξ is a vector
of zero-mean delta-correlated stationary Gaussian pro-
cesses representing thermal fluctuations, and F L (resp.,
FNL) is the local (resp., non-local) contribution to the
total optical force F . Including thermal fluctuations al-
lows the measurement of the dissipation coefficient (see
Supplementary Sec. I.B), thus unlocking the possibility
of measuring optical forces from the experimentally ob-
served toron’s velocity.

The force F L is directly proportional to the opposite
of the averaged deflection of light’s momentum ∆p (see
Fig. 1d), and is therefore analogous to the optical force
of laser tweezers. However, we emphasize that in our sys-
tem the deflection of light’s momentum is not due to dis-
continuities of material composition or density (e.g. laser
acting on a particle), but instead solely due to continuous
changes of optical axis. As such, the general properties
of light’s deflection in our system—and of the force field
F L—are fully governed by the topology of torons. Dy-



4

a L1 L2 L3
b L0

z

y

x⊗ z

y

x⊗

c

−2 0 2

0

0.5

1

y/σi

R
e
sc

a
le

d
in

te
n
si

tyL1

L2

L3

L0

d

0 500 1,000 1,500 2,000

100

200

300

z (µm)

F
W

H
M

(µ
m

)Diffracting

Self-focused

e

P

Ayz

z

y

x⊗

Λ
z

y

x⊗ y

x

z⊗

−0.035

0

0.035

nEM
y

f

−0.001

0

0.001

nEM
z

z

y

x⊗ z

x

y�

Figure 2. Properties of spin-orbit solitons. (a) An optical micrograph of light scattered from a spin-orbit soliton with a
beam power of 35 mW. (b) Same as (a) but for a beam power < 1 mW. (c) The transverse rescaled intensity profiles along the
lines L0−3 in (a,b) as a function of y/σi, with σi the input FWHM. Symbols (lines) correspond to experimental (simulated)
data. (d) The FWHMs of the beams in (a,b) as a function of z. (e) A POM image of the optical soliton (top) and schematic
representation of the associated simulated optical axis field of periodicity Λ in the yz and xy planes (bottom) with exaggerated
reorientation angles and stretched-out z-direction. (f) Cross-sections of the simulated optical axis pattern associated with a
spin-orbit soliton in a 20 µm-thick sample. Since the optical axis field has a unit-norm and is only weakly deformed, we only
show its y and z components. The white bars represent 100 µm in (a,b,e) and 5 µm in (f).

namics of torons are further enriched by the force FNL,
which is related to the interaction between the optical
axis patterns nTS and nEM mediated by the orientational
elasticity of the LC (see Fig. 1e). It has a highly non-
local nature because the optically induced pattern nEM

extends farther than the optical fields if the laser beam
waist is smaller than the thickness h of the sample—a
condition satisfied in our experiments. It is calculated
as minus the gradient of the elastic interaction energy
(see Methods and Supplementary Sec. III.C), which is
nonzero when the two patterns of optical axis overlap
as in the bottom of Fig. 1e. The interplay between the
force fields F L and FNL leads to extended control over
the toron’s dynamics illustrated for both optical solitons,
with one of them showing tractor-beam-like features and
multiple toron localisation points (the pink “toron tar-
gets” of Fig. 1c) periodically decorating the optical soli-
ton along its propagation. Below we use indifferently nα
or δnα ≡ nα −n0 (with α = TS or EM) to characterize
optical axis fields of topological and optical solitons.

Interaction between spin-orbit soliton and torons

We consider a spin-orbit soliton that propagates along
the z axis (see Fig. 1c) in a 60 µm-thick sample. In Fig. 2a
(resp., Fig. 2b), we show an experimental micrograph of
light scattered out of the plane of the sample from the
optical soliton, with an input beam power of ∼ 35 mW
(resp., ≤ 1 mW). Since optical losses due to light scat-
tering [37] slightly complicate the analysis of Fig. 2a–b,
we evaluate self-focusing effects by plotting in Fig. 2c the
rescaled intensity of the transverse profiles along the lines
L0−3 as a function of y/σ0, with σ0 the input full width
at half maximum (FWHM). This plot clearly shows that
the visible spread of the transverse profile L0 (diffracting
beam at weak power in Fig. 2c) can be compensated by
nonlinear optical effects (profiles L1−3 associated with
the self-focused beam of Fig. 2a). This observation is
confirmed by examining Fig. 2d, which plots the FWHM
as a function of the propagation distance z for the self-
focused and diffracting beams of Fig. 2a–b.

The origin of the self-focusing lies in the optically-
induced reorientation in the optical axis field of the sam-



5

a

P A

z

y

x⊗ t =600 st =400 st =200 st =0 s

b

FL

toron beam

c

−200 0 200

−100

0

100

z (µm)

y
(µ

m
)

P

A

0

0.25

0.5

0.75

1
t/tmax715 s

1985 s

75 s

Figure 3. Spin-orbit soliton interactions with torons. (a) Experimental (top) and simulated (bottom) unsatured POM
images of a toron. (b) Saturated POM snapshots of a toron (top) pushed along a spin-orbit soliton propagating left to right
and an associated physical interpretation in terms of momentum deflection (bottom). (c) An optical soliton micrograph like
in Fig. 2e, overlaid with three trajectories of torons with different starting points relative to the beam. The continuous colour
changes indicate the rescaled elapsed time for each trajectory, and the insets show the total trajectory elapsed times and the
physical interpretation in terms of momentum deflection. The white bar in (b) represents 100 µm.

ple. Fig. 2e presents a polarised optical micrograph
(POM) of the sample with the laser light filtered out.
Therein, a bright colour corresponds to a nonzero

∣∣δnEM
∣∣

associated with a beam-induced reorientation of the op-
tical axis. Our simulations predict a periodic reorien-
tation of optical axis (Fig. 2f) due to the fast beatings
between the orthogonal extraordinary and ordinary opti-
cal modes, mediated by nonlinear spin-orbit interactions.
A cylindrical-glyph-based representation of the optical
axis field is also shown with exaggerated reorientation
angles and stretched-out z direction at the bottom of
Fig. 2e. The periodicity of this optical axis pattern is
not visible in the POM because the periodicity length
Λ ≈ 2.2 µm is smaller than the resolution of our micro-
scope. The molecular reorientation mainly happens in
the xy plane, with a 35 times weaker reorientation along
z due to chirality. It resembles the pure xy-reorientation
of achiral media [25–27, 38, 39], as expected since here
the cholesteric pitch is much bigger than the beam waist.

We numerically calculated the optical force fields that
a spin-orbit soliton exerts on a toron, and estimated that
FNL was always at least a thousand times weaker than
F L, which means we can model the optomechanical in-
teractions solely from the redistribution of light’s mo-
mentum. This finding is expected since the periodicity
length Λ associated with δnEM is much smaller than the
typical diameter of a toron in our sample (comparable
to the sample thickness 60 µm). Indeed, the optical axis
pattern nEM averaged over the diameter of the toron is
almost identical to the far-field optical axis n0 and should
therefore not lead to a significant mechanical action when
overlapping with the optical axis pattern nTS.

In Fig. 3b, we present a series of POM snapshots of a
toron at different elapsed times. For convenient tracking,
the microscope settings were adjusted to fully saturate
the POM constrast inside the toron (see Fig. 3a for un-
satured images). The toron is pushed along a spin-orbit
soliton perfectly aligned with its center, due to the asso-
ciated lensing effect [40] which transfers momentum from

the light beam to the toron, as schematically shown at the
bottom of Fig. 3b. Alternatively, when the optical soliton
is incident on the outer edge of the the toron, the opti-
cal force F L pushes the toron sideways, away from the
beam, as visible in Fig. 3c which shows three experimen-
tal toron trajectories with different starting points on top
of the POM image associated with the spin-orbit soliton.
Each trajectory was captured independently in the same
sample by optically creating with a short laser pulse (see
Supplementary Sec. I.A) the toron near a given start-
ing point and destroying or moving away the toron at
the end of the acquisition. We therefore emphasise that
only a single toron was present at a given time inside the
acquisition window. The insets of this figure show how
the momentum of light is deflected for each particular
starting point (black arrows), which allows the theoreti-
cal prediction of the general directions of the optical force
(red arrows) in very good qualitative agreement with the
experiment. In Supplementary Fig. S4, we present a di-
rect quantitative comparison between the experimental
and simulated force profiles. The typical order of magni-
tude of the force rescaled by the beam power is 1 pN/mW
in experiments and simulations but depends on the sam-
ple thickness, birefringence, and beam waist. We also
note that the force field includes no equilibrium points
because we focused on a simple regime with the toron’s
size much bigger than the beating length Λ—a situation
with no elastic interactions and therefore analogous to a
colloidal particle being pushed around by an unfocused
laser. In the next section, we show that more complex
behaviour arises when the toron’s size is smaller than the
typical lengths associated with bouncing solitons.

Interaction between bouncing solitons and torons

In Fig. 4, we summarises our main observations con-
cerning the properties of bouncing optical solitons in a
17 µm-thick sample. Similar to spin-orbit solitons, the
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Figure 4. Bouncing solitons. (a–d) Same as Fig. 2a–d for a bouncing soliton propagating in a 17 µm-thick sample. (e)
Volumetric rendering of the experimental tomography signal I3PF showing the bouncing pattern of the optical soliton. θ is the
angle between the sample plane and the local axis of propagation. (f) Same as Fig. 2e for the bouncing soliton of (a). (g)
Same as Fig. 2f for a simulated bouncing soliton in a 10 µm-thick sample. The white bar represents the periodicity length
Λ = 128 µm in (a,b,f) and 20 µm in (g).

optically-induced reorientation of optical axis (bright red
signal in Fig. 4f) allows the self-focusing of the laser beam
(Fig. 4a–d). However, a few important differences exist.
First, and as already noted above and in Fig. 1c, the laser
beam is not propagating along z but is bouncing between
the confining plates of the sample. In our simulations
and experiments, the angle between the beam wavevec-
tor and the plane of the sample can either be imposed
at the coupling interface or induced by scattering defects
at the entrance. This angle is experimentally measured
thanks to a tomography experiment (see Methods and
Fig. 4e) and is around θ ≈ 15◦ here. Second, although
the optically-induced reorientation of the optical axis as-
sociated with both spin-orbit and bouncing solitons is
periodic, the periodic length Λ of the latter is much big-
ger than the one of the former and can be estimated as
Λ ≡ 2h/ tan θ ≈ 128 µm (Fig. 4f–g). Last, chirality of
the host medium has a much deeper influence on bounc-
ing solitons than on the spin-orbit solitons of last section,
since it induces a fully three-dimensional reorientation of

the optical axis (Fig. 4g) and overall boosts the reorien-
tation angle of the optical axis for a given beam power
[29].

Since the periodicity length Λ ≈ 128 µm is now wider
than the diameter of torons (∼ 30–40 µm), we can ex-
pect a non-negligible contribution of the force field FNL

to the total optical force when the optical axis patterns
of the bouncing soliton and the torons overlap. Fig. 5a–b
confirm this expectation, by presenting the general shape
of the numerically-calculated optical force fields FNL and
F L (see Supplementary Sec. III), as well as their rescaled
intensities F̃ α ≡ F α/P (with P the beam power and
α ∈{L,NL}). The typical order of magnitude of both∣∣∣F̃ L

∣∣∣ and ∣∣∣F̃NL
∣∣∣ is 1 pN/mW, but both force fields are

associated with complex spatial variations and multiple
equilibrium points positioned periodically on each side of
the beam. By summing F L and FNL, one obtains the
total force F exerted on the toron plotted in Fig. 5c.
The periodicity of this force field is directly related to
the periodic pattern defining the bouncing soliton, and
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Figure 5. Bouncing optical soliton interactions with torons. (a) Line-integral-convolution plot of the calculated force
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(b) Same as (a) with the force field F L. (c) Same as the top of (a,b) for the total optical force field f . (d) Direct comparison
between experimentally observed toron trajectories (in red) and the force field lines of the calculated total optical force F .
(e) Same as (d), using the experimental POM image of the bouncing soliton in Fig. 4f as background. Similar to Fig. 2,
the continuous colour changes indicate the rescaled time for each trajectory and the white labels correspond to the total time
associated with each trajectory. The sample thickness was 17 µm in experiments and 10 µm in simulations due to computational
limitations, but a comparison can still be made thanks to the approximate scale-invariance of the force field. The white bars
represent 10 µm and the black dots in (a–d) represent the equilibrium points of the force fields.
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can be tuned by adjusting either the beam insertion an-
gle θ or the sample thickness h. Furthermore, one can
easily show—assuming perfect self-focusing and a fixed
value for θ—that this force field is scale-invariant if all
lengths (sample thickness, toron diameter, beam waist)
are scaled by the same factor and the light’s wavelength
is much smaller than other lengths.

Using this scale-invariance, Fig. 5d shows a direct com-
parison between experimental realisation of toron trajec-
tories and the numerically calculated optical force field
F . Similar to the last section, each trajectory was mea-
sured independently with a single toron during a given
duration inside the observation window. The trajecto-
ries follow the general field lines of the force fields, with
some deviations due to thermal noise. This comparison
therefore validates the overdamped Langevin model that
we introduced above. Most interestingly, experiments
and modeling reveal a wide range of trajectory shapes,
including characteristic hook-like trajectories when the
toron is translated toward one of the equilibrium points
of the force field. This means that the optical force can
go against the natural flow of light (left to right in all
figures)—a phenomenon reminiscent of the so-called trac-
tor beams [41], albeit here resulting in periodic arrays of
spatially localised topological solitons on both sides of the
optical soliton. This phenomenon can be interpreted in
terms of non-trivial three-dimensional deflections of opti-
cal momentum and opto-elastic interactions arising from
the complex optical patterns associated with the optical
and topological solitons. In Supplementary Sec. III, we
describe mechanisms yielding the force field of Fig. 5d
and the drastic changes that can be induced by varying
material constants of the LC.

DISCUSSION AND CONCLUSIONS

Our findings show how solitons embedded in differ-
ent fields—molecular orientation and electromagnetic—
can exhibit complex optomechanical interactions. We fo-
cused on the regime where dynamics of topological soli-
tons is largely predetermined by the direction of prop-
agation and the type of an optical soliton. However,
this regime is just one of many possibilities. As an-
other illustrative example, Supplementary Sec. IV de-
scribes an interaction of optical solitons with surface-
pinned torons and cholesteric fingers. The optical soli-
tons in this case can be redirected by the topological
solitons, as well as channeled out of the LC samples. Ad-
ditional new possibilities can emerge from controlling the
elasticity-mediated inter-solitonic interactions between
torons themselves [42]. While so far we explored the most
basic situation of torons embedded in a uniform far field
background and interacting with each other repulsively
through elasticity-mediated forces, such interactions can
be controlled by applying electric fields and even out-of-

equilibrium dynamics can emerge [42] when the ampli-
tude of applied voltage is modulated. Combining optical-
topological inter-solitonic interactions with these addi-
tional means of control could create a new paradigm of
multi-stimuli-reconfigurable solitonic matter, though this
is outside of this work’s scope.

A large range of physical behaviours can be anticipated
between the two extremes at which behaviors are domi-
nated by either optical or topological solitons. For exam-
ple, crystalline lattices of torons can have combinations of
surface-pinned and mobile torons, with the latter objects
acting as passive particle-like objects undergoing Brow-
nian motion when no external forces are applied. Such
topological solitons can typically be ’activated’ by apply-
ing periodically oscillating fields and patterns of light,
both when moving individually and as periodic crystal-
like arrays [42–44]. This dynamics could be then enriched
and guided by the interactions with optical solitons stud-
ied here. On the other hand, our quasi-two-dimensional
study of interacting optical and topological solitons could
be extended to higher dimensions, such as with spatio-
temporal solitons called ’light bullets’ [45], and topolog-
ical solitons like “heliknotons” capable of forming three-
dimensional crystalline arrays [46].

We anticipate that the experimental developments de-
scribed above could go hand-in-hand with the introduc-
tion of a general topological optomechanical framework
allowing the determination of the mechanical interac-
tions of chiral topological structures with general shaped
beams of light. The theoretical model that we introduced
here is the first step toward this general framework, but
the ultimate goal would be to account for all degrees-of-
freedom of the structure being transported, which would
allow the study of topological interactions between very
generic patterns of optical and material fields. These
multifield interactions could therefore nourish a very gen-
eral line of research exploring the consequence of topology
on multiple coupled fields of various natures (see for ex-
ample the microfluidic system of Ref. [47] or the charged
topological colloids of Ref. [48]).

We foresee several applications based on the optome-
chanical interactions described here. For example, mul-
tiple optical solitons generating periodic equilibrium po-
sitions could be used to assist the self-assembly of col-
loidal metamaterials [49]. Furthermore, soliton-assisted
manipulation of torons could find its use in reconfiguring
in real-time the various applications based on topological
solitons [40, 50], such as all-optical logical gates, circuits,
and memory. We emphasize that most of these photon-
ics applications rely primarily on static configurations of
LC order providing a given optical function (diffraction
phase grating, beam deflector, etc.), with dynamical re-
arrangement of LC structures only needed for the device
setup and/or reconfiguration. However, should the needs
arise, the dynamics of our system could be optimised with
microns-thick samples (associated with a smaller dissipa-
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tion coefficient γ) and higher beam powers and optical-
soliton-induced director deformation∼ 1, thus decreasing
the typical time scales by up to a factor 100.
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METHODS

Preparation of LC samples with topological solitons

Each experimental cell consists of a LC layer sand-
wiched between two glass plates treated for perpendicular

boundary conditions (homeotropic anchoring) [51, 52].
To define the thickness between the glass plates, we
placed ultraviolet (UV) curable dot-like glue droplets
(NOA-65, Norland Optical) near the corners of the cell
volume, containing silica spacer spheres with a diameter
of 16.9 or 60 µm (ThermoFisher). Before curing, we con-
firmed that top and bottom plate edges along a single side
were flush with each other in order to minimise liquid-
crystal director distortion near the point of entrance of
the beam. For the 60 µm-thick cells, a treated coverslip
was added on the optical-insertion interface so that the
optical axis field of the LC stays uniform and normal to
the sample plate. By the application of a weak UV il-
lumination source, the UV glue was cured until hard in
30 min.

The cells were filled with a cholesteric LC by capil-
lary forces. In most experiments, the LC was a mixture
of a nematic liquid crystal (E7, Shijiazhuang Chengzhi
Yonghua Display Material Co., Ltd.) with a chiral
dopant (cholesteryl pelargonate, SigmaAldrich). The
only exception was the three-photon-fluorescence (3PF)
imaging experiment, where we prepared and used a mix-
ture that photo-polymerised into a liquid-crystal gel to
preserve optically-induced perturbations around an op-
tical soliton [29, 53]. The main output of this experi-
ment was the three-photon-absorption-based fluorescence
signal I3PF, whose deviation from zero corresponds to
the core of the optical soliton due to partial photo-
polymerisation induced by the laser prior to full photo-
polymerisation by UV light. The signal I3PF therefore
corresponds to a direct trace of the local intensity of the
laser in our experiments, which allowed us to reconstruct
the path of the beam in the sample and observe the asso-
ciated bouncing pattern of Fig. 4e. Note that in general,
such bouncing patterns are not due to the chirality of the
medium — similar patterns have been observed in achiral
sample with various boundary conditions [54–56] — but
is due to either a boundary-induced modulation of the
photonics potential (like in the previously cited paper)
or total internal reflection at the confining boundaries
(like in this paper).

In all experiments, we adjusted the cholesteric pitch
so that the cell had a thickness-to-pitch (d/p) ratio of
approximately 0.8–1. These particular cell specifica-
tions allowed for obtaining a uniform optical axis back-
ground normal to the sample plates with selectively gen-
erated topological solitons. The torons were generated
on demand in desired spatial locations within the LC
cell with the point-wise application of scanned infrared
continuous-wave laser tweezers to the LC sample [32, 33].
As described in [35, 40], an in-sample optical power
of 30–160 mW was sufficient to temporarily reorient
the cholesteric LC director and locally transition from
the far-field LC orientation to an energetically favorable
toron state. The experimental setup associated with our
laser tweezers is described in more detail in Supplemen-
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tary Sec. I.A.

Observations and analysis of inter-solitonic
interactions

Interaction behaviours were captured between spin-
orbit and unpinned topological solitons as well as be-
tween bouncing optical solitons and both pinned and
unpinned topological solitons. In the pinned case, the
boundary conditions of the chiral LC’s confining glass
plates were perturbed by laser tweezers such that the
topological solitons energetically favored pinning to the
substrate. A pinned topological soliton is therefore fixed
in place and can only deflect light. Conversely, unpinned
topological solitons are able to freely diffuse throughout
the sample plane and can be transported along the field
lines of the optical forces described in the main text.
For this work, different types of liquid-crystal sample
cells were prepared for pinned and unpinned topologi-
cal solitons, where both types of solitons could be op-
tically generated at different laser powers and erased by
applying electric fields. The main text focuses on the fas-
cinating dynamical trajectories of unpinned torons, while
additional interaction behaviour of optical solitons with
pinned topological solitons are described in Supplemen-
tary Sec. IV.

In-sample-plane optical coupling with monochromatic
Gaussian beams and through-sample-plane visualisation
of the topological solitons and their optomechanical be-
haviours were done using a custom-built experimental
setup described in Supplementary Fig. S1. This laser
setup allowed us to adjust the incident beam’s power,
waist, linear polarisation, and tilt angle and to couple it
through the side of the sample as shown in Figs. 1c and
1d. In all experiments, the wavelength of the laser light
was 532 nm and the power of the incident beam was var-
ied between 1 and 80 mW. We emphasise that the tem-
perature can be considered as constant since thermal ab-
sorption is negligible in our system at these beam powers.
Observations of the interactions between topological and
optical solitons were done with an Olympus IX-73 optical
microscope. Scattered light from the laser beam associ-
ated with the optical soliton was captured by shutting
off the white light source of the microscope and keeping
only the microscope objective between the sample and
the camera. These observations correspond to the green-
color images of Fig. 2 and Fig. 4. Conversely, the optical
axis field patterns associated with the topological and op-
tical solitons were characterised by filtering-out the light
scattered from the laser with a red bandpass filter and
capturing transmission-mode optical micrographs of the
sample under crossed polarisers. These observations cor-
respond to the red-colour images of Fig. 2-5.

To automatically deduce the motion trajectory of a
toron from an experimentally obtained temporal stack of

microscope images, we implemented a custom tracking
algorithm in Python. This algorithm works with three
steps for each image of the stack: first, the original im-
age is binarised with an appropriate threshold; then, the
convex hull of this thresholded image is calculated; fi-
nally, the vertices of the convex hull are fitted with a cir-
cle, whose center constitutes the output of the algorithm
for a given stack index. All calculations were made with
the numpy and scipy libraries [57, 58]. The advantage of
this approach in comparison to state-of-the-art particle
trackers for soft matter is that it is very robust with re-
spect to the toron appearance in the microscope, which
varies due to the polarised illumination and complex pat-
tern of optical axis. While one can partially circumvent
this problem by acquiring very saturated images, as in
Fig. 3b, this approach is not ideal due to variations of
intensity when the toron is moving. Using a convex hull
allowed us to solve this problem and yielded a visually
unbiased estimation of the center even when the observed
toron was not a perfectly uniform and bright disc.

In Supplementary Sec. I.A, we give experimental de-
tails and schematics of the utilised optical setups, espe-
cially concerning the laser generation of topological and
optical solitons and their quantitative characterisation
with various optical techniques. While the experimen-
tal results are presented for one wavelength, 532 nm,
for consistency, there are no fundamental limitations for
exploring and technologically utilizing such phenomena
at other visible or near infrared wavelengths, say at the
telecommunication wavelength, as long as the medium is
transparent at the corresponding wavelength of light.

Modeling of optical forces

Since the force F L has been defined as the local contri-
bution to the optical force due to the deflection of light’s
momentum, it can be readily obtained by integrating the
flux of Maxwell’s stress tensor σEM through a surface S
enclosing the toron [59]:

F L ≡
∫
S

σEM · dS (2)

We calculated this force either based on an exact calcu-
lation of Maxwell’s stress tensor or a simplified version
of this tensor in the limit of geometrical optics.

In the first method, an accurate wide-angle beam prop-
agation simulation is performed to model the transforma-
tion of the laser beam near the toron, based on a novel
numerical scheme [60]. Then, the stress tensor field of
Maxwell is directly calculated from the numerically sim-
ulated optical fields E, D, B and H, using its general
expression [61]. Finally, the flux integral of σEM through
the computational mesh is calculated to obtain the force
F L for a given position of the toron with respect to the
laser beam.
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In the second method, the expression of Maxwell’s
stress tensor is first simplified in the geometrical optical
limit. Based on the ray-tracing formalism and energy-
conservation laws [62], we then demonstrated (see Sup-
plementary Sec. III.B) that:

F L = −
∫

Σ

j(u, v)∆p(u, v)

c
dudv, (3)

where Σ is an eikonal surface of the incident light rays
parametrised by the transverse coordinates u and v, ∆p
is the deflection of the renormalised wavevector p = k/k0

(with k0 the wavevector in empty space) before and af-
ter crossing the toron, and j ≡ q [S ·p] is the density of
energy flux along eikonals (with q the geometrical spread-
ing and S the Poynting vector). We numerically calcu-
late this integral directly from the ray-tracing method
described in Ref. [62]. This second method is approxi-
mate, but fast and accurate; it was deployed for all the
calculations, whereas the first method was used to vali-
date it (see Supplementary Sec. III.B).

We remark that the momentum deflection ∆p is pri-
marily due to the modulation of the beam walkoff in-
side topological solitons. In the beam propagation ap-
proach, this modulation is directly taken into account
with the so-called walkoff operator [60], whose impor-
tance was first recognized (with different notations) by
Assanto and collaborators [12]. In the ray-tracing ap-
proach, this modulation is directly embedded in the vari-
ation of the underlying Hamiltonian [62]. In both cases,
only the extraordinary polarisation of the beam is sensi-
tive to this modulation, which is why bouncing solitons
can preserve their solitonic nature after interaction (sin-
gle extraordinary mode) while spin-orbit solitons cannot
(mixed extraordinary and ordinary modes), as detailed
in Supplementary Sec. III.B.

The force FNL is the non-local contribution to the op-
tical force mediated by the orientational elasticity of the
LC medium. Its calculation relies on the elastic inter-
action energy G between the optical axis patterns nTS

and nEM respectively associated with the toron and the
optical soliton:

G =

∫
Ω

∑
α,β=y,z

nEM
α Lαβ n

TS
β dV, (4)

with L a self-adjoint differential operator which charac-
terizes the orientational elasticity of the medium (see
Supplementary Sec. III.C). We note that G becomes
nonzero once the localised patterns δnTS and δnEM over-
lap (Fig. 1e). We numerically calculate this interaction
energy using the simulated optical axis patterns nTS and
nEM for different shifts R of the toron with respect the
optical soliton, and then deduce the nonlocal optical force
field as FNL = −∇RG. Simulations of the internal struc-
ture of topological and optical solitons were carried out
using the numerical methods described elsewhere [29, 60]
and detailed in Supplementary Sec. II.

DATA AVAILABILITY

All data and postprocessing scripts are available from a
Zenodo repository (https://zenodo.org/record/6394431,
DOI: 10.5281/zenodo.6394431). Polarised op-
tical microscopy simulations were performed
using the open-source software Nemaktis
(https://github.com/warthan07/Nemaktis, DOI:
10.5281/zenodo.4695959).
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