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Exact Eddy-Viscosity Equation for Turbulent Wall Flows -
Implications for Computational Fluid Dynamics Models

Emmanuel Plaut∗
Université de Lorraine, CNRS, LEMTA, F-54000 Nancy, France

Stefan Heinz†

Mathematics Department, University of Wyoming, Laramie, WY, USA !

For turbulent channel flow, pipe flow and zero-pressure gradient boundary layer, Heinz

(2018, 2019) yields analytical formulas for the eddy-viscosity aC as a product of a function of H+

(the wall-normal distance scaled in inner units) and a function of H/X (the same scaled in outer

units). By calculating the eddy-viscosity turbulent diffusion term, we construct for those flows

an exact high-Reynolds number aC equation with one production and two dissipation terms.

One dissipation term is universal, peaks near the wall, and scales mainly with H+. The second,

smaller one, is flow-dependent, peaks in the wake, and scales mainly with H/X. The production

term is flow-dependent, peaks in between, and scales similarly. The universal dissipation term

implies a length scale analogous to the von Karman length scale used in the SAS models of

Menter. This length scale also appears in the production term. This confirms the relevance of

these length scales. An asymptotic analysis of all terms in the aC budget in the limit of infinite

Reynolds numbers is provided. This yields a test bench of existing RANSmodels with a similar

aC equation. We show that some models, e.g. the one of Spalart & Allmaras, do not respect

the flow physics: they display a production peak in the near-wall region. We modify the most

promising model, a SAS model. As a step forward towards a solution to the wall damping

problem, the aC equation of our model behaves much more correctly in the near-wall region.

I. Introduction

Reynolds-Averaged Navier-Stokes (RANS) models are still widely used in Engineering Computational Fluid

Dynamics (CFD, [1, 2]), because they allow studies in complex setups for a lower computational cost than more

sophisticated methods like Large Eddy Simulations (LES) or Hybrid methods [3]. Among RANS models, two-equations

models like the : − l [4, 5] and : − n [6] models are popular. Their equation for the turbulent kinetic energy : is

known to be rather accurate. Indeed, its high-Reynolds number form can be validated with direct numerical simulations

(DNSs - we use those of [7]) in channel flows, out of the viscous and buffer layers, as shown in the appendix A. On
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the contrary, the equations for the turbulent dissipation n or the turbulent frequency l of these models are much less

accurate, as shown, with the same DNS data, in the appendix B. These problems are related to the fact that these

equations have been constructed empirically on phenomenological and dimensional bases. Alternate RANS models

where one field is the eddy-viscosity aC itself, which evolves according to its own equation, look appealing since aC is

doubtless a quite relevant variable. The first models of this kind also constructed the aC equation on phenomenological

and dimensional bases [8–10], or from the : − n model itself, with a supplementary equation (the Townsend’s relation),

in the case of [11]. However, there have been recently attempts to use more systematic approaches [12, 13]. The

Scale-Adaptive Simulation (SAS) models of [14, 15] are also : − aC models, which are more phenomenological than

the ones of [12, 13], but may work as Hybrid RANS-LES models. Their aC equation implies, through the so-called

von Karman length scale ℓE , the second gradient of the mean velocity, which renders them ‘instability-sensitive’: in

highly non-homogeneous flows the second gradient of the mean velocity, in the denominator of ℓE , increases, hence

ℓE decreases, hence the corresponding dissipation term increases, hence aC decreases. This allows resolved motions in

unsteady simulations. Relevant applications of variants of this model to quite complex flows are for instance presented

in [14, 16, 17]. Reference [18] also proposed an interesting extension of the SAS approach under the form of a Reynolds

stress model.

The facts that many variants of the SAS models exist, and that their equations are built on phenomenological grounds,

raise however theoretical questions. Accordingly, it is noticeable that the more systematic approaches of [12, 13] are

quite different: whereas [12] started from a conventional Reynolds stress model, [13] started from the nonlocal analysis

presented in [19]. Obviously, there is no perfect way to analytically derive the aC equation.

The aim of this work is to offer a third way, at least for a relevant class of flows: fully developed channel and pipe

flows, together with zero-pressure gradient boundary layers over a flat plate. For these three canonical flows, denoted

hereafter ‘turbulent wall flows’, [20, 21] proposed analytic models of the mean flow*, Reynolds shear stress −
〈
DGDH

〉
and eddy viscosity aC , built after a thorough analysis of recent DNS, including those of [7, 22, 23], and experimental

data, for instance those of [24]. Interestingly, these models are valid for friction-based Reynolds numbers '4g & 500:

the limit '4g →∞ is included. Our approach, see Eq. (11), is then to analytically calculate the turbulent diffusion of

aC and to identify the opposite of this as the sum of a positive production term minus positive dissipation terms. The

fact that these terms are analytical offers a better intellectual understanding of the aC equation, and also a practical

understanding of the scaling properties of all terms in this equation. This also permits an accurate description of the

limit case '4g → ∞. Another goal is the creation of a basis for the numerical and physical evaluation of existing

models. This is exemplified on the study of the models [10, 12, 14, 15]. Regarding the SAS models, we assume that, for

the attached flows studied, they work in steady RANS mode. We finally derive a promising modification of one SAS

model. In particular, it behaves much more correctly in the near-wall region.

2



In Sec. II, we offer a presentation and physical analysis of our model, which considers only high-Reynolds number

turbulent wall flows with '4g & 500. The physical questions that we want to answer concern the scalings of the

production and dissipation terms in the aC equation, and the effects of the flow cases and Reynolds number. Asymptotic

formulas valid in the limit '4g → ∞, for all terms in the aC equation, either in the near-wall region (H+ scaling) or

in the outer region (H/X scaling), are in particular given in the Secs. II.F and II.G. An overview of all our physical

results is offered in the Sec. II.H, where the differences between the eddy-viscosity budget thus obtained and the known

turbulent kinetic energy budget are stressed. All this yields a test bench of existing models that imply a aC equation

with a standard turbulent diffusion or transport term ()a in equation 11). This test bench is used in the Secs. III.A to

III.C to evaluate three such models: the models of [10, 12] and the SAS models of [14, 15], which have some variants.

Finally, the mathematical and physical knowledges gained, and our test bench, are used to propose a new SAS model in

Sec. III.D. We conclude in Sec. IV.

II. Analysis: exact eddy-viscosity formula and transport equation

A. Turbulent wall flows - Exact eddy-viscosity formula

Following [20, 21], we consider turbulent wall flows of incompressible fluids of mass density d and kinematic

viscosity a. Locally, a cartesian system of coordinates OGHI is used, such that G points in the streamwise direction, and

H measures the distance to the closest wall. Neglecting small normal mean velocities in the boundary-layer case, one

considers that to leading order the mean flow

U = * (H) eG (1)

with eG the unit vector in the G-direction. A relevant quantity is the mean strain rate

( = m*/mH . (2)

The macroscopic length scale X is the half-channel height, pipe radius, or 99% boundary layer thickness with respect to

channel flow, pipe flow, and boundary layer, respectively. Denoting DGeG + DHeH + DIeI the fluctuating velocity, the

RANS eddy viscosity may be defined exactly as

aC = −
〈
DGDH

〉
/( (3)

where the angular brackets denote the Reynolds average. The mean wall shear stress gF is used to define the friction

velocity Dg =
√
gF/d. From this wall or inner units are defined: H+ = DgH/a, *+ = */Dg and

(+ = m*+/mH+ . (4)
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Fig. 1 Exact model. a) Continuous curve: (+12 , dashed line: 1/(^H+). b) Continuous curve: 1/(+12 − 1, dashed
line: ^H+. c), for channel (blue), pipe (green), boundary layer (red).

Finally, the friction-velocity Reynolds number '4g = X+ = DgX/a. In Eq. (11) of [21], an analytic expression is

proposed for the normalized eddy viscosity, which is valid as soon as the Reynolds number '4g & 500,

a+ = aC/a = (1/(+12 − 1) , . (5)

There (+12 = (
+
1 + (

+
2 is the inner flow contribution to the dimensionless mean strain rate (+ (4), disregarding wake

effects, see Eq. (7) of [20] and the corresponding discussion. Precisely, the universal function

(+12 = (+12 (H
+) = 1 −

[
(H+/0)1/2

1 + (H+/0)1/2

]2
+ 1
^H+

1 + ℎ2/(1 + H+/ℎ1)
1 + H:/(H+�)

, (6)

with 0 = 9, 1 = 3.04, 2 = 1.4, � = � (H+) = (1 + ℎ1/H+)−ℎ2 , ℎ1 = 12.36, ℎ2 = 6.47, H: = 75.8 , and the von

Karman constant

^ = 0.40 . (7)

The function (+12 , plotted on the Fig. 1a, approaches naturally 1 as H+ → 0 in the viscous sublayer. On the contrary, as

H+ →∞, (+12 ∼ 1/(^H+), in agreement with the log law. Therefore the function 1/(+12 − 1, plotted on the Fig. 1b, which

appears in the eddy viscosity (5), vanishes in the limit H+ → 0, and then increases smoothly to approach the function

^H+ as H+ →∞.

The second ingredient of the theory is the function, , which is flow-dependent and in outer scaling, because it describes

wake effects. With the notations of [20, 21],, = 1/��% for channel and pipe flows, "�!/��! for boundary layers,

where ��% and ��! characterize the wake contribution (+3 to the dimensionless mean strain rate (+ (see Eqs. 7 and

A.22 of [20]), "�! characterizes the total stress in boundary layers (see Eq. 4 of [21]). For channel and pipe flows

, = ,- (H/X) with ,- (H) =
 - H + (1 − H)2 (0.6H2 + 1.1H + 1)

1 + H + H2 (1.6 + 1.8H)
, (8)
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- = �,  � = 0.933 for channel, - = %,  % = 0.687 for pipe; for boundary layers

, = ,�! (H/X) with ,�! (H) =
1 + 0.285 H 4H (0.9+H+1.09H2)

1 + (0.9 + 2H + 3.27H2)H
4−H

6−1.57H2
. (9)

The wake function, is plotted for these three flows on the Fig. 1c. In the near-wall region, when H/X→ 0, , → 1,

hence the eddy viscosity (5), a+ = (1/(+12 (H
+) − 1) , (H+/X+) ∼ (1/(+12 (H

+) − 1). Therefore the log-layer eddy

viscosity ^H+ is approximately recovered if 1 � H+ � X+; for a more precise discussion, see Sec. 4.1 of [21]. When H

becomes of the order of X, wake effects come in, that saturate the growth of the eddy viscosity (5), since, decreases.

The maximum value of H is X in channel and pipe flows: if H ∈ [X, 2X] the mean fields can be obtained by symmetries

from the mean fields for H ∈ [0, X]. On the contrary, H may be much larger in boundary layers. Naturally,,�! → 0 as

H →∞; precisely,�! < 10−3 as soon as H > 1.36X.

The aC model (5) has been validated by a study of DNS and experimental data. For instance, Figs. S.6abc of the

supplementary material to [21] show the eddy viscosity of various DNSs, one for each canonical flow, compared with

two variants of the eddy-viscosity model (5). In particular, the magenta curves show a+ = ^H+ , with our notations, i.e.

(1/(+12 − 1) in (5) has been replaced by ^H+. The agreement with the DNS is good, except in the outer region, where

in (3) both the numerator
〈
DGDH

〉
and the denominator ( tend to zero, hence the DNS noise is amplified. A direct

comparison between the aC model (5) and channel flow DNS is displayed on our Figs. 14bc.

B. Exact eddy-viscosity equation for turbulent wall flows

Since the focus of our study is on high-Reynolds numbers wall-bounded flows, we assume that the eddy-viscosity

equation takes the standard form

f
maC

mC
=

m

mH

(
aC
maC

mH

)
+ %a − �a (10)

with %a > 0 the production, �a > 0 the dissipation term. The dimensionless coefficient f, of order 1, which is a

‘turbulent Prandtl number’, plays no role in the turbulent wall flows, where the mean fields are steady, but is kept in (10)

for the sake of comparison with existing turbulence models. In turbulent wall flows, according to (10), the opposite of

the turbulent diffusion term or transport term reads

− )a = −
m

mH

(
aC
maC

mH

)
= %a − �a . (11)
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A calculation of )a starting from (5) leads to �a = �a8 + �a> with

�a8 = ^2 a2
C

!2
E 

1
5 2 , (12a)

%a = ^
a2
C

!E X

1
1 − (+12

(
− 4, ′

,

)
= ^

a aC

!E X

1
(+12
(−4, ′) , (12b)

�a> =
a2
C

X2
, ′2 +,, ′′

,2 =
a2

X2 (1/(
+
12 − 1)2 (, ′2 +,, ′′) . (12c)

The indices 8 and > refer to ‘inner’ and ‘outer’ terms, respectively, and the notation �a> is slightly improper since this

term is slightly negative in the near-wall region. However, �a> is much smaller in this region than in the outer region

where it peaks, as it will be shown in the Fig. 5ab for channel flow, 6ab for pipe flow, 7ab for boundary layers. Moreover

�a = �a8 + �a> > 0 everywhere, as it will be shown in the Figs. 5cd for channel flow, 6cd for pipe flow, 7cd for

boundary layers, hence the notation �a is fully justified.

In addition to the functions (+12 and, defined in Sec. II.A, there appear in Eqs. (12) other functions that are built on

these. The first one is the asymptotic von Karman length scale

!E = ^

��� (12
m(12/mH

��� or !+E = ^

��� (+12
m(+12/mH+

��� . (13)

It is defined as the von Karman length scale used by the SAS models

ℓE = ^

��� (

m(/mH

��� , (14)

but replacing ( by (12 , i.e., disregarding ‘wake effects’. The fact that the length scale !E appears in (12a) and (12b)

confirms on very firm bases the relevance of this length scale, which was conjectured by [14, 15]. Only the inner-units

!+
E 
(H+) is universal, whereas in outer units !E (H)/X has to be calculated as !+

E 
/X+ at H+ = X+ (H/X): it depends

on X+ = '4g . Since, as H+ → ∞, in agreement with the log law, (+12 ∼ 1/(^H+), !+
E 
∼ ^H+, as confirmed by the

Fig. 2a. The functions ℓ+
E 
(H+) (Fig. 2a) or ℓE (H/X) (Fig. 2b), that depend on the flow case and Reynolds-number,

have been computed using the accurate expressions of (+ of the equation (7) of [20], that take into account wake effects.

In channel or pipe flow,* peaks at the centerplane or pipe axis H = X, hence ( and ℓE vanish there. On the contrary,

in boundary layer flow, ( and ℓE vanish only in the limit H →∞. Phenomenologically, !E and ℓE become large

in the viscous sublayer, because there the velocity profile becomes linear (* ∝ H), then they diminish in the buffer

layer where there are strong gradients; further away in the outer region !E and ℓE again become large because the

velocity profile flattens. The wake effects finally saturate the growth of ℓE and even impose a decrease of ℓE , as

already explained, but do not influence !E . The Fig. 2c suggests that, because the dimensional factor in �a8 (12a),
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Fig. 2 Exact model. All curves start at H+ = 1. a,b) The asymptotic von Karman length scale !E (black
continuous); its log law approximation ^H (black dashed); the von Karman length scale ℓE for channel (blue),
pipe (green), boundary layer (red). The ℓ+
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curves of the Fig. a and all curves of the Fig. b are computed at

'4g = 1995. The Fig. c shows the same curves as Fig. b but with the inverse ordinates and linear-log scales.
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%a (first expression in 12b) and �a> (first expression in 12c) are respectively a2
C /!2

E 
, a2

C /(!E X) and a2
C /X2, in the

ratii X2/!2
E 

, X/!E , 1, those will peak in the inner, intermediate and outer regions. This will be confirmed in the

Figs. 5 for channel flow, 6 for pipe flow, 7 for boundary layers.

Another ingredient in �a8 (12a) is the universal damping function

5 = 5 (H+) = (1 − (+12)
( ((+12 − 1) (+12 3

2(+12/3H
+2

(3(+12/3H+)2
+ 3 − 2(+12

)−1/2
. (15)

It is plotted on the Figs. 3ab. It does tend to zero as H+ → 0 and 1 as H+ →∞.

Finally, in %a (12b) and �a> (12c) the rightmost functions depend only on, and its derivatives. In %a there appears

−4, ′ which is positive according to the Fig. 1c, hence %a > 0 as required. In �a> there appears, ′2 +,, ′′ which is

plotted on the Fig. 3c. The function, ′2 +,, ′′ > 0 except in a more or less narrow near-wall region, depending on the

flow case: this impacts the sign of �a> as already discussed after the Eqs. (12).
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Fig. 4 DNS and exact model for channel flows. Black curve: the opposite of the dimensionless transport term
−)+a (16) computed with the DNS of [7] at '4g = 543 (a), 5186 (b). Colored curve: the same term computed with
our model (17).

C. The channel flow case

In typical channel flow cases, a comparison of the opposite of the dimensionless transport term

− )+a = − m

mH+

(
a+
ma+

mH+

)
= − )a

D2
g

(16)

computed with finite differences from two DNSs of [7] and its model (11,12),

− )+a = %+a − �+a = − �+a8 + %+a − �+a> (17)

is shown on the Figs. 4. Except in the outer region, where the DNS noise is amplified, there is a good agreement between

the model and the DNS, especially for the highest Reynolds number case.

The separation of −)+a into the three terms of the model, −�+
a8
, %+a and −�+a> , is illustrated on the Figs. 5. The

Figs. 5a, c and g show that the dissipation term �+
a8
dominates in the near-wall region. In this region, and in inner

scalings, −�+
a8
(H+), − �+a (H+) and −)+a (H+) approach as '4g →∞ a limit profile −�+

a80
, which is plotted in black,

and will be studied in the Sec. II.F. A plateau around H+ ' 400 and

�+a8 ' �+a ' )+a ' ^2

builds up as '4g → ∞, in agreement with the formula for the log-layer normalized eddy viscosity, a+ = ^H+.

For larger values of H/X, after this plateau, the Figs. 5bdfh show that all terms, considered in inner-outer scalings,

−�+
a8
(H/X), − �+a> (H/X), − �+a (H/X), %+a (H/X) and −)+a (H/X), approach limit profiles as '4g → ∞. These limit

profiles, plotted in black for the three latest functions, denoted −�+a0 , %+a0 and −)+a0 , will be studied in the Sec. II.G.
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D. The pipe flow case

In the eddy-viscosity formula (5), the only difference between channel and pipe flows is described by the change of

the coefficient  - in the function,- (8) that contains the wake effects. This change from  � = 0.933 to  % = 0.687

is moderate, therefore the transport term and its contributions are close to the ones of channel flow, as shows the

comparison between Figs. 5 and 6. All the comments made on Figs. 5 at the end of Sec. II.C also apply to Figs. 6.

E. The boundary layer case

The boundary layer case differs from the channel and pipe flow cases in that the maximum value of H (resp. H+)

is not X (resp. X+ = '4g) but, in principle, infinity. Moreover, the wake function,�! of boundary layers (9) differs

significantly from the one of channel and pipe flows (8). The comparison of Figs. 7 with Figs. 5 and 6 shows similar

behaviours in the ranges H ∈ [0, X[ i.e. H+ ∈ [0, X+ [, whereas there are differences in the outer region. At H = X, i.e. the

centerplane in channels or the pipe axis in pipes, the function )a should present a vanishing slope for symmetry reasons,

as confirmed by Figs. 5h and 6h; note that the outer term −�+a> plays an important role there. In boundary layers, one

does not expect a similar property, but that )a should approach 0 as H →∞. This is what suggests the Fig. 7h, and what

would confirm a figure drawn with a larger interval of the abscissas: for all the Reynolds numbers implied, that range

from 543 to 80000, |)+a | < 10−3 as soon as H > 1.32X.
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Fig. 5 Exact model for channel flows. The colored curves, at '4g = 543 (red), 1995 (blue), 5186 (magenta),
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Fig. 6 Same as Fig. 5, but for pipe flows. On (f,h) the vertical lines mark H = 0.3X.
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F. Asymptotic profiles in the inner region

Figures 5ae, 6ae and 7ae show that, as '4g → ∞, at fixed H+, �+a> and %+a → 0. Thus the dissipation term �a8

dominates in the inner region, and controls the transport term, i.e. −)a ∼ −�a8 . Figures 5a, 6a and 7a further show

that �a8 scales with H+, and approaches in inner units a universal asymptotic profile. This happens because, at fixed H+,

H/X = H+/'4g → 0 as '4g →∞, hence, (H/X) → 1, hence aC ∼ a(1/(+12 − 1). In physical terms, the wake region

goes to infinity in inner scaling. By insertion of this estimate of aC in Eq. (12a), one obtains the asymptotic dissipation

function

�a80 = ^2 a2

!2
E 

(1/(+12 − 1)2

5 2 or �+a80 = ^2 (1/(
+
12 − 1)2

!+2
E 

1
5 2 . (18)

It is universal in that it does not depend on the flow case, but only on (+12 , see the Eqs. (13) and (15). Moreover, �+
a80

considered as a function of H+ also does not depend on '4g . The function −�+a80 is plotted in black on Figs. 5acg, 6acg

and 7acg. At fixed H+, when '4g → ∞, both −�+a8 , − �+a and −)+a approach −�+
a80

. On the Figs. 5acg, 6acg and

7acg, the first vertical line at H+ = 31 indicates the dissipation peak, with max�+
a80
' 0.36, the second vertical line at

H+ = 72 indicates a local minimum of dissipation, whereas the third vertical line at H+ = 400 indicates the beginning of

the log-layer plateau. Indeed, as H+ →∞, since 1/(+12 − 1 and !+
E 

approach ^H+, whereas 5 → 1, one has �+
a80
→ ^2,

in agreement with the expression of the log-layer eddy viscosity a+ = ^H+. Precisely, |�+
a80
− ^2 | < 10−3 as soon as

H+ ≥ 400.

G. Asymptotic profiles in the outer region

1. Dissipation

The Figs. 5bd, 6bd and 7bd show that, as '4g →∞, in the outer region, the dissipation terms �+
a8
, �+a> and their

sum �+a scale with H/X, and approach asymptotic profiles that depend only on the flow case. These profiles are obtained

by starting from the expressions (12a) and (12c), transformed in inner units,

�+a = ^2 a+2

!+2
E 

1
5 2 +

1
X+2
(1/(+12 − 1)2 (, ′2 +,, ′′) . (19)

At fixed H/X > 0, as '4g →∞, one has H+ = '4g (H/X) → ∞, therefore one can replace in (19) the eddy viscosity a+,

the strain rate (+12 , the von Karman length-scale !+
E 

and the damping function 5 by their approximations valid as

H+ →∞,

a+ ∼ ^H+ , , (+12 ∼ 1/^H+ , !+E ∼ ^H+ , 5 ∼ 1 (20)

see the discussions after equations (5-7) for a+ and (+12 , equations (13-14) for !+
E 

. This yields the asymptotic profiles

�+a0 = ^2 ,2 + ^2
( H
X

)2
(, ′2 +,, ′′) or �a0 = ^2 D2

g ,
2 + ^2 D2

g

( H
X

)2
(, ′2 +,, ′′) , (21)
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where the first (resp. second) terms correspond to the asymptotic profile of �+
a8
or �a8 (resp. �+a> or �a>). Since the

wake function, depends only on H/X, see equations (8-9), �+a0 is, for a fixed flow case, a function of H/X only. The

functions −�+a0 are plotted in black on the Fig. 5d for channel flow, 6d for pipe flow, 7d for boundary layer. At fixed

H/X, they are well approached by −�+a as '4g →∞.

2. Production

The Figs. 5ef, 6ef and 7ef show that, as '4g →∞, the production of the eddy viscosity vanishes in the inner region,

scales with H/X, and approaches in the outer region asymptotic profiles that depend only on the flow case. These profiles

are obtained by inserting, in the second expression of %a (12b), transformed in inner units,

%+a = ^
a+

(+12 !
+
E 

X+
(−4, ′) , (22)

the equivalents of a+, (+12 and !
+
E 

given in (20). This yields the asymptotic profiles

%+a0 = ^2 H

X
(−4,, ′) or %a0 = ^2 D2

g

H

X
(−4,, ′) . (23)

Similar to �+a0 (21), %+a0 is, for a fixed flow case, a function of H/X only. The functions %+a0 are plotted in black on the

Fig. 5f for channel flow, 6f for pipe flow, 7f for boundary layer. These figures confirm that, at fixed H/X, %+a approaches

%+a0 as '4g →∞.

3. Transport

Obviously

− )+a0 = %+a0 − �+a0 or − )a0 = %a0 − �a0 , (24)

depending on the units, yields the asymptotic profiles of the opposite of the transport term in the outer region, as proven

by the Figs. 5h for channel flow, 6h for pipe flow, 7h for boundary layer.

H. Physical properties of the eddy viscosity transport profiles

From the results of the Secs. II.B to II.G, we can construct for an overview the table 1. We now focus on the profiles

of the (opposite of the) transport term )a which is unambiguously defined, and considered as a relevant physical quantity.

We can list the following physical properties of these so-called transport profiles, starting in the inner region and going

progressively to the outer region.

(D0) In the inner region, in perfect agreement with the wall-damping idea, dissipation dominates: −)a ' −�a8 because

�a8 dominates %a and �a> .

(D1) As '4g → ∞, at fixed H+, −)+a and −�+
a8
converge to a universal function −�+

a80
(H+), plotted in black on the

14



Table 1 The different terms in the aC equation, or aC budget, 0 = )a − �a + %a , at finite and infinite '4g , in
various regions for this latter case, with analytical formulas or references to analytical formulas.

Infinite '4g
Finite '4g inner region log layer outer region

Dissipation �a = �a8 + �a> eq. (12a,12c) �a80 (H+) + 0 eq. (18) D2
g^

2 + 0 �a0 (H/X) eq. (21)
Production %a eq. (12b) 0 0 %a0 (H/X) eq. (23)
Transport )a = �a − %a �a80 (H+) eq. (18) D2

g^
2 )a0 (H/X) eq. (24)

Fig. 5a, that peaks at max�+
a80
' 0.36 around H+ = 31.

(D2) For larger values of H+, �+
a80
' )+a has a minimum around H+ = 72, and reaches the log-layer plateau �+

a80
= ^2

as soon as H+ & 400.

All this proves that dissipation of the eddy-viscosity is mainly due to universal near-wall motions.

(T0) Beyond the log-layer plateau in terms of values of H, at fixed H/X, as '4g →∞, the opposite of the transport term

−)+a converges to asymptotic profiles −)+a0 , plotted in black on the Figs. 5h, 6h, 7h, that depend on H/X and on

the flow case only. These asymptotic profiles start at ‘low’ H at the log-layer plateau value −)+a0 = −^2.

(P) For larger values of H, the functions −)+a0 show a maximum due to the production term around H = 0.3X.

The scaling with H/X and the position of this maximum proves that production of the eddy-viscosity is due to

large-scale outer motions.

(T1) For even larger values H ≥ 0.65X, − 0.025 < −)+a0 < 0, i.e. dissipation dominates again, but only slightly.

The properties (D) contrast with the ones of the dissipation of the turbulent kinetic energy : , i.e., n , which peaks at the

wall and not off-the wall. Moreover, contrarily to �+a , n+ shows no clear scaling in the near-wall region for the Reynolds

numbers accessible to DNS, i.e. '4g . 6000 in channel flow, as shown for instance by [25] and confirmed by the data

of [7]; see also [26]. The properties (P) contrast strongly with the ones of the production of : , which scales with H+

and peaks near wall, around H+ = 11, as shown for instance in the supplementary material to [21]. To further illustrate

these differences between the eddy-viscosity and turbulent kinetic energy budgets, the production-to-dissipation ratio

of the eddy-viscosity is shown on the Figs. 8. The comparison of the Fig. 8a with the figure 7 of [7] that displays

%:/n − 1 (with their notations, see also our appendix A) shows huge differences. When '4g →∞, whereas at fixed H+

one has %+a and %a/�a → 0, on the contrary %:/n seems to converge to an asymptotic profile which is non-vanishing.

Moreover, whereas %: = 0 at the centerplane in channel flow for symmetry reasons, %a > 0 there. The Fig. 8b shows at

fixed H/X the convergence of %a/�a to the asymptotic profile %a0/�a0 . Overall, the eddy-viscosity and turbulent

kinetic energy budgets differ significantly.

Regarding the aC production peaks, the comparison between the vertical scales of the Figs. 5f, 6f and 7f shows that the

large-scale outer motions contribute more efficiently to the production of aC in the boundary layer than in the other flows.

This shows also on the production peaks of −)+a , which are roughly 30% higher in the boundary layer. This is probably
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Fig. 8 Exact model for channel flows: production-to-dissipation ratio for '4g = 1000 (red), 1995 (blue), 5186
(magenta). In (b) the black curve shows the asymptotic ratio %a0/�a0 .

related to the fact that the boundary layer is in principle unbounded in the wall-normal direction, contrarily to channel

and pipe flows.

The robust properties (D,T,P) of the transport profiles will now be used to study existing models of the eddy-viscosity

equation.

III. Evaluation of other models and model enhancement
From now on, the focus is on channel flows, which are very well documented, and where the geometry is the most

simple. Our aim is to study the performance of existing models of the eddy-viscosity equation, by a test of the properties

listed in the Sec. II.H through relevant plots. Last but not least, a new version of the SAS models is proposed on this

base.

A. High-Reynolds number model of Spalart & Allmaras

The high-Reynolds number eddy-viscosity equation (4) of [10] reads, for channel flow,

f(
maC

mC
= 0 =

m

mH

(
aC
maC

mH

)
+ 212

( maC
mH

)2
+ f(211(aC − f(2F1 5F

( aC
H

)2
, (25)

with the same notations, except for f( which stands for the f of [10], and

5F = 6

( 1 + 26
F3

66 + 26
F3

)1/6
, 6 = A + 2F2 (A6 − A) , A =

aC

( ^2
(
H2
, (26)

f( = 2/3, 211 = 0.1355, 212 = 0.622, (̂ = 0.41, 2F1 = 211/ (̂ + (1 + 212)/f( = 2.763, 2F2 = 0.3, 2F3 = 2; their

von Karman constant (̂ differs slightly from ours (7). With the definitions (11) and (16) of the transport term in physical
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Fig. 9 Evaluation of the high-Reynolds number model of Spalart & Allmaras in channel flows. a) The
black curve shows the exact −�+

a80
(18), the colored curves −)+

a(
for '4g = 1995 (blue), 5186 (magenta)

and 80000 (green). b) For '4g = 5186, the curves show f(211(
+a+ (continuous), 212 (ma+/mH+)2 (dashed),

−f(2F1 5F (a+/H+)2 (dotted). In (a,b) the vertical lines mark H+ = 31, 72 and 400. c) The black curve shows the
exact −)+a0 (24), the colored curves −)+

a(
for '4g = 1995 (blue), 5186 (magenta) and 80000 (green), the vertical

line marks H = 0.33X. In (a,b,c) the horizontal lines mark −)+a = 0 and −^2.

and dimensionless forms, we identify their model for −)+a ,

− )+a( = f(211(
+a+ + 212

( ma+
mH+

)2
− f(2F1 5F

( a+
H+

)2
(27)

with, in particular,

A =
a+

(+ ^2
(
H+2

. (28)

The equation (7) of [20], that takes into account wake effects, is used to compute (+ accurately for the evaluation of the

first and third terms in (27). The model (5) is used on the other hand to compute a+. As a first test of the model [10],

plots in the inner region, with H+ as the abscissa, are displayed on the Figs. 9ab. According to the properties (D0,D1) of

the exact aC − equation, the colored curves of the Fig. 9a should approach, at fixed H+, as '4g increases, the black curve

showing −�+
a80

. This is not the case, and more seriously the model [10] predicts a near-wall production peak where

there should be a near-wall dissipation peak. The Fig. 9b confirms that the dissipation peak of the model occurs at too

large values of H+, and also shows that the inclusion of the production term proportional to (ma+/mH+)2 does not help:

it adds production where there should be more dissipation. Thus the high-Reynolds number model of [10] does not

describe correctly the physics of the aC − equation in the near-wall region. It is also noticeable that no log-layer plateau

appears in Spalart & Allmaras’ model, even at '4g = 80000, contrarily to what shows the exact aC − equation: compare

the Figs. 5g and 9a. This raises question, since the classical ‘log-layer equilibrium’ has been used by [10] to relate 2F1

to the other coefficients.

Plots with H/X as the abscissa are displayed on the Fig. 9c. The outer production peak of −)+
a(

, which was already

visible for the lowest values of '4g in the Fig. 9a, seems, on the Fig. 9c, to scale with H/X. Moreover, the value of this

outer maximum has the correct magnitude. It is also remarkable that the values of −)+
a(

at H = X are quite correct. Thus,
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in the outer region there is a qualitative and even semi-quantitative agreement between the model [10] and the properties

(T,P) of the exact aC − equation. However, the fact that the colored curves of the Fig. 9c differ significantly from the

black curve, especially for the largest value of '4g , reveals that there are, in the outer region, quantitatively significant

differences between the model and the exact theory.

In summary, the model of Spalart & Allmaras [10] appears to be of poor quality in the inner region, where it somehow

inverses the production and dissipation peaks as compared to the exact model. On the contrary, it performs rather well

in the outer region.

B. Model of Yoshizawa et al.

The model [12] implies three model variables: the eddy viscosity aC , the turbulent kinetic energy : and the turbulent

dissipation n . It also includes an eddy-viscosity equation, which was shown to yield a better model of aC than the

eddy-viscosity formula of the standard : − n model in some specific cases. The high-Reynolds number form of the aC −

equation (60) of [12] reads, for channel flow,

f.
maC

mC
= 0 =

m

mH

(
aC
maC

mH

)
+ f.�a% 5a : − f.�an

aC

g
, (29)

with the same notations, except for f. which stands for the fa of [12], and

5a =

(
1 − exp

(
− H

∗

14

))2
(
1 + 5

'
3/4
C

exp

(
−

( 'C
200

)2
))
, g =

:

n Λ
, Λ =

√
1 + 2(�( + �Ω)

( :(
n

)2
, (30)

f. = 3, �a% = 4/15, �an = 3.5, �( = 0.015, �Ω = 0.02�( , H∗ = (an)1/4 H/a, 'C = :2/(an). Their model for

−)+a reads therefore

− )+a. = f.�a% 5a :
+ − f.�an

n+

:+
Λ a+ (31)

with, in particular,

:+ =
:

D2
g

, n+ =
an

D4
g

, H∗ = (n+)1/4 H+ , 'C =
:+2

n+
,

:(

n
=
:+(+

n+
. (32)

Since the fields : and n are needed in this model, we use the DNS data of [7] to test it. The normalized eddy viscosity

a+ is also extracted from the DNS. Plots with H+ as the abscissa are displayed on the Figs. 10ab. A good property of

the model [12] is that it presents a dissipation peak in the near-wall region, that has the correct magnitude, and seems

to scale with H+. Thus the properties (D0,D1) of the theory are qualitatively fulfilled. However, quantitatively, the

dissipation peak of −)+
a.

comes in too early in terms of H+ values: for '4g = 5186, − )+
a.

shows a minimum around

H+ = 10 instead of H+ = 31 for the minimum of −�+
a80

. For larger values of H+, the model [12] appears to be too
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Fig. 10 Evaluation of the model of Yoshizawa et al. in channel flows, using the DNS of [7]. a) The black curve
shows −�+

a80
(18), the colored curves −)+

a.
for '4g = 1995 (blue) and 5186 (magenta). b) For '4g = 5186, the

curves show f.�a% 5a :
+ (continuous), −f.�an n +

:+ Λ a
+ (dotted). In (a,b) the vertical lines mark H+ = 31, 72

and 400. c) The black curve shows −)+a0 (24), the colored curves −)+
a.

for '4g = 1995 (blue) and 5186 (magenta),
the vertical line marks H = 0.33X. In (a,b,c) the horizontal lines mark −)+a = 0 and −^2.

productive, and there is no log-layer plateau.

Plots with H/X as the abscissa are displayed on the Fig. 10c. These plots confirm that the model [12] is too productive,

moreover the scaling with H/X does not show up, i.e., the properties (T,P) of the theory are not fulfilled.

In summary, the model of Yoshizawa and coworkers [12] performs rather well very close to the wall, but poorly farther

away. Moreover, this model shows a too strong Reynolds-number dependence.

Importantly, the equation (60) of [12] contains a low-Reynolds number term, the viscous diffusion term

+a =
m

mH

(
a
maC

mH

)
. (33)

A quantitative study of this term, for channel flow, is provided in our appendix C. It is shown that, for H+ ≥ 1 and

'4g = 1995 or 5186, |++a | ≤ 0.023. This is quite smaller than the turbulent dissipation peak, max�+
a80
' 0.36, which

gives the order of magnitude of the transport term, see the properties (D0,D1). Thus, taking into account this term,

by adding f.+a to the rhs of the Eq. (29), would modify only slightly the colored curves of the Figs. 10, and the

discrepancies with the exact model would not disappear.

C. SAS models of Menter et al.

1. Basic model

The high-Reynolds number : −
√
:ℓ SAS model of Menter et al. has been introduced in [14, 15]. The two turbulent

fields are : and
√
:ℓ with ℓ the turbulent length scale. The product

√
:ℓ is up to a constant factor the eddy viscosity aC ,

hence this model can be regarded as a : − aC model. After multiplication by d−1 2
1/4
` f" , with the notations of [14],
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Fig. 11 Evaluation of the SAS model in channel flows, using the DNS of [7]. a) The black curve shows −�+
a80

(18), the colored curves −)+
a"

for '4g = 1995 (blue) and 5186 (magenta). b) For '4g = 5186, the curves show
Z1 %

+
a"

(continuous), −Z2 %
+
a"
(ℓ/ℓE )2 (dashed), −f" 21/4

` Z3 :
+ (dash-dot). In (a,b) the vertical lines mark

H+ = 31, 72 and 400. c) The black curve shows −)+a0 (24), the colored curves −)+
a"

for '4g = 1995 (blue) and
5186 (magenta), the vertical line marks H = 0.33X. In (a,b,c) the horizontal lines mark −)+a = 0 and −^2.

except for f" which stands for their fΦ , their equation (7) reads, for channel flow,

f"
maC

mC
= 0 =

m

mH

(
aC
maC

mH

)
+ %a"

(
Z1 − Z2

( ℓ

ℓE 

)2
)
− f" 2

1/4
` Z3 : (34)

with %a" = f"
a2
C (

2

:
, ℓ = 2

−1/4
`

aC√
:
, ℓE = ^"

��� (

m(/mH

��� , (35)

f" = 2/3, 2` = 0.09, ^" = 0.41, Z1 = 0.8, Z2 = Z1 − Z3/23/4
` + ^2

"
/(f" 21/2

` ) = 1.47, Z3 = 0.0288. The definition

of the von Karman length scale in (35) agrees perfectly with our definition (14), except for the different value of the von

Karman constant; for the sake of brevity we use the same notation ℓE , whereas in this section ^" is used instead of ^

for the computation of the SAS term, proportional to (ℓ/ℓE )2, in (34). Menter’s SAS model for −)+a reads therefore

− )+a" = %+a"

(
Z1 − Z2

( ℓ+
ℓ+
E 

)2
)
− f" 2

1/4
` Z3 :

+ (36)

with %+a" = f"
a+2(+2

:+
, ℓ+ = 2

−1/4
`

a+
√
:+

. (37)

The DNS data of [7] are used to test this model. Finite differences are used to compute m(+/mH+ to estimate ℓ+
E 

. Plots

with H+ as the abscissa are displayed on the Figs. 11ab. The Fig. 11a shows that there is a near-wall dissipation peak in

the SAS model, at a fixed H+ position, i.e. the properties (D0,D1) of the theory are qualitatively fulfilled. However, the

minimum value of −)+
a"

corresponding to this dissipation peak is too small, and this peak comes in too late in terms of

H+ values: for '4g = 5186, − )+
a"

shows a minimum around H+ = 43 instead of H+ = 31 for the minimum of −�+
a80

.

For larger values of H+, no log-layer plateau shows up in the SAS profiles, at least for '4g . 5200, whereas the classical
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‘log-layer equilibrium’ has been used in the derivation of the model of [14] to relate Z2 to the other coefficients. The

Fig. 11b showing the different contributions to −)+
a"

proves that the SAS term in (36) plays a quite important role, both

around H+ = 43 where −)+
a"

has a negative peak, and near the centerplane, at H+ = X+, where it imposes a rather large

negative value.

Plots with H/X as the abscissa are displayed on the Fig. 11c. They show that −)+
a"

scales with H/X in the outer region,

with a production peak around H = 0.42X, and then a decrease towards a negative value at the centerplane. Thus the

properties (T,P) of the theory are qualitatively fulfilled.

In summary, out of the three models tested up to now, the basic SASmodel shows the best qualitative and semi-quantitative

agreement with the theory.

2. Study of the length scales and of the model with length scale limiters

In order to better analyze the SAS models, the Figs. 12abc display the two length scales implied and their ratio. The

Figs. 12ab suggest that both length scales, scaled by X, scale with H/X, except in a narrow near-wall region for ℓE .

Since ℓE /X is computed from the DNS as

ℓ+
E 

X+
=
^"

X+

��� (+

m(+/mH+
��� , (38)

because both (+ and m(+/mH+ become quite small in the outer region for large '4g , the DNS noise is amplified there.

This explains the oscillations in the Figs. 12bc, that also blur some profiles in the Figs. 11. Smoother profiles of ℓE 

may be obtained from the exact model of [20, 21] and have been shown on the Figs. 2. The laws that result from the

log-layer theory,

ℓ = ℓE = ^" H , (39)

are relevant in a narrow near-wall region for ℓ and in a larger region for ℓE , which otherwise vanishes at the centerplane

as already discussed after Eq. (14). The ratio ℓ/ℓE displayed on the Fig. 12c shows consequently a near-wall peak of

maximum value of order 1, which locates somehow the log-layer region. It then decays, since ℓE increases first faster

than ℓ, and finally increases again and diverges as H → X. Obviously, the infinite value of ℓ/ℓE at the centerplane plays

a role in the too large value of −)+
a"

in this region, see the Figs. 11bc.

From these observations, it seems relevant to test also the SAS model with length scale limiters, since these limiters

have been defined ‘in order of avoiding overly large or small values of the length scale ratio’ ℓ/ℓE , as explained by

[14] at the level of their equation (12). These length scale limiters are defined by

ℓ/2ℓ1 < ℓE < 2ℓ2 ^" H (40)
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Fig. 12 Length scales of the SAS model in channel flows, using the DNS of [7] at '4g = 1995 (blue) and 5186
(magenta): a) the turbulent length scale ℓ, b) the von Karman length scale ℓE , c) their ratio. In (a,b) the
dashed line shows the log-layer length scale ^" H+. The effects of the length scale limiters (40) is shown on (d,e)
for '4g = 5186, with the limiters shown by the dashed curves, and on (f) for both Reynolds numbers.

with 2ℓ1 = 10, 2ℓ2 = 1.3. These limiters are displayed on the Figs. 12de for the highest Reynolds number available in

the DNS of [7]. The maximum limiter is active in a narrow near-wall region, for H+ . 8. There ℓ is quite small, hence

ℓ/ℓE remains small and is unchanged at the scales of the Figs. 12cf. The minimum limiter is active in a narrow region

near the centerplane. As displayed on the Fig. 12f, the length scale ratio is mainly affected in this outer region, where it

saturates to ℓ/ℓE = 2ℓ1 . This saturates the minimum peak of −)+
a"

at the centerplane only marginaly, with reference

to the Figs. 11bc. From this point of view, a lower value of 2ℓ1 would help.

3. Model with a viscous sublayer term

In order to have a model valid through the viscous sublayer, [14] add a viscous sublayer term to the r.h.s. of their aC -

Eq. (34),

VSMa = − 6f" 5Φ
aaC

H2 . (41)

The dimensional factor in this term, aaC/H2, has similarities with the one of the last term of the aC - Eq. (25) of [10],

a2
C /H2, with, however, one eddy viscosity replaced by the fluid viscosity. In (41),

5Φ =
1 + 231b

1 + b4 , b =

√
0.3 : H
20a

, 231 = 4.7 . (42)
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Fig. 13 Same as Figs. 11, but adding the viscous sublayer term VSM+a (43) to −)+a" (36); VSM+a is shown with
the dotted curve in (b).

In inner units,

VSM+a = − 6f" 5Φ
a+

H+2
with b =

√
0.3 :+ H+

20
(43)

in the damping function 5Φ . The Figs. 13 show that the addition of VSM+a to −)+a" introduce a new near-wall minimum

peak in −)+
a"

, which does not really help since it occurs at too low values of H+, and is too weak.

4. Model with aC limiter

For the sake of completeness, we check that the aC limiter introduced in [14] to deal with adverse pressure gradients

or stagnation regions is inactive in channel flow. The equations (11) of [14] state that the normalized eddy viscosity a+

should be smaller than

a+< =
01:

+

(+
with 01 = 0

SST
1 51 + (1 − 51)0REAL

1 , 51 = tanh

[( 20(a+ + 1)
^" (

+H+2 + 0.01

)2
]
, (44)

0SST
1 = 0.32, 0REAL

1 = 0.577. Because the turbulent kinetic energy :+ reaches rather large levels in the near-wall region,

and then does not decrease too much outside, as shown on the Fig. 14a, whereas the mean strain rate (+ decreases fast

from 1 to 0 as H increases from 0 to X, a+< is everywhere larger than a+, as shown on the Figs. 14bc.

D. New SAS model

In channel flow, as discussed in the Sec. III.C.1 and displayed in the Fig. 11a, the main problem with the SAS model

is that the dissipation-related peak in the near-wall region is too weak and occurs too late. Another secondary problem,

displayed in the Fig. 11c, is that the SAS model is on the contrary too dissipative in the centerplane region. Because the

Fig. 11b shows that the SAS dissipation term

�a" = Z2%a"

( ℓ

ℓE 

)2
= Z2f"

a2
C (

2

:

( ℓ

ℓE 

)2
(45)
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Fig. 14 Various fields in channel flows. a) The turbulent kinetic energy :+ for the DNS of [7] at '4g = 1995
(blue) and 5186 (magenta). b,c) For '4g = 1995 (b) or 5186 (c) the continuous colored curve shows a+ computed
from the DNS, the continuous dashed curve a+ (5), the black dashed curve a+< (44).

of Eq. (34) dominates in the near-wall and centerplane regions, it is worthwhile to test a modified SAS model where the

terms proportional to Z1 and Z3 in Eq. (34) are kept, whereas �a" is replaced by a term similar to the exact �a8 (12a),

�a# = ^2 a2
C

ℓ2
E 

1
5 2 . (46)

The replacement of !E in �a8 by ℓE in �a# is important to ensure that this modified model may be as ‘sensitive’ as

the original SAS model: both the original and modified dissipation terms are proportional to ℓ−2
E 

. Our modified SAS

aC - equation thus reads, in turbulent wall flows,

f"
maC

mC
= 0 =

m

mH

(
aC
maC

mH

)
+ Z1%a" − �a# − f" 2

1/4
` Z3 : . (47)

To obtain a correct behaviour of �a# in the near-wall region, that is, a behaviour similar to that of �a8 , it is important

to not use a maximum limiter of ℓE proportional to H, as Menter et al. did it, see (40) and the Fig. 12d. This would

impose ℓE = 0 at the wall, which is probably not very physical, and would surely break the subbtle balance between aC

and !E 5 in �a8 or ℓE 5 in �a# that insures that these dissipation terms behave smoothly as H → 0. Therefore, we

use only a minimum limiter on ℓE ,

ℓ/2ℓ1 < ℓE , (48)

with a lower value of 2ℓ1 = 1 to saturate �a# near the centerplane. With the same coefficients Z1 , Z3 as the ones

chosen by Menter et al., a test of this new model, which leads to

− )+a# = Z1%
+
a" − �+a# − f" 2

1/4
` Z3 :

+ (49)

with �+a# = ^2 a+2

ℓ+2
E 

1
5 2 , (50)
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Fig. 15 Evaluation of the new SAS model (47) in channel flow, using the DNS of [7]. a) The black curve shows
−�+

a80
(18), the colored curves −)+

a#
(49) for '4g = 1995 (blue) and 5186 (magenta). b) For '4g = 5186, the

curves show Z1 %
+
a"

(continuous), −�+
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(dashed), −f" 21/4
` Z3 :

+ (dash-dot). In (a,b) the vertical lines mark
H+ = 31, 72 and 400. c) The black curve shows −)+a0 (24), the colored curves −)+

a"
for '4g = 1995 (blue) and

5186 (magenta), the vertical line marks H = 0.33X. In (a,b,c) the horizontal lines mark −)+a = 0 and −^2.
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Fig. 16 Length scales of the new SAS model (47) in channel flow, using the DNS of [7] at '4g = 5186: the
magenta curves show the limited von Karman length scale ℓE and the black curves its limiter, the turbulent
length scale ℓ.

is shown in Figs. 15. The comparison with the Figs. 11 proves that a much better agreement with the exact model is

reached. More precisely, the curves of the Fig. 15a are quite similar to the corresponding ones of the Fig. 5g, whereas

the ones of the Fig. 15c are very similar to the corresponding ones of the Fig. 5h: now all the properties (D,T,P) of the

exact model, listed in the Sec. II.H, are quantitatively recovered.

To complete the presentation of this new model, the von Karman length scale and its minimum limiter, i.e., the turbulent

length scale, are plotted on the Figs. 16, which should be compared to the Figs. 12de. Note that ^ = 0.40 has been used

in this section, instead of ^" = 0.41 in the previous one.

IV. Summary and discussion
The recent availability of the extended DNS and experimental databases of [7] for channel flows, [22] for pipe flows,

[23, 24] for boundary layers, that span wide intervals of values of Reynolds numbers, has allowed the development of

the analytic RANS theory of [20, 21] for these turbulent wall flows. This theory offers the analytic formula (5) for the

25



eddy viscosity aC , which is remarkably shear driven: the mean shear ( (2) plays a central role, and, on the contrary,

the turbulent kinetic energy does not intervene. This theory has been used here to derive an exact transport Eq. (10)

for aC that contains a standard transport term )a balanced by production and dissipation terms, %a and �a , in steady

mean flows: for such flows the equation reads simply )a + %a − �a = 0. It is ‘exact’ in that all the terms are known

analytically, as functions of the inner shear function (+12 and wake functions, determined from [20, 21], at finite and

infinite '4g , either in the inner, log layer or outer regions for the latter case, as summarized on the table 1.

To our knowledge, this is the first time that an exact scale-determining equation has been determined for a RANS

model, and analyzed in details: the eddy viscosity budget is fully determined at finite and infinite Reynolds numbers.

All this offers a vision of the mechanisms at play, as summarized in our Sec. II.H, which also shows that our aC budget

and the known : budget (at finite Reynolds number only) differ quite much. In the aC budget, noticeable is the existence

of a universal near-wall dissipation peak (Figs. 5g, 6g, 7g), in perfect agreement with the wall-damping idea. Indeed,

the dissipation takes the same universal form �a8 (12a) for all turbulent wall flows. This form identifies as the relevant

length scale the universal asymptotic von Karman length scale !E (13) and a universal damping function 5 (15).

All this has been used as a physical test bench of existing models that present a aC equation with the same transport

term )a . Thus, we have evidenced some deficiencies of the high Reynolds number models of Spalart & Allmaras [10],

Yoshizawa et al. [12], which were designed before the publication of the databases mentioned [7, 22–24]: both models

display a strong aC production peak in the near-wall region (Figs. 9 and 10). In other words, the physics of their aC

budget is incorrect in this region. Since wall-flows are basically driven by the wall effect, the unphysical treatment of

the near-wall region in these models has to be expected to imply unphysical turbulence simulations. Regarding the

model of Spalart & Allmaras [10], we studied only the high Reynolds number, baseline form of their aC equation (their

equation 4), whereas their final equation (9), that should work in principle at finite Reynolds number, implies a modified

eddy-viscosity ã given by a highly nonlinear function of aC , as defined in their equation (7). We show however in our

appendix D that this change of variable does not resolve the ‘wall-damping problem’, i.e., in the near-wall region, strong

discrepancies between the exact model and the final model of Spalart & Allmaras remain.

The SASmodels of [14, 15] have also been studied, in steady RANSmode, and have given better results. Quantitative

discrepancies between the SAS aC budget and our exact aC budget, i.e., too weak near-wall dissipation peaks, plus

over-dissipation in the outer region, have been resolved by a modification of the SAS dissipation term in the aC equation.

We suggest to use the form of the exact �a8 (12a), but replacing the universal asymptotic von Karman length scale !E 

by the local von Karman length scale ℓE (14), limited from below by the turbulent length scale ℓ. This limited von

Karman length scale shows, at least in channel flow, a profile rather similar to the one of !E : compare the Figs. 2ab

and 16ab. This yields a much better match with the exact model, both in the inner and outer regions: compare finally the

Figs. 11, 13 and 15. The fact that the limited von Karman length scale is flow-dependent and appears at the power −2 in

the dissipation term suggests that the new model could be, in unsteady simulations of complex flows, as ‘instability

26



sensitive’ or ‘scale-adaptive’ as the models of [14, 15]. The main advantage of our model presented here is the correct

capture of the near-wall dissipation peak. To avoid the use of the scaled wall-normal distance H+ in the function 5 of the

new dissipation term (46), it may be good to use ideas of the elliptic relaxation methods [27].

Appendix A: Validation of the standard : equation with channel flow DNS
In the standard, high-Reynolds number : −l [5] and : − n [6] models, for channel flows, the closed : equation reads

f:
m:

mC
= 0 =

m

mH

(
aC
m:

mH

)
+ f: (%: − n) (51)

with f: a model coefficient, and the production term

%: = aC (
2

according to the eddy-viscosity hypothesis, with the notations of Sec. II.A. The Eq. (51) is also used in the SAS model

of [14, 15]. Various values of f: are recommended: f: = 2 in [5], 1 in [6], 2/3 in [14]. To discriminate between those,

and confirm the relevance of the : - equation, we analyze the Eq. (51) with the approach of [28]. After division by n ,

Eq. (51) states that the opposite of the dimensionless normalized transport term

− ) ′: = −
1
n

m

mH

(
aC
m:

mH

)
(52)

should be a linear function of the production-to-dissipation ratio %:/n ,

− ) ′: = f: (%:/n − 1) . (53)

This prediction is tested on the channel flow DNS data of [7] on the Figs. A1. Note that [7] offer in their figure 7 plots

of %:/n vs H+. The eddy viscosity aC is computed according to its definition (3), and the derivatives by H in ) ′
:
are

computed by finite differences. The Figs. A1 show that, in the outer region H+ > 15, the DNS curves remain close to

the line (53): this confirms the relevance of the high-Reynolds number : - Eq. (51), and supports [14] in their choice

f: = 2/3. The value of [6], f: = 1, seems a bit too large, whereas the value of [5], f: = 2, seems clearly too large.
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Fig. A1 Test of the : equation of the : − n model in channel flows. The continuous curve shows the opposite
of the normalized transport term −) ′

:
vs the ratio %:/n for the DNS of [7] at '4g = 543 (a), 5186 (b). The thin

(resp. thick) curve corresponds to the inner region H+ < 15 (resp. outer region H+ > 15). The dashed (resp.
dotted) line shows the model f: (%:/n − 1) with f: = 2/3 (resp. 1).

Appendix B: Study of the standard n and l equations with channel flow DNS
By analogy with (51), [6] postulated in the : − n model the n equation, for channel flows,

fn
mn

mC
= 0 =

m

mH

(
aC
mn

mH

)
+ fn

n

:
(�1%: − �2n) (54)

with fn = 1.3, �1 = 1.44, �2 = 1.92 . After division by n2/: , Eq. (54) states that the opposite of the normalized

transport term

− ) ′n = − :

n2
m

mH

(
aC
mn

mH

)
(55)

should be a linear function of %:/n ,

− ) ′n = fn (�1%:/n − �2) . (56)

This prediction is tested on the channel flow DNS of [7] on the Figs. B1. Since n becomes quite small near the

centerplane (see e.g. the figure 9 of [21]), there the DNS noise is amplified: this region corresponds to the lower

intersection of the curves of the Figs. B1 with the axis %:/n = 0 i.e. %: = 0 (see the figure 7 of [7]). The Figs. B1, to

be compared with the Figs. A1, show DNS curves that do not align with the linear model (56), even if one considers

only their outer-region part. The structure of the curves is highly nonlinear, therefore a change of the model constants

fn , �1 and �2 cannot solve this problem.

A similar flaw exists with the l equation of the standard : − l model of [5]. With a slight change of notation, to

introduce a coefficient fl that plays a role similar to the coefficients f: in (51) and fn in (54), Wilcox’ equation for

l = n/(V∗:)
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Fig. B1 Test of the n equation of the : − n model in channel flows. The continuous curve shows the opposite of
the normalized transport term −) ′n for the DNS of [7] at '4g = 543 (a), 5186 (b). The thin (resp. thick) curve
corresponds to the inner region H+ < 15 (resp. outer region H+ > 15). The dashed line shows the standard model
fn (�1%:/n − �2).
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Fig. B2 Test of the l equation of the : − l model in channel flows. The continuous curve shows the opposite
of the normalized transport term −) ′l for the DNS of [7] at '4g = 543 (a), 5186 (b). The thin (resp. thick) curve
corresponds to the inner region H+ < 15 (resp. outer region H+ > 15). The dashed line shows the standard model
fl (V∗W%:/n − V).

reads, for channel flows,

fl
ml

mC
= 0 =

m

mH

(
aC
ml

mH

)
+ fl

l

:

(
W%: −

V

V∗
n

)
(57)

where fl = 2, W = 5/9, V = 3/40, V∗ = 9/100. After division by l2, Eq. (57) states that

− ) ′l = − 1
l2

m

mH

(
aC
ml

mH

)
(58)

should be a linear function of %:/n ,

− ) ′l = fl (V∗W%:/n − V) . (59)

The Figs. B2 show again a highly nonlinear structure of the channel flow DNS curves, that cannot fit a linear model such

as (59), even in the outer region H+ > 15.
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Fig. C1 Viscous diffusion term in the aC equation for channel flows. The continuous curve is computed with
the DNS of [7] at '4g = 1995 (a), 5186 (b). The dashed curve shows the analytical model that can be derived
from (5). The horizontal lines mark ++a = 0 and 0.023.

Appendix C: Viscous diffusion term in the aC equation
The viscous diffusion term +a defined in the Eq. (33) reads, in dimensionless form,

++a =
+a

D2
g

=
m2a+

mH+2
. (60)

It can be computed numerically with finite differences from channel flow DNS data. It can also be computed analytically

starting from (5). A comparison of both estimates of ++a , for relevant cases (the ones also studied in Sec. III.B), is

displayed on the Figs. C1. The analytic model is overall quite good. Moreover, everywhere, |++a | ≤ 0.023.

Appendix D: Evaluation of the finite Reynolds number model of Spalart & Allmaras
For finite Reynolds number, [10] propose to use, instead of the eddy viscosity aC , an undamped eddy-viscosity ã

defined by

aC = ã 5E1 = aj 5E1 with 5E1 =
j3

j3 + 23
E1

and 2E1 = 7.1 . (61)

This eddy-viscosity ã is undamped because it is much larger than aC in the near-wall region. For channel flow, ã fulfills

the transport equation

f(
mã

mC
= 0 =

m

mH

(
a
mã

mH

)
+ m

mH

(
ã
mã

mH

)
+ 212

( mã
mH

)2
+ f(211(̃ã − f(2F1 5F

( ã
H

)2
. (62)

There a modified mean strain rate (̃ enters,

(̃ = ( + ã

^2
(
H2

5E2 with 5E2 = 1 − j

1 + j 5E1
, (63)
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Fig. D1 Evaluation of the finite Reynolds number model of Spalart & Allmaras in channel flow for '4g = 1995
(a), 5186 (b), 80000 (c). The continuous colored lines show the exact −)+j , the dashed colored lines their model
)+
j(
. The black lines are the same as in Fig. 9a.

and it is also important to change the variable A in the definition (26) of 5F ,

A =
ã

(̃ ^2
(
H2
. (64)

With inner units, the transport Eq. (62) takes the dimensionless form

0 =
m2j

mH+2
+ m

mH+

(
j
mj

mH+

)
+ 212

( mj
mH+

)2
+ f(211(̃

+j − f(2F1 5F

( j
H+

)2
, (65)

where, in particular,

(̃+ = (+ + j

^2
(
H+2

5E2 , A =
j

(̃+^2
(
H+2

. (66)

We checked that the first term on the r.h.s. of the Eq. (65), which is a viscous diffusion term, is negligible in front of the

sum of the other terms. Neglecting this term, the transport Eq. (65) for the dimensionless undamped eddy-viscosity j

reads

− )+j = − m

mH+

(
j
mj

mH+

)
= − )+j( = f(211(̃

+j + 212

( mj
mH+

)2
− f(2F1 5F

( j
H+

)2
. (67)

With formal computations, j and )+j can be obtained from our exact model (5). A comparison with the Spalart -

Allmaras’ model )+
j(

given by the rightmost sum in (67), which is somehow a new version of the model presented in our

Eq. (27), is then possible. The Figs. D1 thus obtained shows exact profiles that are similar, as soon as H+ & 40, to those

displayed on the Fig. 5g. Indeed, when H+ → ∞, j ∼ a+ hence )+j ∼ )+a . Because j is undamped, it is singular as

H+ → 0, hence at the wall )+j → −∞. For H+ < 10, the Figs. D1 show that )+j and )+
j(

differ much, which is a first

indication that the Spalart & Allmaras model has some flaws. The situation in the vicinity of the dissipation peak of

the exact transport profile, around H+ = 34, is somehow worse, since there the Spalart & Allmaras model displays a
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production peak. This is in line with the behaviour already displayed, with the high-Reynolds number model, in our

Fig. 9a.
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