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Exact Eddy-Viscosity Equation for Turbulent Wall Flows -Implications for Computational Fluid Dynamics Models

For turbulent channel flow, pipe flow and zero-pressure gradient boundary layer, Heinz (2018, 2019) yields analytical formulas for the eddy-viscosity as a product of a function of + (the wall-normal distance scaled in inner units) and a function of / (the same scaled in outer units). By calculating the eddy-viscosity turbulent diffusion term, we construct for those flows an exact high-Reynolds number equation with one production and two dissipation terms. One dissipation term is universal, peaks near the wall, and scales mainly with + . The second, smaller one, is flow-dependent, peaks in the wake, and scales mainly with / . The production term is flow-dependent, peaks in between, and scales similarly. The universal dissipation term implies a length scale analogous to the von Karman length scale used in the SAS models of Menter. This length scale also appears in the production term. This confirms the relevance of these length scales. An asymptotic analysis of all terms in the budget in the limit of infinite Reynolds numbers is provided. This yields a test bench of existing RANS models with a similar equation. We show that some models, e.g. the one of Spalart & Allmaras, do not respect the flow physics: they display a production peak in the near-wall region. We modify the most promising model, a SAS model. As a step forward towards a solution to the wall damping problem, the equation of our model behaves much more correctly in the near-wall region.

I. Introduction

R -A

N -S (RANS) models are still widely used in Engineering Computational Fluid Dynamics (CFD, [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF][START_REF] Hanjalić | Modelling turbulence in engineering and the environment: second-moment routes to closure[END_REF]), because they allow studies in complex setups for a lower computational cost than more sophisticated methods like Large Eddy Simulations (LES) or Hybrid methods [START_REF] Heinz | A review of hybrid RANS-LES methods for turbulent flows: Concepts and applications[END_REF]. Among RANS models, two-equations models like the - [START_REF] Kolmogorov | Equations of turbulent motion in an incompressible fluid[END_REF][START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF] and - [START_REF] Launder | The numerical computation of turbulent flows[END_REF] models are popular. Their equation for the turbulent kinetic energy is known to be rather accurate. Indeed, its high-Reynolds number form can be validated with direct numerical simulations (DNSs -we use those of [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF]) in channel flows, out of the viscous and buffer layers, as shown in the appendix A. On the contrary, the equations for the turbulent dissipation or the turbulent frequency of these models are much less accurate, as shown, with the same DNS data, in the appendix B. These problems are related to the fact that these equations have been constructed empirically on phenomenological and dimensional bases. Alternate RANS models where one field is the eddy-viscosity itself, which evolves according to its own equation, look appealing since is doubtless a quite relevant variable. The first models of this kind also constructed the equation on phenomenological and dimensional bases [START_REF] Nee | Simple phenomenological theory of turbulent shear flows[END_REF][START_REF] Baldwin | A one-equation turbulence transport model for high Reynolds number wall-bounded flows[END_REF][START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF], or from themodel itself, with a supplementary equation (the Townsend's relation),

in the case of [START_REF] Menter | Eddy viscosity transport equations and their relation to themodel[END_REF]. However, there have been recently attempts to use more systematic approaches [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF][START_REF] Hamba | Exact transport equation for local eddy viscosity in turbulent shear flow[END_REF]. The Scale-Adaptive Simulation (SAS) models of [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF][START_REF] Menter | The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description[END_REF] are alsomodels, which are more phenomenological than the ones of [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF][START_REF] Hamba | Exact transport equation for local eddy viscosity in turbulent shear flow[END_REF], but may work as Hybrid RANS-LES models. Their equation implies, through the so-called von Karman length scale ℓ , the second gradient of the mean velocity, which renders them 'instability-sensitive': in highly non-homogeneous flows the second gradient of the mean velocity, in the denominator of ℓ , increases, hence ℓ decreases, hence the corresponding dissipation term increases, hence decreases. This allows resolved motions in unsteady simulations. Relevant applications of variants of this model to quite complex flows are for instance presented in [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF][START_REF] Egorov | The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: Application to complex flows[END_REF][START_REF] Abdol-Hamid | Assessments of -Turbulence Model Based on Menter's Modification to Rotta's Two-Equation Model[END_REF]. Reference [START_REF] Jakirlic | Extending the bounds of steady RANS closures: Toward an instability-sensitive Reynolds stress model[END_REF] also proposed an interesting extension of the SAS approach under the form of a Reynolds stress model.

The facts that many variants of the SAS models exist, and that their equations are built on phenomenological grounds, raise however theoretical questions. Accordingly, it is noticeable that the more systematic approaches of [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF][START_REF] Hamba | Exact transport equation for local eddy viscosity in turbulent shear flow[END_REF] are quite different: whereas [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF] started from a conventional Reynolds stress model, [START_REF] Hamba | Exact transport equation for local eddy viscosity in turbulent shear flow[END_REF] started from the nonlocal analysis presented in [START_REF] Hamba | Nonlocal analysis of the Reynolds stress in turbulent shear flow[END_REF]. Obviously, there is no perfect way to analytically derive the equation.

The aim of this work is to offer a third way, at least for a relevant class of flows: fully developed channel and pipe flows, together with zero-pressure gradient boundary layers over a flat plate. For these three canonical flows, denoted hereafter 'turbulent wall flows', [START_REF] Heinz | On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis[END_REF][START_REF] Heinz | On mean flow universality of turbulent wall flows. II. Asymptotic flow analysis[END_REF] proposed analytic models of the mean flow , Reynolds shear stressand eddy viscosity , built after a thorough analysis of recent DNS, including those of [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF][START_REF] Chin | Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers[END_REF][START_REF] Sillero | One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to + 2000[END_REF], and experimental data, for instance those of [START_REF] Vallikivi | Turbulent boundary layer statistics at very high Reynolds number[END_REF]. Interestingly, these models are valid for friction-based Reynolds numbers 500:

the limit → ∞ is included. Our approach, see Eq. [START_REF] Menter | Eddy viscosity transport equations and their relation to themodel[END_REF], is then to analytically calculate the turbulent diffusion of and to identify the opposite of this as the sum of a positive production term minus positive dissipation terms. The fact that these terms are analytical offers a better intellectual understanding of the equation, and also a practical understanding of the scaling properties of all terms in this equation. This also permits an accurate description of the limit case → ∞. Another goal is the creation of a basis for the numerical and physical evaluation of existing models. This is exemplified on the study of the models [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF][START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF][START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF][START_REF] Menter | The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description[END_REF]. Regarding the SAS models, we assume that, for the attached flows studied, they work in steady RANS mode. We finally derive a promising modification of one SAS model. In particular, it behaves much more correctly in the near-wall region.

In Sec. II, we offer a presentation and physical analysis of our model, which considers only high-Reynolds number turbulent wall flows with 500. The physical questions that we want to answer concern the scalings of the production and dissipation terms in the equation, and the effects of the flow cases and Reynolds number. Asymptotic formulas valid in the limit → ∞, for all terms in the equation, either in the near-wall region ( + scaling) or in the outer region ( / scaling), are in particular given in the Secs. II.F and II.G. An overview of all our physical results is offered in the Sec. II.H, where the differences between the eddy-viscosity budget thus obtained and the known turbulent kinetic energy budget are stressed. All this yields a test bench of existing models that imply a equation with a standard turbulent diffusion or transport term ( in equation 11). This test bench is used in the Secs. III.A to III.C to evaluate three such models: the models of [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF][START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF] and the SAS models of [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF][START_REF] Menter | The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description[END_REF], which have some variants.

Finally, the mathematical and physical knowledges gained, and our test bench, are used to propose a new SAS model in Sec. III.D. We conclude in Sec. IV.

II. Analysis: exact eddy-viscosity formula and transport equation A. Turbulent wall flows -Exact eddy-viscosity formula

Following [START_REF] Heinz | On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis[END_REF][START_REF] Heinz | On mean flow universality of turbulent wall flows. II. Asymptotic flow analysis[END_REF], we consider turbulent wall flows of incompressible fluids of mass density and kinematic viscosity . Locally, a cartesian system of coordinates O is used, such that points in the streamwise direction, and measures the distance to the closest wall. Neglecting small normal mean velocities in the boundary-layer case, one considers that to leading order the mean flow

U = ( ) e (1) 
with e the unit vector in the -direction. A relevant quantity is the mean strain rate

= / . (2) 
The macroscopic length scale is the half-channel height, pipe radius, or 99% boundary layer thickness with respect to channel flow, pipe flow, and boundary layer, respectively. Denoting e + e + e the fluctuating velocity, the RANS eddy viscosity may be defined exactly as

= - / (3) 
where the angular brackets denote the Reynolds average. The mean wall shear stress is used to define the friction velocity = / . From this wall or inner units are defined: + = / , + = / and Finally, the friction-velocity Reynolds number = + = / . In Eq. ( 11) of [START_REF] Heinz | On mean flow universality of turbulent wall flows. II. Asymptotic flow analysis[END_REF], an analytic expression is proposed for the normalized eddy viscosity, which is valid as soon as the Reynolds number 500,

+ = + / + . ( 4 
)
+ = / = (1/ + 12 -1) . (5) 
There + 12 = + 1 + + 2 is the inner flow contribution to the dimensionless mean strain rate + (4), disregarding wake effects, see Eq. ( 7) of [START_REF] Heinz | On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis[END_REF] and the corresponding discussion. Precisely, the universal function 

+ 12 = + 12 ( + ) = 1 - ( + / ) / 1 + ( + / ) / + 1 + 1 + ℎ 2 /(1 + + /ℎ 1 ) 1 + /( + ) , (6) 
The function + 12 , plotted on the Fig. 1a, approaches naturally 1 as + → 0 in the viscous sublayer. On the contrary, as + → ∞, + 12 ∼ 1/( + ), in agreement with the log law. Therefore the function 1/ + 12 -1, plotted on the Fig. 1b, which appears in the eddy viscosity (5), vanishes in the limit + → 0, and then increases smoothly to approach the function

+ as + → ∞.
The second ingredient of the theory is the function , which is flow-dependent and in outer scaling, because it describes wake effects. With the notations of [START_REF] Heinz | On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis[END_REF][START_REF] Heinz | On mean flow universality of turbulent wall flows. II. Asymptotic flow analysis[END_REF], = 1/ for channel and pipe flows, / for boundary layers, where and characterize the wake contribution + 3 to the dimensionless mean strain rate + (see Eqs. 7 and A.22 of [START_REF] Heinz | On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis[END_REF]), characterizes the total stress in boundary layers (see Eq. 4 of [START_REF] Heinz | On mean flow universality of turbulent wall flows. II. Asymptotic flow analysis[END_REF]). For channel and pipe flows

= ( / ) with ( ) = + (1 -) 2 (0.6 2 + 1.1 + 1) 1 + + 2 (1.6 + 1.8 ) , (8) 
= , = 0.933 for channel, = , = 0.687 for pipe; for boundary layers

= ( / ) with ( ) = 1 + 0.285 (0.9+ +1.09 2 ) 1 + (0.9 + 2 + 3.27 2 ) -6 -1.57 2 . ( 9 
)
The wake function is plotted for these three flows on the Fig. 1c. In the near-wall region, when / → 0, → 1, hence the eddy viscosity (5), + = (1/ + 12 ( + ) -1) ( + / + ) ∼ (1/ + 12 ( + ) -1). Therefore the log-layer eddy viscosity + is approximately recovered if 1 + + ; for a more precise discussion, see Sec. 4.1 of [START_REF] Heinz | On mean flow universality of turbulent wall flows. II. Asymptotic flow analysis[END_REF]. When becomes of the order of , wake effects come in, that saturate the growth of the eddy viscosity (5), since decreases.

The maximum value of is in channel and pipe flows: if ∈ [ , 2 ] the mean fields can be obtained by symmetries from the mean fields for ∈ [0, ]. On the contrary, may be much larger in boundary layers. Naturally, → 0 as → ∞; precisely < 10 -3 as soon as > 1.36 .

The model [START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF] has been validated by a study of DNS and experimental data. For instance, Figs. S.6abc of the supplementary material to [START_REF] Heinz | On mean flow universality of turbulent wall flows. II. Asymptotic flow analysis[END_REF] show the eddy viscosity of various DNSs, one for each canonical flow, compared with two variants of the eddy-viscosity model [START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF]. In particular, the magenta curves show + = + with our notations, i.e.

(1/ + 12 -1) in ( 5) has been replaced by + . The agreement with the DNS is good, except in the outer region, where in (3) both the numerator and the denominator tend to zero, hence the DNS noise is amplified. A direct comparison between the model ( 5) and channel flow DNS is displayed on our Figs. 14bc.

B. Exact eddy-viscosity equation for turbulent wall flows

Since the focus of our study is on high-Reynolds numbers wall-bounded flows, we assume that the eddy-viscosity equation takes the standard form

= + - (10) 
with > 0 the production, > 0 the dissipation term. The dimensionless coefficient , of order 1, which is a 'turbulent Prandtl number', plays no role in the turbulent wall flows, where the mean fields are steady, but is kept in [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF] for the sake of comparison with existing turbulence models. In turbulent wall flows, according to [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF], the opposite of the turbulent diffusion term or transport term reads

- = - = - . (11) 
A calculation of starting from (5) leads to

= + with = 2 2 2 1 2 , (12a) = 2 1 1 -+ 12 - 4 = 1 + 12 (-4 ) , (12b) 
= 2 2 2 + 2 = 2 2 (1/ + 12 -1) 2 ( 2 + ) . (12c) 
The indices and refer to 'inner' and 'outer' terms, respectively, and the notation is slightly improper since this term is slightly negative in the near-wall region. However, is much smaller in this region than in the outer region where it peaks, as it will be shown in the Fig. 5ab for channel flow, 6ab for pipe flow, 7ab for boundary layers. Moreover = + > 0 everywhere, as it will be shown in the Figs. 5cd for channel flow, 6cd for pipe flow, 7cd for boundary layers, hence the notation is fully justified.

In addition to the functions + 12 and defined in Sec. II.A, there appear in Eqs. [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF] other functions that are built on these. The first one is the asymptotic von Karman length scale

= 12 12 / or + = + 12 + 12 / + . (13) 
It is defined as the von Karman length scale used by the SAS models

ℓ = / , (14) 
but replacing by 12 , i.e., disregarding 'wake effects'. The fact that the length scale appears in (12a) and (12b) confirms on very firm bases the relevance of this length scale, which was conjectured by [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF][START_REF] Menter | The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description[END_REF]. Only the inner-units + ( + ) is universal, whereas in outer units ( )/ has to be calculated as + / + at + = + ( / ): it depends on + = . Since, as + → ∞, in agreement with the log law, + 12 ∼ 1/( + ), + ∼ + , as confirmed by the Fig. 2a. The functions ℓ + ( + ) (Fig. 2a) or ℓ ( / ) (Fig. 2b), that depend on the flow case and Reynolds-number, have been computed using the accurate expressions of + of the equation ( 7) of [START_REF] Heinz | On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis[END_REF], that take into account wake effects.

In channel or pipe flow, peaks at the centerplane or pipe axis = , hence and ℓ vanish there. On the contrary, in boundary layer flow, and ℓ vanish only in the limit → ∞. Phenomenologically, and ℓ become large in the viscous sublayer, because there the velocity profile becomes linear ( ∝ ), then they diminish in the buffer layer where there are strong gradients; further away in the outer region and ℓ again become large because the velocity profile flattens. The wake effects finally saturate the growth of ℓ and even impose a decrease of ℓ , as already explained, but do not influence . The Fig. 2c suggests that, because the dimensional factor in (12a), (first expression in 12b) and (first expression in 12c) are respectively 2 / 2 , 2 /( ) and 2 / 2 , in the ratii 2 / 2 , / , 1, those will peak in the inner, intermediate and outer regions. This will be confirmed in the Figs. 5 for channel flow, 6 for pipe flow, 7 for boundary layers.

Another ingredient in (12a) is the universal damping function

= ( + ) = (1 -+ 12 ) ( + 12 -1) + 12 2 + 12 / +2 ( + 12 / + ) 2 + 3 -2 + 12 -1/2 . ( 15 
)
It is plotted on the Figs. 3ab. It does tend to zero as + → 0 and 1 as + → ∞.

Finally, in (12b) and (12c) the rightmost functions depend only on and its derivatives. In there appears -4 which is positive according to the Fig. 1c, hence > 0 as required. In there appears 2 + which is plotted on the Fig. 3c. The function 2 + > 0 except in a more or less narrow near-wall region, depending on the flow case: this impacts the sign of as already discussed after the Eqs. [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF]. 

C. The channel flow case

In typical channel flow cases, a comparison of the opposite of the dimensionless transport term

-+ = -+ + + + = -2 (16) 
computed with finite differences from two DNSs of [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF] and its model [START_REF] Menter | Eddy viscosity transport equations and their relation to themodel[END_REF][START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF],

-+ = + -+ = -+ + + -+ (17) 
is shown on the Figs. [START_REF] Kolmogorov | Equations of turbulent motion in an incompressible fluid[END_REF]. Except in the outer region, where the DNS noise is amplified, there is a good agreement between the model and the DNS, especially for the highest Reynolds number case.

The separation of -+ into the three terms of the model, -+ , + and -+ , is illustrated on the Figs. 5. The Figs. 5a, c and g show that the dissipation term + dominates in the near-wall region. In this region, and in inner scalings, -+ ( + ), -+ ( + ) and -+ ( + ) approach as → ∞ a limit profile -+ , which is plotted in black, and will be studied in the Sec. II.F. A plateau around + 400 and

+ + + 2
builds up as → ∞, in agreement with the formula for the log-layer normalized eddy viscosity,

+ = + .
For larger values of / , after this plateau, the Figs. 5bdfh show that all terms, considered in inner-outer scalings, -+ ( / ), -+ ( / ), -+ ( / ), + ( / ) and -+ ( / ), approach limit profiles as → ∞. These limit profiles, plotted in black for the three latest functions, denoted -+ , + and -+ , will be studied in the Sec. II.G.

D. The pipe flow case

In the eddy-viscosity formula [START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF], the only difference between channel and pipe flows is described by the change of the coefficient in the function ( 8) that contains the wake effects. This change from = 0.933 to = 0.687 is moderate, therefore the transport term and its contributions are close to the ones of channel flow, as shows the comparison between Figs. 5 and6. All the comments made on Figs. 5 at the end of Sec. II.C also apply to Figs. 6.

E. The boundary layer case

The boundary layer case differs from the channel and pipe flow cases in that the maximum value of (resp. + )

is not (resp. + = ) but, in principle, infinity. Moreover, the wake function of boundary layers ( 9 (a,b,c,d,g,h) the horizontal lines mark -+ = 0 and -2 . 

F. Asymptotic profiles in the inner region

Figures 5ae, 6ae and 7ae show that, as → ∞, at fixed + , + and + → 0. Thus the dissipation term dominates in the inner region, and controls the transport term, i.e. -∼ -. Figures 5a, 6a and 7a further show that scales with + , and approaches in inner units a universal asymptotic profile. This happens because, at fixed + , / = + / → 0 as → ∞, hence ( / ) → 1, hence ∼ (1/ + 12 -1). In physical terms, the wake region goes to infinity in inner scaling. By insertion of this estimate of in Eq. (12a), one obtains the asymptotic dissipation function

= 2 2 2 (1/ + 12 -1) 2 2 or + = 2 (1/ + 12 -1) 2 +2 1 2 . ( 18 
)
It is universal in that it does not depend on the flow case, but only on + 12 , see the Eqs. ( 13) and [START_REF] Menter | The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description[END_REF]. Moreover, + considered as a function of + also does not depend on . The function -+ is plotted in black on Figs. 5acg, 6acg and 7acg. At fixed + , when → ∞, both -+ , -+ and -+ approach -+ . On the Figs. 5acg, 6acg and 7acg, the first vertical line at + = 31 indicates the dissipation peak, with max + 0.36, the second vertical line at + = 72 indicates a local minimum of dissipation, whereas the third vertical line at + = 400 indicates the beginning of the log-layer plateau. Indeed, as + → ∞, since 1/ + 12 -1 and + approach + , whereas → 1, one has + → 2 , in agreement with the expression of the log-layer eddy viscosity + = + . Precisely, | + -2 | < 10 -3 as soon as + ≥ 400.

G. Asymptotic profiles in the outer region

Dissipation

The Figs. 5bd, 6bd and 7bd show that, as → ∞, in the outer region, the dissipation terms + , + and their sum + scale with / , and approach asymptotic profiles that depend only on the flow case. These profiles are obtained by starting from the expressions (12a) and (12c), transformed in inner units,

+ = 2 +2 +2 1 2 + 1 +2 (1/ + 12 -1) 2 ( 2 + ) . (19) 
At fixed / > 0, as → ∞, one has + = ( / ) → ∞, therefore one can replace in [START_REF] Hamba | Nonlocal analysis of the Reynolds stress in turbulent shear flow[END_REF] the eddy viscosity + , the strain rate + 12 , the von Karman length-scale + and the damping function by their approximations valid as

+ → ∞, + ∼ + , + 12 ∼ 1/ + , + ∼ + , ∼ 1 (20) 
see the discussions after equations (5-7) for + and + 12 , equations [START_REF] Hamba | Exact transport equation for local eddy viscosity in turbulent shear flow[END_REF][START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF] for + . This yields the asymptotic profiles

+ = 2 2 + 2 2 ( 2 + ) or = 2 2 2 + 2 2 2 ( 2 + ) , (21) 
where the first (resp. second) terms correspond to the asymptotic profile of + or (resp. + or ). Since the wake function depends only on / , see equations (8-9), + is, for a fixed flow case, a function of / only. The functions -+ are plotted in black on the Fig. 5d for channel flow, 6d for pipe flow, 7d for boundary layer. At fixed / , they are well approached by -+ as → ∞.

Production

The Figs. 5ef, 6ef and 7ef show that, as → ∞, the production of the eddy viscosity vanishes in the inner region, scales with / , and approaches in the outer region asymptotic profiles that depend only on the flow case. These profiles are obtained by inserting, in the second expression of (12b), transformed in inner units,

+ = + + 12 + + (-4 ) , (22) 
the equivalents of + , + 12 and + given in [START_REF] Heinz | On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis[END_REF]. This yields the asymptotic profiles

+ = 2 (-4 ) or = 2 2 (-4 ) . (23) 
Similar to + (21), + is, for a fixed flow case, a function of / only. The functions + are plotted in black on the Fig. 5f for channel flow, 6f for pipe flow, 7f for boundary layer. These figures confirm that, at fixed / , + approaches + as → ∞.

Transport

Obviously

-+ = + -+ or - = - , (24) 
depending on the units, yields the asymptotic profiles of the opposite of the transport term in the outer region, as proven by the Figs. 5h for channel flow, 6h for pipe flow, 7h for boundary layer.

H. Physical properties of the eddy viscosity transport profiles

From the results of the Secs. II.B to II.G, we can construct for an overview the table 1. We now focus on the profiles of the (opposite of the) transport term which is unambiguously defined, and considered as a relevant physical quantity.

We can list the following physical properties of these so-called transport profiles, starting in the inner region and going progressively to the outer region.

(D0) In the inner region, in perfect agreement with the wall-damping idea, dissipation dominates: -because dominates and .

(D1) As → ∞, at fixed + , -+ and -+ converge to a universal function -+ ( + ), plotted in black on the ( / ) eq. ( 24)

Fig. 5a, that peaks at max + 0.36 around + = 31.

(D2) For larger values of + , + + has a minimum around + = 72, and reaches the log-layer plateau + = 2 as soon as + 400.

All this proves that dissipation of the eddy-viscosity is mainly due to universal near-wall motions.

(T0) Beyond the log-layer plateau in terms of values of , at fixed / , as → ∞, the opposite of the transport term -+ converges to asymptotic profiles -+ , plotted in black on the Figs. 5h, 6h, 7h, that depend on / and on the flow case only. These asymptotic profiles start at 'low' at the log-layer plateau value -+ = -2 .

(P) For larger values of , the functions -+ show a maximum due to the production term around = 0.3 .

The scaling with / and the position of this maximum proves that production of the eddy-viscosity is due to large-scale outer motions.

(T1) For even larger values ≥ 0.65 , -0.025 < -+ < 0, i.e. dissipation dominates again, but only slightly.

The properties (D) contrast with the ones of the dissipation of the turbulent kinetic energy , i.e., , which peaks at the wall and not off-the wall. Moreover, contrarily to + , + shows no clear scaling in the near-wall region for the Reynolds numbers accessible to DNS, i.e. 6000 in channel flow, as shown for instance by [START_REF] Hoyas | Reynolds number effects on the Reynolds-stress budgets in turbulent channels[END_REF] and confirmed by the data of [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF]; see also [START_REF] Abe | Relationship between the energy dissipation function and the skin friction law in a turbulent channel flow[END_REF]. The properties (P) contrast strongly with the ones of the production of , which scales with + and peaks near wall, around + = 11, as shown for instance in the supplementary material to [START_REF] Heinz | On mean flow universality of turbulent wall flows. II. Asymptotic flow analysis[END_REF]. To further illustrate these differences between the eddy-viscosity and turbulent kinetic energy budgets, the production-to-dissipation ratio of the eddy-viscosity is shown on the Figs. 8. The comparison of the Fig. 8a with the figure 7 of [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF] that displays / -1 (with their notations, see also our appendix A) shows huge differences. When → ∞, whereas at fixed + one has + and / → 0, on the contrary / seems to converge to an asymptotic profile which is non-vanishing.

Moreover, whereas = 0 at the centerplane in channel flow for symmetry reasons, > 0 there. The Fig. 8b shows at fixed / the convergence of / to the asymptotic profile / . Overall, the eddy-viscosity and turbulent kinetic energy budgets differ significantly.

Regarding the production peaks, the comparison between the vertical scales of the Figs. 5f, 6f and 7f shows that the large-scale outer motions contribute more efficiently to the production of in the boundary layer than in the other flows.

This shows also on the production peaks of -+ , which are roughly 30% higher in the boundary layer. This is probably related to the fact that the boundary layer is in principle unbounded in the wall-normal direction, contrarily to channel and pipe flows.

The robust properties (D,T,P) of the transport profiles will now be used to study existing models of the eddy-viscosity equation.

III. Evaluation of other models and model enhancement

From now on, the focus is on channel flows, which are very well documented, and where the geometry is the most simple. Our aim is to study the performance of existing models of the eddy-viscosity equation, by a test of the properties listed in the Sec. II.H through relevant plots. Last but not least, a new version of the SAS models is proposed on this base.

A. High-Reynolds number model of Spalart & Allmaras

The high-Reynolds number eddy-viscosity equation ( 4) of [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF] reads, for channel flow,

= 0 = + 2 2 + 1 - 1 2 , (25) 
with the same notations, except for which stands for the of [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF], and

= 1 + 6 3 6 + 6 3 1/6 , = + 2 ( 6 -) , = 2 2 , (26) 
= 2/3, 1 = 0.1355, 2 = 0.622, = 0.41, 1 = 1 / + (1 + 2 )/ = 2.763, 2 = 0.3, 3 = 2; their von Karman constant differs slightly from ours [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF]. With the definitions ( 11) and ( 16) of the transport term in physical and dimensionless forms, we identify their model for -+ ,

-+ = 1 + + + 2 + + 2 - 1 + + 2 (27)
with, in particular,

= + + 2 +2 . (28) 
The equation ( 7) of [START_REF] Heinz | On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis[END_REF], that takes into account wake effects, is used to compute + accurately for the evaluation of the first and third terms in [START_REF] Durbin | Limiters and wall treatments in applied turbulence modeling[END_REF]. The model ( 5) is used on the other hand to compute + . As a first test of the model [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF],

plots in the inner region, with + as the abscissa, are displayed on the Figs. 9ab. According to the properties (D0,D1) of the exactequation, the colored curves of the Fig. 9a should approach, at fixed + , as increases, the black curve showing -+ . This is not the case, and more seriously the model [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF] predicts a near-wall production peak where there should be a near-wall dissipation peak. The Fig. 9b confirms that the dissipation peak of the model occurs at too large values of + , and also shows that the inclusion of the production term proportional to ( + / + ) 2 does not help:

it adds production where there should be more dissipation. Thus the high-Reynolds number model of [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF] does not describe correctly the physics of theequation in the near-wall region. It is also noticeable that no log-layer plateau appears in Spalart & Allmaras' model, even at = 80000, contrarily to what shows the exactequation: compare the Figs. 5g and9a. This raises question, since the classical 'log-layer equilibrium' has been used by [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF] to relate 1 to the other coefficients.

Plots with / as the abscissa are displayed on the Fig. 9c. The outer production peak of -+ , which was already visible for the lowest values of in the Fig. 9a, seems, on the Fig. 9c, to scale with / . Moreover, the value of this outer maximum has the correct magnitude. It is also remarkable that the values of -+ at = are quite correct. Thus, in the outer region there is a qualitative and even semi-quantitative agreement between the model [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF] and the properties (T,P) of the exactequation. However, the fact that the colored curves of the Fig. 9c differ significantly from the black curve, especially for the largest value of , reveals that there are, in the outer region, quantitatively significant differences between the model and the exact theory.

In summary, the model of Spalart & Allmaras [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF] appears to be of poor quality in the inner region, where it somehow inverses the production and dissipation peaks as compared to the exact model. On the contrary, it performs rather well in the outer region.

B. Model of Yoshizawa et al.

The model [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF] implies three model variables: the eddy viscosity , the turbulent kinetic energy and the turbulent dissipation . It also includes an eddy-viscosity equation, which was shown to yield a better model of than the eddy-viscosity formula of the standardmodel in some specific cases. The high-Reynolds number form of theequation ( 60) of [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF] reads, for channel flow,

= 0 = + - , (29) 
with the same notations, except for which stands for the of [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF], and 

= 1 -exp - * 14 2 1 + 5 3/4 exp - 200 2 , = Λ , Λ = 1 + 2( + Ω ) 2 , ( 30 
) = 3, = 4 
-+ = + - + + Λ + (31)
with, in particular,

+ = 2 , + = 4 , * = ( + ) 1/4 + , = +2 + , = + + + . ( 32 
)
Since the fields and are needed in this model, we use the DNS data of [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF] to test it. The normalized eddy viscosity + is also extracted from the DNS. Plots with + as the abscissa are displayed on the Figs. 10ab. A good property of the model [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF] is that it presents a dissipation peak in the near-wall region, that has the correct magnitude, and seems to scale with + . Thus the properties (D0,D1) of the theory are qualitatively fulfilled. However, quantitatively, the dissipation peak of -+ comes in too early in terms of + values: for = 5186, -+ shows a minimum around + = 10 instead of + = 31 for the minimum of -+ . For larger values of + , the model [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF] appears to be too productive, and there is no log-layer plateau.

Plots with / as the abscissa are displayed on the Fig. 10c. These plots confirm that the model [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF] is too productive, moreover the scaling with / does not show up, i.e., the properties (T,P) of the theory are not fulfilled.

In summary, the model of Yoshizawa and coworkers [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF] performs rather well very close to the wall, but poorly farther away. Moreover, this model shows a too strong Reynolds-number dependence.

Importantly, the equation (60) of [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF] contains a low-Reynolds number term, the viscous diffusion term = .

(33)

A quantitative study of this term, for channel flow, is provided in our appendix C. It is shown that, for + ≥ 1 and = 1995 or 5186, | + | ≤ 0.023. This is quite smaller than the turbulent dissipation peak, max + 0.36, which gives the order of magnitude of the transport term, see the properties (D0,D1). Thus, taking into account this term, by adding to the rhs of the Eq. ( 29), would modify only slightly the colored curves of the Figs. 10, andthe discrepancies with the exact model would not disappear.

C. SAS models of Menter et al.

Basic model

The (a,b,c) the horizontal lines mark -+ = 0 and -2 . except for which stands for their Φ , their equation ( 7) reads, for channel flow,

= 0 = + 1 -2 ℓ ℓ 2 - 1/4 3 (34) with = 2 2 
, ℓ

= -1/4 √ , ℓ = / , (35) 
= 2/3, = 0.09, = 0.41, 1 = 0.8, 2 = 1 -3 / 3/4 + 2 /( 1/2 ) = 1.47, 3 = 0.0288. The definition of the von Karman length scale in (35) agrees perfectly with our definition [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF], except for the different value of the von Karman constant; for the sake of brevity we use the same notation ℓ , whereas in this section is used instead of for the computation of the SAS term, proportional to (ℓ/ℓ ) 2 , in (34). Menter's SAS model for -+ reads therefore

-+ = + 1 -2 ℓ + ℓ + 2 - 1/4 3 + (36) 
with

+ = +2 +2 + , ℓ + = -1/4 + √ + . (37) 
The DNS data of [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF] are used to test this model. Finite differences are used to compute + / + to estimate ℓ + . Plots with + as the abscissa are displayed on the Figs. 11ab. The Fig. 11a shows that there is a near-wall dissipation peak in the SAS model, at a fixed + position, i.e. the properties (D0,D1) of the theory are qualitatively fulfilled. However, the minimum value of -+ corresponding to this dissipation peak is too small, and this peak comes in too late in terms of + values: for = 5186, -+ shows a minimum around + = 43 instead of + = 31 for the minimum of -+ .

For larger values of + , no log-layer plateau shows up in the SAS profiles, at least for 5200, whereas the classical 'log-layer equilibrium' has been used in the derivation of the model of [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF] to relate 2 to the other coefficients. The Fig. 11b showing the different contributions to -+ proves that the SAS term in (36) plays a quite important role, both around + = 43 where -+ has a negative peak, and near the centerplane, at + = + , where it imposes a rather large negative value.

Plots with / as the abscissa are displayed on the Fig. 11c. They show that -+ scales with / in the outer region, with a production peak around = 0.42 , and then a decrease towards a negative value at the centerplane. Thus the properties (T,P) of the theory are qualitatively fulfilled.

In summary, out of the three models tested up to now, the basic SAS model shows the best qualitative and semi-quantitative agreement with the theory.

Study of the length scales and of the model with length scale limiters

In order to better analyze the SAS models, the Figs. 12abc display the two length scales implied and their ratio. The Figs. 12ab suggest that both length scales, scaled by , scale with / , except in a narrow near-wall region for ℓ .

Since ℓ / is computed from the DNS as

ℓ + + = + + + / + , (38) 
because both + and + / + become quite small in the outer region for large , the DNS noise is amplified there.

This explains the oscillations in the Figs. 12bc, that also blur some profiles in the Figs. 11. Smoother profiles of ℓ may be obtained from the exact model of [START_REF] Heinz | On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis[END_REF][START_REF] Heinz | On mean flow universality of turbulent wall flows. II. Asymptotic flow analysis[END_REF] and have been shown on the Figs. 2. The laws that result from the log-layer theory,

ℓ = ℓ = , (39) 
are relevant in a narrow near-wall region for ℓ and in a larger region for ℓ , which otherwise vanishes at the centerplane as already discussed after Eq. ( 14). The ratio ℓ/ℓ displayed on the Fig. 12c shows consequently a near-wall peak of maximum value of order 1, which locates somehow the log-layer region. It then decays, since ℓ increases first faster than ℓ, and finally increases again and diverges as → . Obviously, the infinite value of ℓ/ℓ at the centerplane plays a role in the too large value of -+ in this region, see the Figs. 11bc.

From these observations, it seems relevant to test also the SAS model with length scale limiters, since these limiters have been defined 'in order of avoiding overly large or small values of the length scale ratio' ℓ/ℓ , as explained by [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF] at the level of their equation [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF]. These length scale limiters are defined by with ℓ1 = 10, ℓ2 = 1.3. These limiters are displayed on the Figs. 12de for the highest Reynolds number available in the DNS of [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF]. The maximum limiter is active in a narrow near-wall region, for + 8. There ℓ is quite small, hence ℓ/ℓ remains small and is unchanged at the scales of the Figs. 12cf. The minimum limiter is active in a narrow region near the centerplane. As displayed on the Fig. 12f, the length scale ratio is mainly affected in this outer region, where it saturates to ℓ/ℓ = ℓ1 . This saturates the minimum peak of -+ at the centerplane only marginaly, with reference to the Figs. 11bc. From this point of view, a lower value of ℓ1 would help.

ℓ/ ℓ1 < ℓ < ℓ2 (40) 

Model with a viscous sublayer term

In order to have a model valid through the viscous sublayer, [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF] add a viscous sublayer term to the r.h.s. of their -Eq. (34),

VSM = -6 Φ 2 . ( 41 
)
The dimensional factor in this term, / 2 , has similarities with the one of the last term of the -Eq. ( 25) of [10],

2 / 2 , with, however, one eddy viscosity replaced by the fluid viscosity. In (41), In inner units,

Φ = 1 + 1 1 + 4 , = √ 0.3 20 
, 1 = 4.7 . ( 42 
)
VSM + = -6 Φ + +2 with = √ 0.3 + + 20 ( 43 
)
in the damping function Φ . The Figs. [START_REF] Hamba | Exact transport equation for local eddy viscosity in turbulent shear flow[END_REF] show that the addition of VSM + to -+ introduce a new near-wall minimum peak in -+ , which does not really help since it occurs at too low values of + , and is too weak.

Model with limiter

For the sake of completeness, we check that the limiter introduced in [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF] to deal with adverse pressure gradients or stagnation regions is inactive in channel flow. The equations [START_REF] Menter | Eddy viscosity transport equations and their relation to themodel[END_REF] of [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF] state that the normalized eddy viscosity + should be smaller than

+ = 1 + + with 1 = SST 1 + (1 -) REAL 1 , = tanh 20( + + 1) + +2 + 0.01 2 , ( 44 
)
SST 1 = 0.32, REAL 1 = 0.577. Because the turbulent kinetic energy + reaches rather large levels in the near-wall region, and then does not decrease too much outside, as shown on the Fig. 14a, whereas the mean strain rate + decreases fast from 1 to 0 as increases from 0 to , + is everywhere larger than + , as shown on the Figs. 14bc.

D. New SAS model

In channel flow, as discussed in the Sec. III.C.1 and displayed in the Fig. 11a, the main problem with the SAS model is that the dissipation-related peak in the near-wall region is too weak and occurs too late. Another secondary problem, displayed in the Fig. 11c, is that the SAS model is on the contrary too dissipative in the centerplane region. Because the of Eq. (34) dominates in the near-wall and centerplane regions, it is worthwhile to test a modified SAS model where the terms proportional to 1 and 3 in Eq. (34) are kept, whereas is replaced by a term similar to the exact (12a),

= 2 2 ℓ 2 1 2 . (46) 
The replacement of in by ℓ in is important to ensure that this modified model may be as 'sensitive' as the original SAS model: both the original and modified dissipation terms are proportional to ℓ -2 . Our modified SAS -equation thus reads, in turbulent wall flows,

= 0 = + 1 - - 1/4 3 . (47) 
To obtain a correct behaviour of in the near-wall region, that is, a behaviour similar to that of , it is important to not use a maximum limiter of ℓ proportional to , as Menter et al. did it, see (40) and the Fig. 12d. This would impose ℓ = 0 at the wall, which is probably not very physical, and would surely break the subbtle balance between and in or ℓ in that insures that these dissipation terms behave smoothly as → 0. Therefore, we use only a minimum limiter on ℓ ,

ℓ/ ℓ1 < ℓ , (48) 
with a lower value of ℓ1 = 1 to saturate near the centerplane. With the same coefficients 1 , 3 as the ones chosen by Menter et al., a test of this new model, which leads to

-+ = 1 + -+ - 1/4 3 + (49) 
with 

+ = 2 +2 ℓ +2 1 2 , (50) 

IV. Summary and discussion

The recent availability of the extended DNS and experimental databases of [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF] for channel flows, [START_REF] Chin | Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers[END_REF] for pipe flows, [START_REF] Sillero | One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to + 2000[END_REF][START_REF] Vallikivi | Turbulent boundary layer statistics at very high Reynolds number[END_REF] for boundary layers, that span wide intervals of values of Reynolds numbers, has allowed the development of the analytic RANS theory of [START_REF] Heinz | On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis[END_REF][START_REF] Heinz | On mean flow universality of turbulent wall flows. II. Asymptotic flow analysis[END_REF] for these turbulent wall flows. This theory offers the analytic formula (5) for the sensitive' or 'scale-adaptive' as the models of [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF][START_REF] Menter | The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description[END_REF]. The main advantage of our model presented here is the correct capture of the near-wall dissipation peak. To avoid the use of the scaled wall-normal distance + in the function of the new dissipation term (46), it may be good to use ideas of the elliptic relaxation methods [START_REF] Durbin | Limiters and wall treatments in applied turbulence modeling[END_REF]. 

where, in particular,

+ = + + 2 +2 2 , = + 2 +2 . ( 66 
)
We checked that the first term on the r.h.s. of the Eq. ( 65), which is a viscous diffusion term, is negligible in front of the sum of the other terms. Neglecting this term, the transport Eq. (65) for the dimensionless undamped eddy-viscosity reads

-+ = -+ + = -+ = 1 + + 2 + 2 - 1 + 2 . ( 67 
)
With formal computations, and + can be obtained from our exact model [START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF]. A comparison with the Spalart -Allmaras' model + given by the rightmost sum in (67), which is somehow a new version of the model presented in our Eq. [START_REF] Durbin | Limiters and wall treatments in applied turbulence modeling[END_REF], is then possible. The Figs. D1 thus obtained shows exact profiles that are similar, as soon as + 40, to those displayed on the Fig. 5g. Indeed, when + → ∞, ∼ + hence + ∼ + . Because is undamped, it is singular as + → 0, hence at the wall + → -∞. 

Fig. 1

 1 Fig. 1 Exact model. a) Continuous curve: + 12 , dashed line: 1/( + ). b) Continuous curve: 1/ + 12 -1, dashed line: + . c) for channel (blue), pipe (green), boundary layer (red).

with = 9 ,

 9 = 3.04, = 1.4, = ( + ) = (1 + ℎ 1 / + ) -ℎ 2 , ℎ 1 = 12.36, ℎ 2 = 6.47, = 75.8 , and the von Karman constant = 0.40 .

Fig. 2

 2 Fig. 2 Exact model. All curves start at + = 1. a,b) The asymptotic von Karman length scale (black continuous); its log law approximation (black dashed); the von Karman length scale ℓ for channel (blue), pipe (green), boundary layer (red). The ℓ + curves of the Fig. a and all curves of the Fig. b are computed at = 1995. The Fig. c shows the same curves as Fig. b but with the inverse ordinates and linear-log scales.

Fig. 3

 3 Fig. 3 Exact model. a,b) The damping function . The vertical lines mark + = 66. c) The function 2 + for channel (blue), pipe (green), boundary layer (red).

Fig. 4 DNS

 4 Fig. 4 DNS and exact model for channel flows. Black curve: the opposite of the dimensionless transport term -+ (16) computed with the DNS of [7] at = 543 (a), 5186 (b). Colored curve: the same term computed with our model (17).

  ) differs significantly from the one of channel and pipe flows[START_REF] Nee | Simple phenomenological theory of turbulent shear flows[END_REF]. The comparison of Figs. 7 with Figs.5 and 6shows similar behaviours in the ranges ∈ [0, [ i.e. + ∈ [0, + [, whereas there are differences in the outer region. At = , i.e. the centerplane in channels or the pipe axis in pipes, the function should present a vanishing slope for symmetry reasons, as confirmed by Figs.5h and 6h; note that the outer term -+ plays an important role there. In boundary layers, one does not expect a similar property, but that should approach 0 as → ∞. This is what suggests the Fig.7h, and what would confirm a figure drawn with a larger interval of the abscissas: for all the Reynolds numbers implied, that range from 543 to 80000, | + | < 10 -3 as soon as > 1.32 .

Fig. 5

 5 Fig. 5 Exact model for channel flows. The colored curves, at = 543 (red), 1995 (blue), 5186 (magenta), 80000 (green), show the various contributions to -+ and their sum. a,b) -+ (resp. -+ ): continuous (resp. dashed) curves. c,d) -+ . e,f) + . g,h) -+ . The black curves show the asymptotic profiles approached as → ∞ either at fixed + in (a,c,g) or fixed / in (d,f,h). a,c,g) -+ . d) -+ . f) + . h) -+ . On (a,c,g) the vertical lines mark + = 31, 72 and 400; on (f,h) = 0.33 . On(a,b,c,d,g,h) the horizontal lines mark -+ = 0 and -2 .

Fig. Same as Fig. 5 ,Fig. 7

 57 Fig. Same as Fig. 5, but for pipe flows. On (f,h) the vertical lines mark = 0.3 .

Fig. 8

 8 Fig. 8 Exact model for channel flows: production-to-dissipation ratio for = 1000 (red), 1995 (blue), 5186 (magenta). In (b) the black curve shows the asymptotic ratio / .

Fig. 9 , the curves show 1 + 1 (

 911 Fig. 9 Evaluation of the high-Reynolds number model of Spalart & Allmaras in channel flows. a) The black curve shows the exact -+ (18), the colored curves -+ for = 1995 (blue), 5186 (magenta) and 80000 (green). b) For = 5186, the curves show 1 + + (continuous), 2 ( + / + ) 2 (dashed), -1 ( + / + ) 2 (dotted). In (a,b) the vertical lines mark + = 31, 72 and 400. c) The black curve shows the exact -+ (24), the colored curves -+ for = 1995 (blue), 5186 (magenta) and 80000 (green), the vertical line marks = 0.33 . In (a,b,c) the horizontal lines mark -+ = 0 and -2 .

/ 15 ,

 15 = 3.5, = 0.015, Ω = 0.02 , * = ( ) 1/4 / , = 2 /( ). Their model for -+ reads therefore

Fig. 10

 10 Fig. 10 Evaluation of the model of Yoshizawa et al. in channel flows, using the DNS of [7]. a) The black curve shows -+ (18), the colored curves -+ for = 1995 (blue) and 5186 (magenta). b) For = 5186, the curves show + (continuous), -+ + Λ + (dotted). In (a,b) the vertical lines mark + = 31, 72 and 400. c) The black curve shows -+ (24), the colored curves -+ for = 1995 (blue) and 5186 (magenta), the vertical line marks = 0.33 . In (a,b,c) the horizontal lines mark -+ = 0 and -2 .

Fig. 11 3 +

 113 Fig. 11 Evaluation of the SAS model in channel flows, using the DNS of [7]. a) The black curve shows -+ (18), the colored curves -+ for = 1995 (blue) and 5186 (magenta). b) For = 5186, the curves show 1 + (continuous), -2 + (ℓ/ℓ ) 2 (dashed), -

Fig. 12

 12 Fig. 12 Length scales of the SAS model in channel flows, using the DNS of [7] at = 1995 (blue) and 5186 (magenta): a) the turbulent length scale ℓ, b) the von Karman length scale ℓ , c) their ratio. In (a,b) the dashed line shows the log-layer length scale + . The effects of the length scale limiters (40) is shown on (d,e) for = 5186, with the limiters shown by the dashed curves, and on (f) for both Reynolds numbers.

Fig. 13

 13 Fig. 13 Same as Figs. 11, but adding the viscous sublayer term VSM + (43) to -+ (36); VSM + is shown with the dotted curve in (b).

FigFig. 14

 14 Fig.11bshows that the SAS dissipation term

Fig. 15 1 + 3 +Fig. 16

 151316 Fig. 15 Evaluation of the new SAS model (47) in channel flow, using the DNS of [7]. a) The black curve shows -+ (18), the colored curves -+ (49) for = 1995 (blue) and 5186 (magenta). b) For = 5186, the curves show 1 + (continuous), -+ (dashed), -

  Fig. A1 Test of the equation of themodel in channel flows. The continuous curve shows the opposite of the normalized transport termvs the ratio / for the DNS of [7] at = 543 (a), 5186 (b). The thin (resp. thick) curve corresponds to the inner region + < 15 (resp. outer region + > 15). The dashed (resp. dotted) line shows the model ( / -1) with = 2/3 (resp. 1).

= 2 ,

 2 Fig. B2 Test of the equation of themodel in channel flows. The continuous curve shows the opposite of the normalized transport termfor the DNS of [7] at = 543 (a), 5186 (b). The thin (resp. thick) curve corresponds to the inner region + < 15 (resp. outer region + > 15). The dashed line shows the standard model ( * / -).

  Fig. C1 Viscous diffusion term in the equation for channel flows. The continuous curve is computed with the DNS of [7] at = 1995 (a), 5186 (b). The dashed curve shows the analytical model that can be derived from (5). The horizontal lines mark + = 0 and 0.023.

  Fig. D1 Evaluation of the finite Reynolds number model of Spalart & Allmaras in channel flow for = 1995 (a), 5186 (b), 80000 (c). The continuous colored lines show the exact -+ , the dashed colored lines their model + . The black lines are the same as in Fig. 9a.

  Fig. 9a.

Table 1 The different terms in the equation, or budget

 1 

, 0 = -+ ,

at finite and infinite , in various regions for this latter case, with analytical formulas or references to analytical formulas.

  

						Infinite	
			Finite		inner region	log layer	outer region
	Dissipation	=	+	eq. (12a,12c)	( + ) + 0 eq. (18)	2 2 + 0	( / ) eq. (21)
	Production		eq. (12b)	0	0	( / ) eq. (23)
	Transport		=	-	( + ) eq. (18)	2 2	
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eddy viscosity , which is remarkably shear driven: the mean shear (2) plays a central role, and, on the contrary, the turbulent kinetic energy does not intervene. This theory has been used here to derive an exact transport Eq. [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF] for that contains a standard transport term balanced by production and dissipation terms, and , in steady mean flows: for such flows the equation reads simply + -= 0. It is 'exact' in that all the terms are known analytically, as functions of the inner shear function + 12 and wake functions determined from [START_REF] Heinz | On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis[END_REF][START_REF] Heinz | On mean flow universality of turbulent wall flows. II. Asymptotic flow analysis[END_REF], at finite and infinite , either in the inner, log layer or outer regions for the latter case, as summarized on the table 1.

To our knowledge, this is the first time that an exact scale-determining equation has been determined for a RANS model, and analyzed in details: the eddy viscosity budget is fully determined at finite and infinite Reynolds numbers.

All this offers a vision of the mechanisms at play, as summarized in our Sec. II.H, which also shows that our budget and the known budget (at finite Reynolds number only) differ quite much. In the budget, noticeable is the existence of a universal near-wall dissipation peak (Figs. 5g, 6g, 7g), in perfect agreement with the wall-damping idea. Indeed, the dissipation takes the same universal form (12a) for all turbulent wall flows. This form identifies as the relevant length scale the universal asymptotic von Karman length scale (13) and a universal damping function [START_REF] Menter | The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description[END_REF].

All this has been used as a physical test bench of existing models that present a equation with the same transport term . Thus, we have evidenced some deficiencies of the high Reynolds number models of Spalart & Allmaras [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF],

Yoshizawa et al. [START_REF] Yoshizawa | A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate[END_REF], which were designed before the publication of the databases mentioned [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF][START_REF] Chin | Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers[END_REF][START_REF] Sillero | One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to + 2000[END_REF][START_REF] Vallikivi | Turbulent boundary layer statistics at very high Reynolds number[END_REF]: both models display a strong production peak in the near-wall region (Figs. 9 and 10). In other words, the physics of their budget is incorrect in this region. Since wall-flows are basically driven by the wall effect, the unphysical treatment of the near-wall region in these models has to be expected to imply unphysical turbulence simulations. Regarding the model of Spalart & Allmaras [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF], we studied only the high Reynolds number, baseline form of their equation (their equation 4), whereas their final equation [START_REF] Baldwin | A one-equation turbulence transport model for high Reynolds number wall-bounded flows[END_REF], that should work in principle at finite Reynolds number, implies a modified eddy-viscosity given by a highly nonlinear function of , as defined in their equation [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF]. We show however in our appendix D that this change of variable does not resolve the 'wall-damping problem', i.e., in the near-wall region, strong discrepancies between the exact model and the final model of Spalart & Allmaras remain.

The SAS models of [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF][START_REF] Menter | The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description[END_REF] have also been studied, in steady RANS mode, and have given better results. Quantitative discrepancies between the SAS budget and our exact budget, i.e., too weak near-wall dissipation peaks, plus over-dissipation in the outer region, have been resolved by a modification of the SAS dissipation term in the equation. 

with a model coefficient, and the production term

according to the eddy-viscosity hypothesis, with the notations of Sec. II.A. The Eq. ( 51) is also used in the SAS model of [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF][START_REF] Menter | The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description[END_REF]. Various values of are recommended: = 2 in [START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF], 1 in [START_REF] Launder | The numerical computation of turbulent flows[END_REF], 2/3 in [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF]. To discriminate between those, and confirm the relevance of the -equation, we analyze the Eq. ( 51) with the approach of [START_REF] Heinz | Turbulent supersonic channel flow: direct numerical simulation and modeling[END_REF]. After division by , Eq. ( 51) states that the opposite of the dimensionless normalized transport term

should be a linear function of the production-to-dissipation ratio / ,

This prediction is tested on the channel flow DNS data of [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF] on the Figs. A1. Note that [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF] offer in their figure 7 plots of / vs + . The eddy viscosity is computed according to its definition (3), and the derivatives by in are computed by finite differences. The Figs. A1 show that, in the outer region + > 15, the DNS curves remain close to the line (53): this confirms the relevance of the high-Reynolds number -Eq. ( 51), and supports [START_REF] Menter | Steady and unsteady flow modelling using the -√ model[END_REF] in their choice = 2/3. The value of [6], = 1, seems a bit too large, whereas the value of [5], = 2, seems clearly too large.

Appendix B: Study of the standard and equations with channel flow DNS

By analogy with (51), [START_REF] Launder | The numerical computation of turbulent flows[END_REF] postulated in themodel the equation, for channel flows,

.44, 2 = 1.92 . After division by 2 / , Eq. ( 54) states that the opposite of the normalized transport term

should be a linear function of / ,

This prediction is tested on the channel flow DNS of [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re ≈ 5200[END_REF] 

Appendix C: Viscous diffusion term in the equation

The viscous diffusion term defined in the Eq. (33) reads, in dimensionless form,

It can be computed numerically with finite differences from channel flow DNS data. It can also be computed analytically starting from [START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF]. A comparison of both estimates of + , for relevant cases (the ones also studied in Sec. III.B), is displayed on the Figs. C1. The analytic model is overall quite good. Moreover, everywhere, | + | ≤ 0.023.

Appendix D: Evaluation of the finite Reynolds number model of Spalart & Allmaras

For finite Reynolds number, [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF] propose to use, instead of the eddy viscosity , an undamped eddy-viscosity defined by 

This eddy-viscosity is undamped because it is much larger than in the near-wall region. For channel flow, fulfills the transport equation

There a modified mean strain rate enters,