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Abstract: Uncertainty propagation and sensitivity analysis have been applied to SMA-TB 

interatomic potentials that are often used in atomistic simulations to study metals and alloys. Usually, 
the parameters of potentials are estimated by a minimization method to best fit a set of experimental or 
ab initio computational data, such as bulk properties (e.g., cohesive energy and elastic constants) without 
considering the uncertainty in these data. Our goal is to perform uncertainty propagation from the bulk 
properties to extract uncertainties and correlations of SMA-TB (𝜉, 𝐴, 𝑞, 𝑝) potential parameters to 
generate valid parameter sets. Using a statistical framework, we estimate initial probability distributions 
that allow us to determine the uncertainties for each potential parameter of the SMA-TB. We show that 
many sets of potential parameters lead to bulk properties included in the initial probability distributions. 
Local and global Sobol’ sensitivity analysis methods, which entails no additional computational cost, 
show how physical properties can be adjusted using interatomic potentials. 
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1. Introduction 

Atomistic simulations are useful tools for studying the structure-property relationship. These 
simulations, which have a limited length and time scale, are an essential part of a multiscale approach 
in materials design. One of the challenges of multiscale modeling is the credibility of results. How 
reliable are the predictions obtained and what are the uncertainties? These questions, which are very 
general and affect many scientific fields, have led to the development of a new field of research on the 
quantification and propagation of uncertainties. Two kinds of uncertainty are identified, the epistemic 
uncertainty due to the lack of knowledge both about the physical system and the models, and the 
stochastic uncertainty of the simulations called aleatory uncertainty (random fluctuation due the 
temperature, number of events considered in Monte Carlo steps…) [1,2].  

In this work we investigate the uncertainty parameters of interatomic potentials used to describe metals 
at atomic scale. Modeling bulk properties of transition metals with high accuracy plays a key role on 
more complex studies such as prediction of surfaces, kinetics and phase diagrams properties. Extensive 
ab initio calculations and experiments onto pure transition metals have been made during the last two-
three decades to construct databases of multiple properties [3,4]. However, some properties are obtained 
from non-ab initio simulations, that are faster but less accurate, such as molecular dynamics (MD) or 
Monte Carlo (MC) simulations, that require to define interatomic potentials. The ability of these 



  
 

  
 

simulations to correctly predict the properties of the studied materials depends on the interatomic 
potentials used and on their parameters. Many interatomic potentials have been developed in the last 
years (pair potentials, Lennard-Jones [5], Finnis Sinclair [6], EAM [7–10], SMA-TB [11–15] , MEAM 
[16,17], REAXFF [18–20], Finnis Sinclair [6], ADP [21–23]…). These potentials depend on a more or 
less important number of parameters, from two parameters for Lennard-Jones potentials to twelve 
parameters for ADP potentials. The choice of one class of potentials rather than another is very 
subjective. This choice depends mostly on the objectives. The more complex the potentials, the more 
realistic they are, the greater the challenge of identifying the relationships between the results and the 
parameters. The simpler, less realistic potentials allow for easier rationalization of the results. Of course, 
the choice of a potential inevitably introduces a bias. All potentials have uncertainty related to the 
analytical form of the model, which affects predictions. 

In this work ,we consider N-body interatomic potentials issued from the second moment approximation 
of the tight-binding (SMA-TB) scheme derived by Ducastelle [11]. These interatomic potentials have 
been shown to be quite successful to study bulk, surface, and grain boundaries in metallic alloys [24–
30]. They are the sum of an attractive and a repulsive term and are depending on four adjustable 
parameters (𝜉, 𝐴, 𝑞, 𝑝) which are determined by fitting experimental or ab initio values of cohesive 
energy, bulk modulus and shear elastic constants for pure metals, and mixing energies in the dilute limits 
for alloys. The parameters can be quite simply related to physical quantities in the framework of the 1st 
neighbor approximation. A binary alloy is described using twelve parameters and atomic radii. From 
such potentials it is possible to extract the thermodynamic driving forces of the alloys as a function of 
the parameters and/or the original data [29,31]. 

Once the interatomic potentials are calibrated, i.e. the best parameters are determined, they are used in 
MD or MC simulations to predict physical quantities not used for parameter fitting (surfaces energies, 
vacancy formation…). Most often, the authors do not consider the uncertainty of the physical properties 
used to calibrate the potentials: the parameters of the potential are estimated by an optimization method 
in order to reproduce as well as possible the reference data. The quantification and the propagation of 
uncertainty is rarely explored. Uncertainty due to the class of potential and parameter uncertainty are 
the major components of epistemic uncertainty [32]. 

Uncertainty quantification (UQ) is the characterization of uncertainty in input variables and models, 
while uncertainty propagation (UP) is the determination of uncertainty in outputs based on the 
uncertainty in input variables. UQ and UP are often combined under the general scope of uncertainty 
analysis (UA). Complementary to UA, sensitivity analysis (SA) aims to describe to which extent the 
model outputs are affected by changes in the model inputs. The more complex a model is, the more 
often some parameters have no influence on the results. It is then possible to propose a surrogate model 
simpler than the initial model, with fewer parameters. Performing both analyses (UA and SA) helps to 
reduce errors during the model calibration procedure, by prioritizing the input parameters, and increases 
confidence in the predictability of a given model, within the limits where SA and UA have been 
performed. Homma et al. [33] split SA in two classes: local and global. Local SA (LSA) is the study of 
the derivatives (Jacobian and sometimes Hessian) of the model outputs with respect to input parameters 
around the nominal value of the input parameters. Global SA (GSA) considers the output uncertainty 
over the entire variation domain of input parameters. There are several GSA method and reviews 
comparing them, such as Iman and Helton [34], Saltelli and Homma [35] and Saltelli et al [36,37]. We 
choose here to use Sobol’ sensitivity analysis (a variance-based global SA method) on bulk properties 
to obtain insight on the relative importance of each SMA-TB parameters.  



  
 

  
 

Establishing a parametric model is a two-steps procedure: (1) calibration and (2) prediction. In analytical 
form, let us define 𝑌 = 𝐹(𝑋), where 𝑌 = (𝑦ଵ, 𝑦ଶ, … , 𝑦௟) is a set of 𝑙 different quantities of interest 

(QoIs), estimated by a set of 𝑚 models 𝐹 = (𝑓ଵ, 𝑓ଶ, … , 𝑓௠) used to describe the problem and 𝑋 =

(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) is the set of 𝑛 adjustable parameters. The calibration step aims at the determination of 𝑋 
for a given model 𝑓௜ that reproduce the 𝑙 QoIs with the most accuracy (it is also known as an inverse 
problem). The prediction procedure uses the fitted models to determine a given QoI 𝑦௜ from a model 𝑓௝, 
with the knowledge of its 𝑋 adjustable parameters (this is known as the direct problem). In material 
science, the use of interatomic potentials is a good example of this two-steps procedure: we first define 
a model, here the SMA-TB model, then we perform the fitting procedure based on bulk properties and 
then the model is run to predict new physical properties.   

In recent studies of interatomic potentials, work has been made to incorporate UA and SA during the 
calibration and prediction steps. UP of physical properties during the prediction procedure has been 
attempted, which provides insight on the predictability of the model. Moore et al. [38] performed a one-
at-a-time (OAT) SA (which is a local SA method) of the MEAM parameters on ground states and 
thermal properties of uranium zirconium alloys, thus providing uncertainty when fitting and running 
MEAM interatomic potentials. Dhaliwal et al. [39] performed a local SA analysis on output QoIs, from 
which they observed that a 1% change in the nominal parameter set can lead to dramatic change in the 
physical properties of interest.  

Our study proceeds in two stages:  

1. In a first step, a calibration procedure with UP, we develop a statistical framework that draws 
random SMA-TB parameter sets within a predefined domain. Four specific bulk properties are 
evaluated analytically, for which UQ has been made based on available literature, and used to 
validate or discard SMA-TB parameter sets. Furthermore, Sobol’ SA [33,40,41], which does 
not incur additional computational cost, has been performed to obtain further insight toward the 
relative importance of each SMA-TB parameters on these four bulk properties. From a large 
uncorrelated random sample (more than a million points), we obtained a selected small sample 
of SMA-TB parameter sets (about hundred points), where some SMA-TB parameters exhibit 
correlations. Thanks to UP, we can quantify the uncertainty of SMA-TB parameters, and 
estimate the joint and marginals distributions from the selected sets.  

2. The second step is a prediction procedure, with UP using the estimated joint and marginals 
distributions with the correlation approximated by a gaussian copula [42,43].  

For the SMA-TB model, we study four different approximations that can be seen as different models, 
only presenting two of them. Tarantola [44] states that the solution of an inverse problem should be seen 
as the collection of models (and their respective fitted parameters) that are acceptable given the 
uncertainty of observables. The procedure is iterative and discriminating: by providing new observables 
or by increasing precision measurement of existing ones, it is possible to discard models and/or sets of 
fitted parameters that were acceptable before. Thus, performing a prediction procedure for another 
physical property, such as the vacancy formation enthalpy, one can further reduce the accepted SMA-
TB approximations and their respective accepted parameters. When no set of parameters allows to fit 
the uncertainties of a new observable then the potentials can be questioned.  

Note that this method is akin to the Data Collaboration framework of Frenklach [45]. The existence of 
a solution at stage 1 reposes on the consistency between the calibration datasets, and between these data 
and model predictions. The absence of a solution is an interesting diagnostic in itself. An optimization-
based framework could be seen as advantageous, as it will always provide a best parameter set, even in 



  
 

  
 

the absence of data/data and data/model consistency. However, the estimation of parameters uncertainty 
in such conditions (i.e. for a non-valid statistical model) is still an open problem and often requires the 
development of auxiliary error models to account for inconsistencies [46–50]. We wish to avoid 
complex statistical scenarios for the simple models under consideration in this study. 

The goal of this work is to provide a systematic method that can be applied to different classes of 
potentials to determine the relevant model inputs and estimate the error bars of atomic calculations.  

The paper is organized as follows. In Section 2, we describe the SMA-TB potential (2.1) and derive the 
bulk physical properties in the first neighbor approximation (2.2). Section 3.1 contains a short summary 
of the ANOVA decomposition and the definition of Sobol’ indices (3.1), a presentation of our statistical 
procedure to produce optimized SMA-TB parameters followed by a discussion of the application of the 
procedure to more complex potentials (3.2). Then, Section 4 aggregates results from the Sobol' analysis 
using the first order indices of the SMA-TB parameters (4.1), as well as the characterization of the 
uncertainty of these parameters for silver (4.2) and for each transition metal (4.3). We then present in 
Section 4.4 the prediction interval for the vacancy formation enthalpy from evaluation of 1000 samples 
drawn from the estimated correlated joint distributions. Finally, conclusions are presented in the last 
section.  

2. Energetic model 

2.1.SMA-TB interatomic potentials  

SMA-TB interatomic potentials are derived from the tight binding model within the second moment 
approximation [11]. It has been extensively used in studies related to transition metals and related alloys. 
The interatomic interaction energy 𝐸௜  of an atom 𝑖 for a pure metal is defined as 

𝐸௜൫൛𝑟௜௝ൟ൯ = 𝐴 ෍ 𝑒
ି௣ቀ

௥೔ೕ

௥బ
 ି ଵቁ

௝ஷ௜

− 𝜉ඨ෍ 𝑒
ିଶ௤ቀ

௥೔ೕ

௥బ
 ି ଵቁ

௝ஷ௜

(1) 

where 𝑟௜௝ is the distance between atoms 𝑖 and 𝑗, 𝑟଴ is the equilibrium interatomic distance between two 

atoms, 𝜉 is the effective hopping integral, 𝑞 describes the distance dependence of the hopping integral, 
𝐴 is associated with the strength of the repulsive energy contribution. 𝑝, 𝑞 are dimensionless parameters 
and 𝐴 and 𝜉 are in eV.  

It can be noted that in the original paper [11], the expression of the energy does not depend on the 
parameter 𝑟଴.  Expression (1) was derived later for practical reasons [51]. Under this formulation, the 
energy depends on 𝑟଴ which has a special role since it is an observable property that can be measured 
with great accuracy. 

This SMA-TB potential includes a sum over all others atoms 𝑗 from the atom 𝑖. This sum can be split 
into a sum over the neighboring shells and a sum over all atoms within each shell. For an homogeneous 
system at 0𝐾, we can assess that all atoms within a given shell 𝑘 are located at the same distance from 

the 𝑖 atom such as 𝑟௜௝ → 𝑟௞ and also 𝑑௞ =
௥ೖ

௥బ
 . We can therefore rewrite the expression of the energy of 

the atom 𝑖 as :  

𝐸௜({𝑑௞}) = 𝐴 ෍ 𝑍௞𝑒ି௣(ௗೖ ି ଵ)

௟

௞

− 𝜉ඩ෍ 𝑍௞𝑒ିଶ௤(ௗೖ ି ଵ)
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௞
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with 𝑍௞ the number of kth neighbors. 

In practice, for computational time reasons, the energies are not calculated by including all neighboring 
atoms. To avoid discontinuities in both energy and force, the exponentials are connected to zero with a 
fifth-order polynomial between the 2௡ௗ nearest neighbors and the 4௧௛ nearest neighbors (see Appendix 
A). The SMA-TB potentials thus defined have been successfully used to study bulk properties and 

superficial or intergranular segregation [26,52–54]. 

However, for a better understanding, we have also considered the energy calculations with l = 1, 2 or 3 
without connection polynomial. In what follows, we only discuss the approximation up to the first 
neighboring shell, called the 1NN model. The 1NN approximation is clearly unsuitable for accurate 
atomistic simulations, yet it allows an easy analytical derivation of the bulk physical properties (𝐸௖௢௛, 
𝐵, 𝐶′ and 𝐶ସସ). 

2.2.Bulk physical properties  

We considered the following transition metals: Ag, Au, Cu, Ni, Pt and Pd. The parameters of the SMA-
TB potential can be determined from bulk physical properties, energies of defect such as surfaces, 
interstitials or vacancies.  In this work we have chosen quantities that characterize the homogeneous 
system: the cohesive energy of the metal 𝐸௖௢௛ and the elastic constants. In cubic crystals there are only 
3 independent elastic constants, namely 𝑐ଵଵ, 𝑐ଵଶ and 𝑐ସସ, due to symmetry. However, it is more common 
to measure the bulk modulus 𝐵 and shear moduli 𝑐′ and 𝑐ସସ. By convention, the bulk modulus 𝐵 =
ଵ

ଷ
(𝑐ଵଵ + 2𝑐ଵଶ) and the shear modulus 𝑐ᇱ =

ଵ

ଶ
(𝑐ଵଵ − 𝑐ଵଶ). We present in Appendix B, the small 

deformation theory derivation of SMA-TB analytic expressions for elastic constants, and give in 
Appendix C the generalized expressions of 𝐸௖௢௛ , 𝐵, 𝑐′ and 𝑐ସସ with respect to the SMA-TB parameters 
(𝜉, 𝐴, 𝑞, 𝑝) for any 𝑙 value.   

For any potential describing a single crystal, the equilibrium distance is determined by the minimum of 

the interatomic energy 𝐸௜൫൛𝑟௜௝ൟ൯ : the interatomic distance of equilibrium is 𝑟଴ and the lowest energy is 

the cohesion energy 𝐸௖௢௛.  Within the 1NN approximation, the cohesive energy  𝐸௖௢௛ = 𝐸௜(𝑑ଵ = 1) 

with 𝑙 = 1 is 

𝐸௖௢௛ = 𝐴𝑍ଵ − 𝜉ඥ𝑍ଵ (3) 

At equilibrium, the forces cancel each other out, leading to 

𝜕𝐸௜({𝑟௞})

𝜕𝑟௞
ቤ

௥ೖୀ௥బ

=
𝜕𝐸௜

𝜕𝜀
ฬ

ఌୀ଴
= 0

ଵேே
ሳልሰ −

1

2
𝜉ඥ𝑍ଵ(−2𝑞) + 𝑍ଵ𝐴(−𝑝) = 0 (4) 

which can also be written as 

𝑍ଵ𝐴

𝜉ඥ𝑍ଵ

 =
𝑞

𝑝
(5) 

hence Ducastelle's definition 𝑥 = 𝑞 𝑝⁄  [11]. 

 

We can reformulate the cohesive energy in function of couples (𝜉, 𝑥) or (𝐴, 𝑥) instead of (𝐴, 𝜉) such 
that 



  
 

  
 

𝐸௖௢௛ = −(1 − 𝑥)𝜉ඥ𝑍ଵ = − ൬
1 − 𝑥

𝑥
൰ 𝐴𝑍ଵ (6) 

For fcc lattices, using the small deformation approximation, the elastic constants are : 

 for the bulk modulus 

𝐵 = 𝑝𝑞
𝐸௖௢௛

9 ൬
𝑉௙௖௖

4
൰

(7)
 

 for the shear modulus 𝑐′ 

𝑐ᇱ =
1

6
൬

1 − 2𝑥

1 − 𝑥
൰ 𝑝𝑞 

𝐸௖௢௛

4 ൬
𝑉௙௖௖

4
൰ 

(8)
 

 and for the shear modulus 𝑐ସସ 

𝑐ସସ =
1

3
൬

1 − 2𝑥

1 − 𝑥
൰ 𝑝𝑞

𝐸௖௢௛

4 ൬
𝑉௙௖௖

4
൰

(9)
 

where 𝑉௙௖௖ = ൫𝑟଴√2൯
ଷ
 is the lattice volume related to the equilibrium interatomic distance between two 

atoms.  

It can be noted that each elastic constant is expressed as a function of the cohesive energy and the volume 
of the network. The values of 𝐸௖௢௛ and 𝑟଴ are known with high accuracy. We can reformulate the elastic 
constants as: 

𝑐 = 𝑓௖(𝑝, 𝑞) 𝑔(𝐸௖௢௛ , 𝑟଴) = 𝑓௖(𝑝, 𝑞) 𝑔(𝐴, 𝜉, 𝑟଴), ∀𝑐 ∈ [𝐵, 𝑐ᇱ, 𝑐ସସ] (10) 

with 𝑓௖(𝑝, 𝑞) is a dimensionless function of 𝑝 and 𝑞 depending on the symmetry of the crystal and 𝑔 is 
an energy per unit volume (equivalent to pressure). Once the element is chosen, the function g is known 
and the three elastic constants are determined by the two parameters 𝑝 and 𝑞. For this reason, the 1NN 
approximation does not always succeed in fitting all the bulk properties of an element. Rosato et al. [51] 
also mention that the 𝑐ସସ 𝑐′⁄   ratio is equal to 2, independently of the values of 𝑝 and 𝑞. In the literature 
(experimental [11] and ab initio [3]) this ratio varies in fact between 1.5 and 3 for the fcc structure.  

However, the 1NN approximation, gives qualitative information about the possible values of the SMA-

TB parameters for transition metals. Considering the conversion ൫1𝑒𝑉. Åିଷ = 160.21𝐺𝑃𝑎൯ and a 

typical fcc lattice volume of the order of 10ଵÅଷ, the relationship between the cohesive energy and the 
bulk modulus indicates that 𝐵 ∝ 3𝐸௖௢  which leads to  𝑞 ≈ 3 and 𝑝 ≈ 3𝑞. According to equation 5, we 
then have 𝜉 ≫ 𝐴, which means that the cohesive energy is mainly defined by the attractive contribution 

𝐸௖௢ ≈ −𝜉ඥ𝑍ଵ. This knowledge provides an excellent physical basis for a calibration procedure or for 

checking whether a fitted set of SMA-TB parameters is reasonable. 

For reasons of readability, we only present here the formulas for the 1NN approximation. The extension 
to the 2NN and 3NN approximations is described in Appendix D. Finally, in Appendix E, we provide the 

specific expressions for the four thermodynamics properties for the SMA-TB potential connected with 
a fifth-order polynomial.  



  
 

  
 

3. Statistical framework 

3.1.Sensitivity analysis 

Sensitivity analysis (SA) is the study of how the model outputs respond to a change in model inputs 
[40,41]. This is essential for the modeling of complex systems such as bulk, surfaces and metal alloys. 
Saltelli et al. [40] and also Sobol’ [55,56] earlier defined two mains groups of SA methods: local  SA 
and global  SA. The local SA is based on the study of first partial derivative of each input parameter 
while keeping other parameters at their ‘optimal’ values. This local SA only explores importance of the 
input parameter toward the output around a narrow domain where the set of ‘optimal’ values of input 
parameters is thought to be located. It also ignores the interaction between parameters. The global SA 
explores the whole variation domain of input parameters and considers the global effect of an input 
parameter on the outputs. However, it is necessary to define an initial domain of input parameters. It is 
possible to define this parameter space from the units and the realistic order of magnitude of the 
parameters, or also from the set of parameters used in the literature. 

One of the most used global SA method uses the decomposition of variance approach (ANOVA) and is 
named Variance-based SA ([40,57]). The first-order sensitivity index or main index of the input 
parameter 𝑋௜ on the model output 𝑌 is defined as 

𝑆௜ =
𝑉௜

𝑉(𝑌)
(11) 

where 𝑉(𝑌) is the total variance of the model output 𝑌 and the partial variance 𝑉௜ is the variance of the 

conditional expectation 𝑉௜[𝐸 ௜(𝑌 ∨ 𝑋௜)] ( 𝑖 denote all but the 𝑖௧௛ input variable). It can be seen as the 
fraction of the model output variance that would disappear on average when 𝑋௜ is fixed to a value within 
its variation range. The impact on the model output variance of the interaction between parameters 𝑋௜ 

and 𝑋௝ is defined as 𝑆௜௝ = 𝑉௜௝ 𝑉⁄ (𝑌) with 𝑉௜௝ = 𝑉௜௝ൣ𝐸 ௜ ௝൫𝑌 ∨ 𝑋௜, 𝑋௝൯൧ and all higher order of sensitivity 

indices follow in a similar manner.   

Another quantity has been proposed by Sobol’ [56] called the “total effect index” 𝑆்௜ and can be defined 
as the sum of all sensitivity indices related to the input variables 𝑋௜. For example, in a system of three 
variables (𝑥ଵ, 𝑥ଶ, 𝑥ଷ) the total effect indices are: 

൝

𝑆்ଵ = 𝑆ଵ + 𝑆ଵଶ + 𝑆ଵଷ + 𝑆ଵଶଷ

𝑆்ଶ = 𝑆ଶ + 𝑆ଵଶ + 𝑆ଶଷ + 𝑆ଵଶଷ

𝑆்ଷ = 𝑆ଷ + 𝑆ଵଷ + 𝑆ଶଷ + 𝑆ଵଶଷ

(12) 

When compared to the first-order indices, 𝑆்௜ provides information about interactions between the input 
parameters. One property of the total index is that ∑ 𝑆்௜௜ ≥ 1 and it is equal to 1 only and only if there 
is no interactions between parameters. Therefore, should have 𝑆்௜ = 𝑆௜ for a purely non-interacting 
model.  

 Let us recall, that main indices are a good indicator for inputs prioritization, and one should focus on 
parameters with the largest first-order indices. A null value of the total effect index indicates that this 
input is not contributing in any way to the output variance and therefore can be fixed within its initial 
predefined domain which is a simplification, of interest when the model is complex with many 
parameters. Less complexity means greater ease in analyzing all aspects of interest.  



  
 

  
 

3.2.Calibration of input parameters 

A standard way to identify the 'best fit' of the parameters of a given model is to minimize an error 
function that provides a number representing the difference between the data and the model prediction. 
This is usually the root mean square error (RMSE) or maximum likelihood [58]. However, the physical 
properties (𝐸௖௢௛ , 𝐵, 𝑐ᇱ, 𝑐ସସ) used as reference data do not have fixed values, which excludes the 
determination of unique values for the parameters. Based on the literature, we found that the cohesive 
energy is known to an accuracy of 0.01 eV, which is very high quality, but the elastic constants can have 
a deviation of up to 40 GPa in some cases. 

To introduce the uncertainty on the physical properties, we decided to reject any SMA-TB parameter 
set that does not predict a QoI within a predefined confidence interval. By using this kind of metric, we 
do not sort by ‘best’ to ‘worst’ the small final set of remaining samples that we obtain, since we do not 
have enough precision on the (𝐸௖௢௛ , 𝐵, 𝑐ᇱ, 𝑐ସସ) to pretend to know which of the final (𝜉, 𝐴, 𝑞, 𝑝) values 
are better. Moreover, if the number of samples (𝜉, 𝐴, 𝑞, 𝑝) selected by these filters is high enough, we 
can measure the uncertainty on the SMA-TB parameters.  

The main steps of the statistical framework are summarized in Fig.  1: 

 

The selection/filtering procedure can be executed iteratively. We describe the main steps of the first 
iteration: 

1. Parameter space definition  

This parameter space is chosen based on (𝜉, 𝐴, 𝑞, 𝑝) quadruples for all transition metals found in the 
literature and take into account possible uncertainties. Table 1 summarizes the a priori information 
for the (𝜉, 𝐴, 𝑞, 𝑝) quadruples for six studied transition metals [29].  

2. Generation of random samples  

We then generate 𝑁௧௢௧ samples of SMA-TB parameters with quasi-random Sobol’ sequences [59] 
using the Salib python package [60] to pave homogeneously the parameter space. The total number 
of samples is 𝑁௧௢௧ = (2𝐷 + 2)𝑁௦௔௠௣௟௘, where 𝐷 = 4 is the number of SMA-TB parameters and 

 
Fig.  1 : Flow chart and steps in statistical framework for the SMA-TB potential fitting. Physical properties (PP) 
considered in this work are 𝐸௖௢௛ , 𝐵, 𝑐ᇱ and 𝑐ସସ. 



  
 

  
 

𝑁௦௔௠௣௟௘ ranges from 2ଵଶ = 4096 up to 2ଵ଼ = 262144 to check convergence of Sobol’ indices and 

to generate enough samples that satisfy strict filtering, which we will explain later. 

3. Evaluation of physical properties 

We evaluate the four physical properties (𝐸௖௢ , 𝐵, 𝑐ᇱ, 𝑐ସସ) for all parameters samples and for each 
of the six metals considered. 

4. Sobol’ analysis 

The implementation of the Sobol’ analysis does not require additional development. The sample of 
output variables obtained in step 3 are used for sensitivity analysis. We compute the first 𝑆௜, the 
second, 𝑆௜௝ and the total 𝑆்௜  Sobol’ indices (hereafter referred to as Si’s) of each output (Note: 

𝑁௦௔௠௣௟௘ = 2ଵଶ is largely sufficient for the convergence of Sobol’ indices). 

5. Filtering of samples 

We filter out parameter samples that do not predict output values within the predefined reference 
intervals established from the literature (experimental and ab initio dataset given in Table 2). 

6. Statistical analysis 

We compute mean, standard deviation, min, max of the distribution as well as the correlation 
between the SMA-TB parameters from remaining samples. This allow to perform the UP from the 
physical properties to SMA-TB parameter and characterize the UQ of SMA-TB parameter. 

We iterate this procedure twice. For the second iteration, we create (step 2) a correlated joint probability 
distribution with the reduced parameter space and the correlation matrix obtained at the end of the first 
pass. In this case, the Sobol analysis is invalid because, the SAlib package does not support the 
computation of Sobol' indices with dependent stochastic variables. Recent studies [57] and 
developments (like chaospy python package [61,62]) deal with stochastic dependent input variables by 
a new mathematical technique. However, it is still in an early development stage. In perspective, it would 
be an enrichment of our understanding of the sensitivity of parameters when the package will be able to 
handle the repartition of main effect, interaction and correlation of each parameter.     

Extension of the proposed method to potentials with many parameters will face several problems. First, 
the identification of a consistent parameters set in a high-dimensional space by random sampling might 
prove difficult if a good solution is not known beforehand to limit the search space. Second, the absence 
of analytical expressions for the physical properties of interest would require to run an unrealistic 
number of simulations or to develop surrogate models, adding an unwanted uncertainty layer. 

In Table 2, we gather experimental [63,64] and ab initio [3,65] results from the literature to obtain 
reference intervals for physical properties (last column). We also provide the resulting computed values 
with the SMA-TB parameters from Table 1. We can notice discrepancies between calculated values and 
reference intervals in Table 2. For the calculated values, 𝑐ᇱ = 29.45𝐺𝑃𝑎 and 𝑐ସସ = 96.896𝐺𝑃𝑎, are not 
in the reference interval. For 𝑃𝑑 and 𝑃𝑡, even the equilibrium interatomic distances are subject to 
discrepancies. However, we decide that 𝑟଴ will be taken from [29] since our known input parameters set 
are computed based on these values of 𝑟଴. Note that when discrepancies appear between the calculated 
values and the min-max values obtained from the literature, we enlarge the reference interval used to 
filter the samples. 

 



  
 

  
 

 

 

 

 

  

Table 1: (𝑨, 𝝃, 𝒑, 𝒒) quadruple for several transition metals found in literature [14] and corresponding physical 
properties from our work and ab initio [63] or experiment values [64] in parenthesis. 

 𝐴 𝜉 𝑝 𝑞 𝑟଴ |𝐸௖௢௛| 𝐵 𝐶’ 𝐶ସସ 

(unit) eV eV - - Å eV/at GPa GPa GPa 

Ni 0.1217 1.6396 10.7626 2.4350 2.490 4.44 (4.44) 186 (188) 29 (55) 97 (132) 

Cu 0.1084 1.3434 10.3770 2.6335 2.560 3.50 (3.50) 141 (142) 21 (26) 69 (82) 

Pd 0.1435 1.8857 11.7528 2.8749 2.722 4.98 (4.98) 209 (215) 37 (23) 107 (54) 
Ag 0.1249 1.2672 10.3453 3.4236 2.890 2.95 (2.95) 108 (111) 14 (16) 41 (52) 

Pt 0.2420 2.5060 11.1400 3.6800 2.760 5.87 (5.87) 280 (288) 39 (52) 108 (77) 

Au 0.2134 1.8303 10.4201 4.1765 2.885 3.81 (3.81) 173 (165) 16 (15) 43 (42) 



  
 

  
 

  

Table 2: Uncertainty of the physical properties for transition metals. The computed values are obtained from 

SMA-TB interatomic potentials with parameters from Table 1. 𝒓𝟎 in the computed values column are those 
from [29]. The experimental values are taken from [63,64] and the ab initio values are from [65] and also, the 
Material Project database [3]. Some unreasonable old references values have been discarded. Bold computed 
values lie outside of the corresponding reference interval.  
Elements Properties Computed values Min ref. value Max ref. value Reference 

interval 
Ni 𝑟଴ 2.490 2.475 2.492 - 

|𝐸௖௢௛| 4.44 4.43 4.45 [4.43,4.45] 

𝐵 186.10 178.40 192.57 [178,193] 

𝑐ᇱ 29.45 39.235 55.205 [29,56] 

𝑐ସସ 96.896 107.58 133.51 [96,134] 

Cu 𝑟଴ 2.56 2.469 2.573 - 

|𝐸௖௢௛| 3.50 3.49 3.51 [3.49,3.51] 

𝐵 141.01 100.73 143.67 [100,144] 

𝑐ᇱ 21.0 14.295 31.65 [14,32] 

𝑐ସସ 68.8 50.01 84.72 [50,85] 

Pd 𝑟଴ 2.7224 2.739 2.751 - 

|𝐸௖௢௛| 4.98 4.97 4.99 [4.97,4.99] 

𝐵 209.49 195.7 215.84 [195,216] 

𝑐ᇱ 37.02 16.865 29.595 [16,38] 

𝑐ସସ 107.59 55.67 90.32 [55,108] 

Ag 𝑟଴ 2.890 2.874 2.892 - 

|𝐸௖௢௛| 2.95 2.94 2.96 [2.94,2.96] 

𝐵 108.38 100.23 109.99 [100,110] 

𝑐ᇱ 14.12 14.37 19.05 [14,20] 

𝑐ସସ 41.34 45.97 56.79 [41,57] 

Pt 𝑟଴ 2.76 2.764 2.772 - 

|𝐸௖௢௛| 5.87 5.86 5.88 [5.86,5.88] 

𝐵 280.8 283.09 292.09 [280,293] 

𝑐ᇱ 39.02 14.97 52.57 [14,53] 

𝑐ସସ 107.03 68.28 81.5 [68,108] 

Au 𝑟଴ 2.885 2.873 2.885 - 

|𝐸௖௢௛| 3.81 3.80 3.82 [3.80,3.82] 

𝐵 173.40 166.89 189.57 [166,190] 

𝑐ᇱ 16 12.21 25.22 [12,26] 

𝑐ସସ 43.1 42.22 65.41 [42,66] 



  
 

  
 

4. Results 

4.1.SMA-TB parameters sensitivity analysis 

Following our statistical framework on the six metals, we present a global sensitivity analysis of each 
physical quantity, using uncorrelated input parameters. We consider successively a wide initial 
parameter space covering the values of all six metals and a tight one adapted to a single metal.  

1. Wide parameter space 

We consider first a parameter space large enough to describe the six metals (Table 1). We create an 
uncorrelated joint probability distribution with the following (uniform) marginal distributions:  

⎩
⎨

⎧
𝜉 ∈ [1,3]

𝐴 ∈ [0.08, 0.3]

𝑞 ∈ [2, 5]

𝑝 ∈ [8, 14]

(13) 

We show the first-order 𝑆௜ and the total-order 𝑆்௜ Sobol’ indices for each transition metal and for all 
physical properties in Fig.  2a.  

The first observation is that 𝑆௜ does not depend on the metal. This is expected, since the only quantity 
that defines an element in the SMA-TB potential energy is 𝑟଴. The cohesive energy does not depend on 
𝑟଴ (see § 2), whereas the elastic constants do through the volume of the fcc lattice, 𝑉௙௖௖. A variation of 

this volumic term affects the mean value and variance of B, c’ or c44, but does not change the Sobol’ 
sensitivity indices, since the variation cancels out through the ratio of conditional variance and total 

variance.  

The second observation is that the total-order sensitivity indices and first-order sensitivity indices have 
similar 𝑆்௜ ≈ 𝑆௜ values, for each metal and for each physical property, indicating no significant 
interaction between the parameters. We can thus say that the SMATB model itself is well stated on the 
basis of Hadamard's conditions [66,67] to the notion of an inverse problem. 

The sensitivity indices indicate that 𝜉 is the most important parameter, contributing to 88% of the 
variance of 𝐸௖௢௛. It is followed by 𝐴, contributing 12%. These results agree with the physical meanings 

of ξ and 𝐴, since ξ is the effective jump integral that fundamentally defines the binding properties of the 

metal under consideration and 𝐴 scales the repulsive energy contribution, which competes with the 
attractive contribution driven by ξ to stabilize the equilibrium interatomic distance and the cohesive 
energy.  

For the elastic constants, the dominant parameters are 𝐴 and 𝑝. The low sensitivity to ξ and 𝑞 shows that 
the elastic properties are mainly driven by the repulsive contribution. This is especially true for 𝐵, for 

which the sensitivity to ξ and 𝑞 is almost null. The sensitivity index of 𝑞 is more significant for 𝑐′ and 
𝐶ସସ. 

𝐴 plays a leading role for all elastic constants (𝐵, 𝑐ᇱ, 𝑐ସସ) with the help of 𝑝, where 𝜉 almost defines 

entirely the cohesive energy 𝐸௖௢௛. The parameter 𝑞 is insignificant for 𝐸௖௢  and 𝐵, while it is a little 
more important for 𝑐′ and 𝐶ସସ. That means that 𝑞 cannot be determined precisely in a calibration 
procedure. For each of these metals, the four physical properties are mainly defined by the triplet 
(𝐴, 𝑝, 𝜉), the value of 𝑞 having a minor influence. 



  
 

  
 

 

 
Fig.  2 : Global sensitivity analysis in the wide parameter space. First-order 𝑆௜ and total-order 𝑆்௜ indices of the 
SMA-TB parameters for each physical property and each metal (standard errors are smaller than the size of 
markers). The initial parameter space is given by Eq. 13.  

 

2.  Tight parameter space 
 

We consider a reduced parameter space centred around the parameter values of each metal given in 
Table 1, with 10% uncertainty. Thus, the reduced variation range of parameters for 𝐴𝑔 is : 

⎩
⎨

⎧
𝜉 ∈ [1.14,1.39]

𝐴 ∈ [0.11, 0.14]

𝑞 ∈ [3.08, 3.76]

𝑝 ∈ [9.31, 11.38]

(14) 

The difference between the wide and tight parameter spaces is that, in the first case, the system has no 
a priori information about the metal under consideration, whereas, in second case, the equilibrium 
condition for a single metal is satisfied, since parameters values are close to their optimum. This is why 
the global Si’s do not depend on the metal for the wide parameter space but do for the tight parameter 
space (Fig.  3). 

Knowledge of the metal does not significantly affect Si’s for 𝐸௖௢ . The Taylor expansion for 𝑟௜௝ in Eq. 
1 around 𝑟଴ shows that the parameters 𝑝, 𝑞 do not contribute to 𝐸௖௢௛ with respect to 𝐴, 𝜉. On the contrary, 
the derivation of the elastic constants shows quadratic terms in 𝑝 and 𝑞. Once the equilibrium condition 
is satisfied, we can assume that 𝐴 and 𝜉 are fixed.  

The important information obtained by the global SA starting from a wide and then a tight initial 
parameter space is that the two parameters 𝜉 and 𝐴 are defining the metal through the value of 𝑟଴ and 
the equilibrium condition. The unitless parameters 𝑞 and 𝑝 allow the physical properties to be 
reproduced. This common-sense result holds regardless of the approximation considered. This global 
SA may be useful for other potentials where the nature of the parameter is not so easily categorized. 

    



  
 

  
 

 
Fig.  3: Global sensitivity analysis in the tight parameter space. First-order 𝑆௜ and total-order 𝑆்௜ indices of the 
SMA-TB parameters for each physical property and each metal (standard errors are smaller than the size of 
markers). 

 

4.2.Generation of optimized parameters 

In this section, we only present the results for 𝐴𝑔. Using the 𝑁௧௢௧ samples according to the wide 
parameter space (Eq. 13), we compute the four physical quantities analytically. 

Fig.  4 displays the distributions of the physical properties obtained at the first iteration from the 𝑁௧௢௧ 
parameter samples. The shaded areas represent the reference intervals, collected from experimental or 
ab initio studies found in the literature for 𝐴𝑔 (see Table 2).  The wide initial parameter space leads to a 
large range of physical property values, some results having no physical meaning (e.g. negative elastic 
constants).  

 
Fig.  4: Distributions of the bulk properties for Ag for the initial wide parameter space (Eq.13). Reference ranges 
in bulk properties found in the literature are indicated by the shaded regions.  

 

The min-max values of the physical properties define the acceptable values. After applying these filters 
on the four physical properties, one is left with only 71 sets of parameters (see Fig.  5a). The filtering 
order does not affect this selection. Each time a filter is applied, the uncertainty in the physical properties 
restricts the parameter sets of the SMA-TB. By applying all the filters, all the knowledge of the physical 
properties is "inferred" to the parameters of the SMA-TB.  

From the marginal distribution of the parameters selected by the first iteration, we perform a second 
iteration as explained in section 3.2. The distributions of the parameters remaining after the filtering in 
the second iteration (447 302 points) are shown in Fig.  5b.  

The range of the remaining parameters is for 𝐴𝑔 



  
 

  
 

⎩
⎨

⎧
𝜉 ∈ [1,10, 1,501]

𝐴 ∈ [0.081, 0.195]

𝑞 ∈ [2.018,3.599]

𝑝 ∈ [8.015, 12.385]

(15) 

The range of 𝐴 and 𝜉 values is reduced by about a factor two (Eq. 13).   

The Pearson correlation matrix of the SMA-TB parameters issued from the first iteration is 

 𝜉 𝐴 𝑝 𝑞 

𝜉 1 0.99 −0.96 −0.48 

𝐴 0.99 1 −0.98 −0.57 

𝑝 −0.96 −0.98 1 0.68 

𝑞 −0.48 −0.57 0.68 1 
 

 
(16) 

The correlation matrices are approximately the same for both iterations. This matrix shows that there is 
a strong positive correlation between 𝜉 and 𝐴, and negative between 𝜉, 𝐴 and 𝑝. The correlation with 𝑞 

 
a 

 
b 

Fig.  5 : Parameters distributions after filtering for the first (a) and second (b) iteration for the initial wide 
parameter space (Eq.13).  



  
 

  
 

is negative and moderate. All p-values are very low, meaning that the coefficients are statistically 
significant. 

 

 
Fig.  6 : Pairwise relationships of the SMA-TB parameters for Ag after filtering.  

The pairwise relationships for 𝐴𝑔 with the remaining samples after filtering are shown in Fig.  6.  For 
pairs of parameters with a high correlation coefficient, the points are not very scattered around the line. 
When the correlation coefficient is weak, the points are widely scattered. This figure highlights the 
strong correlation between 𝐴 and 𝜉 and between 𝑝 and 𝐴, 𝜉, and confirms Sobol' analysis that 𝑝 is very 
important locally. One can see also that the relationship 𝑝 ≈ 3𝑞 is a very rough approximation. 

Let us recall that the 𝐴𝑔 physical properties compiled from the literature (see Table 2) are between 
−2.94and −2.96𝑒𝑉 for the cohesive energy; 100.23 and 109.99𝐺𝑃𝑎 for the Bulk modulus; 14.37 and 
19.05𝐺𝑃𝑎 for 𝑐′ and 45.97 and 56.79𝐺𝑃𝑎 for 𝑐ସସ. From Fig.  6 we can estimate the propagation of 
uncertainty from the physical properties through the SMA-TB parameters for Ag. We find that the mean 
of the 𝜉 parameter is 1.27𝑒𝑉 with a standard deviation of 0.102𝑒𝑉, or about 8% relative uncertainty 

(the minimum and maximum values are 1.11 and 1.50𝑒𝑉, respectively). For the 𝐴 parameter, we find a 
mean of 0.132𝑒𝑉 with a standard deviation of 0.031𝑒𝑉, i.e., about 23% relative uncertainty (the 

minimum and maximum values are 0.081 and 0.195𝑒𝑉, respectively). 𝜉 is better constrained than 𝐴. 

4.3.Summary for the six transitions metals. 

We summarize in Table 3 the uncertainty obtained for SMA-TB parameters for each of the elements 
studied resulting from the second filtering iteration. Based on the uncertainty of physical properties of 
each of these transition metals, we narrowed down possible values of SMA-TB parameters sets. We 
compared our results with the different parameter sets from the literature [29]. Overall, their values are 

within our min-max interval for the remaining input parameter sets for all elements, which means that 
their parameters are within the uncertainty of the SMA-TB parameters that we found. We obtained 



  
 

  
 

standard deviation that are at least 10 times lower than the average values obtained for each element and 
SMA-TB parameters. Also, when looking at statistics, we found that their parameters are within ±2𝜎 
for 𝑃𝑡, 𝑁𝑖, 𝐶𝑢, 𝐴𝑢 and within ±3𝜎 for 𝑃𝑑, 𝐴𝑔. 

Table 3 : Statistics of the remaining input parameters after the 4 filters for each element after the first 
iteration starting from the wide parameters space (Eq. 13). Ref values are parameters values reported 

from Table 1.  
Parameters Stats Ni Cu Pd Ag Pt Au 

 count  16 127 194 71 16 69 

𝝃 
 

ref values 1.64 1.34 1.89 1.27 2.51 1.83 
mean 1.57 1.37 2.08 1.27 2.44 1.79 
std 0.07 0.10 0.19 0.10 0.12 0.18 
min 1.49 1.22 1.73 1.11 2.28 1.49 
max 1.72 1.63 2.44 1.50 2.66 2.12 

𝑨 ref values 0.12 0.11 0.14 0.12 0.24 0.21 
mean 0.10 0.12 0.20 0.13 0.22 0.20 
std 0.02 0.03 0.06 0.03 0.04 0.05 
min 0.08 0.08 0.10 0.08 0.17 0.12 
max 0.15 0.19 0.30 0.20 0.29 0.30 

𝒒 ref values 2.44 2.63 2.87 3.42 3.68 4.18 

mean 2.37 2.53 3.15 2.71 4.11 4.05 
std 0.20 0.35 0.49 0.35 0.28 0.31 
min 2.01 2.01 2.02 2.02 3.76 3.24 
max 2.68 3.26 4.20 3.60 4.60 4.66 

𝒑 ref values 10.76 10.38 11.75 10.35 11.14 10.42 
mean 11.78 9.90 10.57 9.76 12.26 10.90 
std 1.08 1.06 1.65 1.18 1.16 1.56 
min 9.72 8.09 8.11 8.02 10.52 8.53 
max 13.13 12.07 13.96 12.39 13.97 13.84 

 

For each element, the correlation coefficients are approximately the same for 𝜉 and 𝐴,  𝜉 and 𝑝, 𝐴 and 
𝑝 (see Table 4). In contrast, the correlations with 𝑞 vary according the metal considered, they are weak 
for Ni and Cu, moderate for Pd and Ag, strong for Pt and Au. 

Table 4 : Pearson correlation coefficients issued from the local exploration for each transition metal. 
Pearson coefficient Ni Cu Pd Ag Pt Au 

(𝝃, 𝑨) 0.99 0.99 0.99 0.99 1.0 1.0 

(𝝃, 𝒑) -0.97 -0.91 -0.95 -0.95 -0.97 -0.98 

(𝝃, 𝒒) -0.19 0.02 -0.35 -0.43 -0.80 -0.83 

(𝑨, 𝒑) -0.99 -0.95 -0.97 -0.97 -0.97 -0.98 

(𝑨, 𝒒) -0.33 -0.14 -0.45 -0.53 -0.82 -0.83 

(𝒑, 𝒒) 0.37 0.34 0.57 0.66 0.92 0.89 

It is not useful to characterize precisely the nature of marginal distributions because we always restart 
the framework with a normal distribution obtained from the previous iteration. We use the Nataf 
transformation with the copula method [42], to include the correlation matrix derived from the parameter 
space resulting from the second iteration. Most of the samples generated in the third iteration are 



  
 

  
 

validated by the filtering, which informs us that the use of Nataf copula transformation is a good 
approximation to generate a large amount of parameter sets.  

As already mentioned, all the approximations considered (1NN, 2NN, 3NN) give similar results. For 
this reason, we do not present further figures for these approximations.  

4.4.Prediction procedure: application to the vacancy formation enthalpy 

We generate samples from the correlated joint probability distribution with the reduced parameter space 
and the correlation matrix obtained at the end of the first iteration. We select 1000 samples after filtering 
of the second iteration to calculate the vacancy formation enthalpy. We use the Fire algorithm [68] 
which minimizes the potential energy at 𝑇 = 0 K and optimizes the interatomic distances around the 
vacancy. Results are shown in Fig.  7. For the cohesive energy, all predictions lie within the reference 
range by construction (see Fig.  7a).  

We superimpose on the prediction distribution of the vacancy formation enthalpy (Fig.  7b) the reference 
range found in literature from ab initio calculation and the experimental value [69–71]. We find that on 
average the calculated values for Ag are too low, in agreement with [51]. However, a number of 
parameter sets give vacancy formation energies within the reference range. 

 

 
a 

 
b 

Fig.  7: Distributions of the cohesive (a) and vacancy formation (b) energies obtained by Fire simulations from 
parameter sets generated from the statistical analysis. Reference ranges found in the literature are indicated 
by the shaded region and experimental value by the red line. 

It is then possible to make a new filtering on the vacancy formation energies to have a parameter space 

compatible with the reference data of ൫𝐸௖௢௛ , 𝐵, 𝑐ᇱ, 𝑐ସସ, 𝐸௩௔௖
௙

൯. 

The parameter distributions derived from the filtering on the vacancy formation enthalpy, Fig.  8, shows 
that the width of the marginal distributions are smaller than the starting ones (Table 3). The mean values 
of the selected parameter sets are lower for 𝜉 and 𝐴, higher for 𝑝 and 𝑞. The correlation matrix changes 
only slightly. 
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Fig.  8 : Distributions of the SMA-TB parameters for Ag after filtering (Blue points from Fig. 6) and after 
additional filtering on the vacancy formation enthalpy (Orange points selected from the shaded area of Fig. 
7b). 

We have shown that it is possible to find parameters that describe correctly both the bulk properties and 

the enthalpy of vacancy formation ൫𝐸௖௢௛ , 𝐵, 𝑐ᇱ, 𝑐ସସ, 𝐸௩௔௖
௙

൯. Regardless of the size of consistent 

parameters sets, they allow to recalibrate the parameter uncertainties. This procedure is incremental, it 
can be repeated as many times as necessary on many properties not included in the reference database 
(other elastic constants, interstitial formation energy, linear thermal expansion coefficient…). The 
calibration is refined at each step. Recalibrating the parameter space during the addition of a new 
physical property will inevitably reduce the parameter space. It can even remove complete formerly 
consistent subsets. This removal can be source of information from the model or the new property added. 

With parameters estimated by a minimization method to best fit a set of experimental or ab initio 
computational data (without taking into account uncertainties), the potentials do not always reproduce 
exactly all the data. For example, the Pt and Pd parameters lead to a bad estimate of 𝑐ସସ (Table 1) while 
the other data are accurately reproduced. If the trade-off is considered unacceptable, it is difficult to 
know whether the disagreement stems from the estimation of the parameters on average values or from 



  
 

  
 

a possible inadequacy of the potentials. In this work, since the potentials are calibrated, the proposed 
approach allows to reject the model when there are no parameter sets to account for an observable. 

 

5. Conclusions  

Uncertainty propagation and sensitivity analysis were performed on the application of SMA-TB 
interatomic potentials to predict bulk properties of metals. The sensitivity analysis provides a better 
understanding of the cause-and-effect relationship of interatomic potentials.  

The sensitivity analysis shows how the SMA-TB parameters affect the cohesive energy and the elastic 
constants. The sensitivity of the SMA-TB parameters to physical properties depends on the domain of 
the chosen input parameters. First, a global analysis performed on the entire range of parameters for all 
metals (wide parameter space), shows that 𝜉 is the most important parameter for the cohesive energy 
and 𝐴 and 𝑝 for the elastic constants. The sensitivity coefficients are identical for all the metals. Then, 
once the range of parameters is restricted for a specific metal (tight parameter space), the global 
sensitivity analysis shows that the most important parameters are still 𝜉 and 𝐴 for the cohesive energy 
but 𝑝 and 𝑞 for the elastic constants. In this case the sensitivity coefficients depend on the metal 
considered. 

We defined a statistical framework to calibrate the SMA-TB potentials. This procedure is based on the 
generation of parameter sets, the analytical evaluation of physical properties, the characterization of the 
uncertainties of these physical properties from the literature and the selection of parameter sets leading 
to values of physical properties consistent with these reference ranges. Note that this method is akin to 
the Data Collaboration framework of Frenklach [45] and differs from the Bayesian setup by the absence 
of a weight function (the likelihood) on the selected parameters sets. This framework is aimed at being 
used as an iterative and discriminating tool, to select appropriate models and associated parameters 
based on the goal of the study.  The prediction procedure credibility will be enhanced by an estimation 
of the uncertainty of QoIs. This is possible only with the help of the preliminary work done during the 
calibration phase, thanks to an estimation of parameters uncertainty and the study of correlations. 

This approach allows us to estimate the parameters uncertainty. Statistical analysis of the selected 
parameter sets shows that A, ξ and 𝑝 are correlated. The characteristics of the parameter distributions 
are well defined, which allows us to create a correlated joint probability distribution from the reduced 
parameter space and the correlation matrix. 

Finally, we have shown that the computation of properties out of the calibration set, such as the enthalpy 
of vacancy formation, can further help to reduce the dispersion of the parameters set.  

The application of the developed statistical approach requires the ability to model the relationship 
between inputs and outputs. In this study, we have derived analytical expressions but numerical 
approximations can also be used (e.g., ordinary or partial differential equations). It is also necessary to 
have a priori knowledge about the input parameters (from the literature or simplified models) to define 
the initial parameter space. Finally, the parameter set selection step requires sufficient data on the QoIs 
that we are modeling. To estimate the propagation of uncertainty from the outputs to the inputs, the 
uncertainty of the outputs must be known. 

Finally, it would be worth applying the procedure described above to other classes of interatomic 
potentials. However, parallelization of the framework is highly recommended (maybe required) 
especially for models with more input parameters that the one presented here for a single element. 
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Appendix A 

Polynomial function, 𝑓 and 𝑔 functions. 
 

Recall the interaction energy with the polynomial fit function 𝑓and 𝑔 

𝐸𝑖 = −𝜉ට𝑍1 + 𝑍2𝑒−2𝑞(𝑑2−1) + 𝑍3 𝑔(𝑑3𝑟0)2 + 𝐴 ቀ𝑍1 + 𝑍2𝑒−𝑝(𝑑2−1) + 𝑍3 𝑓(𝑑3𝑟0)ቁ (𝐴1) 

The two functions 𝑓 and 𝑔 are polynomials of order 5 

𝑓൫𝑟௜௝൯ = 𝑎ହ𝑟௜௝
ହ + 𝑎ସ𝑟௜௝

ସ + 𝑎ଷ𝑟௜௝
ଷ + 𝑎ଶ𝑟௜௝

ଶ + 𝑎ଵ𝑟௜௝ + 𝑎଴ (𝐴2) 

Assuming that interactions, forces and curvatures are zero at distance 4NN 

𝑓(𝑟ସேே) = 0; ൬
𝜕𝑓

𝜕𝑟
൰

௥ୀ௥రಿಿ

= 0; ቆ
𝜕ଶ𝑓

𝜕𝑟ଶቇ
௥ୀ௥రಿಿ

= 0 (𝐴3) 

𝑓 is reduced to 

𝑓൫𝑟௜௝൯ = 𝑎ହ൫𝑟௜௝ − 𝑟ସேே൯
ହ

+ 𝑎ସ൫𝑟௜௝ − 𝑟ସேே൯
ସ

+ 𝑎ଷ൫𝑟௜௝ − 𝑟ସேே൯
ଷ

(𝐴4) 

The continuity at distance 2NN of interactions, forces and curvatures is written 

𝑓መ(𝑟ଶேே) = 𝑓መ = 𝑒
ି௣ቀ

௥మಿಿ
௥భಿಿ

ିଵቁ
; (𝐴5) 

ቆ
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ቆ
𝜕ଶ𝑓መ
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௥ୀ௥మಿಿ

= 𝑓መ′′ = ൬−
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𝑟ଵேே
൰

ଶ

𝑒
ି௣ቀ

௥మಿಿ
௥భಿಿ

ିଵቁ
(𝐴7) 

which leads to the following system of equations 

⎩
⎪
⎨

⎪
⎧

𝑓መ = 𝑓(𝑟ଶேே)

𝑓መᇱ = ൬
𝜕𝑓

𝜕𝑟
൰

௥ୀ௥మಿಿ

𝑓መᇱᇱ = ቆ
𝜕ଶ𝑓

𝜕𝑟ଶቇ
௥ୀ௥మಿಿ

⇒ ቐ

𝑓መ = 𝑎ହ(𝑟ଶேே − 𝑟ସேே)ହ + 𝑎ସ(𝑟ଶேே − 𝑟ସேே)ସ + 𝑎ଷ(𝑟ଶேே − 𝑟ସேே)ଷ

𝑓መᇱ = 5𝑎ହ(𝑟ଶேே − 𝑟ସேே)ସ + 4𝑎ସ(𝑟ଶேே − 𝑟ସேே)ଷ + 3𝑎ଷ(𝑟ଶேே − 𝑟ସேே)ଶ

𝑓መᇱᇱ = 20𝑎ହ(𝑟ଶேே − 𝑟ସேே)ଷ + 12𝑎ସ(𝑟ଶேே − 𝑟ସேே)ଶ + 6𝑎ଷ(𝑟ଶேே − 𝑟ସேே)ଵ

(𝐴8) 

Let  𝑥 = (𝑟ଶேே − 𝑟ସேே) = 𝑟଴൫√2 − 2൯ 

⇒ ቐ

𝑓መ = 𝑎ହ𝑥ହ + 𝑎ସ𝑥ସ + 𝑎ଷ𝑥ଷ

𝑓መᇱ = 5𝑎ହ𝑥ସ + 4𝑎ସ𝑥ଷ + 3𝑎ଷ𝑥ଶ

𝑓መᇱᇱ = 20𝑎ହ𝑥ଷ + 12𝑎ସ𝑥ଶ + 6𝑎ଷ𝑥

(𝐴9) 

Knowing 𝑥; 𝑓; 𝑓ᇱ𝑒𝑡𝑓′′ the coefficients 𝑎ହ, 𝑎ସ𝑒𝑡𝑎ଷ are given by 



  
 

  
 

⇒

⎩
⎪⎪
⎨

⎪⎪
⎧ 2𝑎ଷ =

𝑓መᇱᇱ

𝑥
− 8

𝑓መᇱ

𝑥ଶ
+ 20

𝑓መ

𝑥ଷ
   

−𝑎ସ𝑥 =
𝑓መᇱᇱ

𝑥
− 7 

𝑓መᇱ

𝑥ଶ
+ 15

𝑓መ

𝑥ଷ
     

2𝑎ହ𝑥ଶ =
𝑓መᇱᇱ

𝑥
− 6

𝑓መᇱ

𝑥ଶ
+ 12

𝑓መ

𝑥ଷ
      

(𝐴10) 

The attractive contribution has an equivalent form, it is obtained by replacing 𝑓 by 𝑔 = 𝑒
ି௤൬

ೝమಿಿ
ೝభಿಿ

ିଵ൰
.  

  



  
 

  
 

Appendix B 

Small deformation theory derivation of analytic expressions for elastic 
constants. 

 

Within the small deformation theory, the total energy of a solid is given, using Voigt notation, by 

𝐸௧௢௧(𝑉଴, {𝜀௞}) = 𝐸௧௢௧(𝑉଴, {0}) + 𝑉଴ ቌ෍ 𝜎௜𝜀௜

଺

௜ୀଵ

+
1

2
෍ 𝑐௜௝𝜀௜𝜀௝

଺

௜,௝ୀଵ

ቍ (𝐵1) 

where 𝐸௧௢௧(𝑉଴, {0}), 𝑉଴, 𝜎௜ and𝜀௜ are respectively the total energy, the volume in absence of 
deformations, the components of the stress and strain tensors; 𝑐௜௝ are the elastic constants. Remark, in 

Voigt notation, 𝜀ଵ = 𝜀௫௫,𝜀ଶ = 𝜀௬௬,𝜀ଷ = 𝜀௭௭,𝜀ସ = 2𝜀௬௭,𝜀ହ = 2𝜀௫௭ and 𝜀଺ = 2𝜀௫௬. The elastic constants 

𝑐௜௝ are obtained by 

𝑐௜௝ =
1

𝑉଴

𝜕ଶ𝐸௧௢௧(𝑉଴, {𝜀௞})

𝜕𝜀௜𝜕𝜀௝
ቤ

{ఌೖୀ଴}

=
1

𝑉଴

𝜕ଶ𝐸௘௟௔௦௧௜௖(𝑉଴, {𝜀௞})

𝜕𝜀௜𝜕𝜀௝
ቤ

{ఌೖୀ଴}

(𝐵2) 

with 𝐸௘௟௔௦௧௜௖ =
௏బ

ଶ
∑ 𝑐௜௝𝜀௜𝜀௝

଺
௜,௝ୀଵ  the elastic energy. 

Given the cubic symmetry, the elastic energy can be simplified 

𝐸௘௟௔௦௧௜௖ =
𝑉଴

2
ቀ𝑐ଵଵ(𝜀ଵ

ଶ + 𝜀ଶ
ଶ + 𝜀ଷ

ଶ) + 2𝑐ଵଶ(𝜀ଵ𝜀ଶ + 𝜀ଵ𝜀ଷ + 𝜀ଶ𝜀ଷ) + 𝑐ସସ൫𝜀ସ
ଶ + 𝜀ହ

ଶ + 𝜀଺
ଶ൯ቁ (𝐵3) 

The bulk modulus is the measure of resistance to isotropic deformation, such as 𝜀ଵ = 𝜀ଶ = 𝜀ଷ = 𝜀஻ and 
𝜀ସ = 𝜀ହ = 𝜀଺ = 0, the elastic energy associated to the bulk modulus is then 

𝐸௘௟௔௦௧௜௖
஻ = 3

𝑉଴

2
(𝑐ଵଵ + 2𝑐ଵଶ)𝜀஻

ଶ (𝐵4) 

By convention the bulk modulus 𝐵 =
ଵ

ଷ
(𝑐ଵଵ + 2𝑐ଵଶ), such that 

𝐸௘௟௔௦௧௜௖
஻ = 9

𝑉଴

2
𝐵𝜀஻

ଶ ⇒ 𝐵 =
1

9𝑉଴

𝜕ଶ𝐸௘௟௔௦௧௜௖
஻ (𝑉଴, {𝜀௞})

𝜕𝜀஻
ଶ ቤ

{ఌೖୀ଴}

(𝐵5) 

The shear modulus 𝑐′ is written by convention 𝑐ᇱ =
ଵ

ଶ
(𝑐ଵଵ − 𝑐ଵଶ). It derives from the following 

deformation  𝜀ଵ = −𝜀ଶ = 𝜀௖ᇲ, the remaining components 𝜀௞ being null. 

𝐸௘௟௔௦௧௜௖
௖ᇱ = 2

𝑉଴

2
(𝑐ଵଵ − 𝑐ଵଶ)𝜀௖ᇲ

ଶ (𝐵6) 

𝐸௘௟௔௦௧௜௖
௖ᇲ

= 4
𝑉଴

2
𝑐ᇱ𝜀௖ᇲ

ଶ ⇒ 𝑐ᇱ =
1

4𝑉଴

𝜕ଶ𝐸௘௟௔௦௧௜௖
௖ᇲ

(𝑉଴, {𝜀௞})

𝜕𝜀௖ᇲ
ଶ อ

{ఌೖୀ଴}

(𝐵7) 

The deformation 𝜀ଵଶ = 𝜀௖రర
 then 𝜀ସ = 2𝜀ଵଶ = 2𝜀௖రర

 leads to the shear modulus 𝑐ସସ 

𝐸௘௟௔௦௧௜௖
௖రర =

𝑉଴

2
𝑐ସସ൫2𝜀௖రర

൯
ଶ

(𝐵8) 



  
 

  
 

𝐸௘௟௔௦௧௜௖
௖రర = 4

𝑉଴

2
𝑐ସସ𝜀௖రర

ଶ ⇒ 𝑐ସସ  =
1

4𝑉଴

𝜕ଶ𝐸௘௟௔௦௧௜௖
௖రర (𝑉଴, {𝜀௞})

𝜕𝜀௖రర
ଶ ቤ

{ఌೖୀ଴}

(𝐵9) 

Note that since these deformations ൫𝜀஻, 𝜀௖ᇲ , 𝜀௖రర
൯are not equivalent, it is essential to rewrite these 

expressions by introducing the deformed distance 𝑟௜௝
ᇱ  with respect to the undeformed distance 𝑟௜௝ in 

Cartesian coordinate 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑟௜௝

ᇱ = ට𝑥௜௝
ଶ (1 + 𝜀஻)ଶ + 𝑦௜௝

ଶ (1 + 𝜀஻)ଶ + 𝑧௜௝
ଶ (1 + 𝜀஻)ଶ = 𝑟௜௝(1 + 𝜀஻)

𝑟௜௝
ᇱ = ට𝑥௜௝

ଶ (1 + 𝜀௖ᇲ)ଶ + 𝑦௜௝
ଶ (1 − 𝜀௖ᇲ)ଶ + 𝑧௜௝

ଶ

𝑟௜௝
ᇱ = ට൫𝑥௜௝ + 𝑦௜௝𝜀௖రర

൯
ଶ

+ ൫𝑦௜௝ + 𝑥௜௝𝜀௖రర
൯

ଶ
+ 𝑧௜௝

ଶ

(𝐵10) 

Note: for (𝐵10) relations,𝐵 is the standard bulk modulus. 𝑐′ is most easily obtained by straining the 
crystal in the (100) direction while simultaneously compressing it in the (010) direction to conserve 
the volume, with lengths in the (001) direction remaining fixed. 𝑐ସସ is by straining the crystal in the 
(110) direction and fixing the volume by compressing in the (11̄0) direction. 

The total energy of a metal is written as the sum of the interaction energies and the elastic constant can 
be evaluated for a single atom as long as the total volume considered is reduced to the volume of the 
primitive cell. The elastic constant then simplifies to 

𝐸௘௟௔௦௧௜௖ ⇒ 𝑁௔௧𝐸௜ ;  𝑉଴ ⇒ 𝑁௔௧ ൬
𝑉௙௖௖

4
൰ (𝐵11) 

As an example, the bulk modulus expression simplifies to 

𝐵 =
1

9𝑉଴

𝜕ଶ𝐸௘௟௔௦௧௜௖
஻ (𝑉଴, {𝜀௞})

𝜕𝜀஻
ଶ ቤ

{ఌೖୀ଴}

=
1

9 ൬
𝑉௙௖௖

4
൰

𝜕ଶ𝐸௜
஻(𝑉଴, {𝜀௞})

𝜕𝜀஻
ଶ ቤ

{ఌೖୀ଴}

(𝐵12) 

 

  



  
 

  
 

Appendix C 

Elastic constants formulas 
 

Elastic constants expressions with respect to the interatomic potential parameters for fcc metals are 

𝐵 =
1

9 ቆ
𝑉௠௔௜௟௟௘

௙௖௖

4 ቇ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝜉

1

2

⎝

⎛−
1

2

൫∑ 𝑍௞𝑑௞  (−2𝑞)𝑒−2𝑞(𝑑𝑘−1)𝑙
𝑘 ൯

2

(∑ 𝑍𝑘𝑒−2𝑞(𝑑𝑘−1)𝑙
𝑘 )

3

2

+
∑ 𝑍௞𝑑௞

ଶ(−2𝑞)ଶ𝑒−2𝑞(𝑑𝑘−1)𝑙
𝑘

ට∑ 𝑍𝑘𝑒−2𝑞(𝑑𝑘−1)𝑙
𝑘 ⎠

⎞

+𝐴 ൭෍ 𝑍௞𝑑௞
ଶ(−𝑝)ଶ𝑒−𝑝(𝑑𝑘−1)

𝑙

𝑘

 ൱
⎦
⎥
⎥
⎥
⎥
⎥
⎤

(𝐶1) 

𝑐′ =
1

4 ቆ
𝑉௠௔௜௟௟௘

௙௖௖

4 ቇ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝜉

1

2

⎝

⎛
∑ ൫(−2𝑞)ଶ𝑒ିଶ௤(ௗೖିଵ)൫𝑣௞𝑍௞𝑑௞

ଶ൯ + (−2𝑞)𝑒ିଶ௤(ௗೖିଵ)(𝑤௞ − 𝑣௞)𝑍௞𝑑௞൯ଷ
௞

ට∑ 𝑍௞𝑒ିଶ௤(ௗೖିଵ)ଷ
௞ ⎠

⎞

+𝐴 ൭෍(−𝑝)ଶ𝑒ି௣(ௗೖିଵ)൫𝑣௞𝑍௞𝑑௞
ଶ൯ + (−𝑝)𝑒ି௣(ௗೖିଵ)(𝑤௞ − 𝑣௞)𝑍௞𝑑௞

ଷ

௞

 ൱
⎦
⎥
⎥
⎥
⎥
⎥
⎤

(𝐶2) 

 

𝑐44 =
1

4 ቆ
𝑉𝑚𝑎𝑖𝑙𝑙𝑒

𝑓𝑐𝑐

4
ቇ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝜉

1

2

⎝

⎛
∑ ൫(−2𝑞)2𝑒−2𝑞(𝑑𝑘−1)(4𝑢𝑘𝑍𝑘𝑑𝑘

2) + (−2𝑞)𝑒−2𝑞(𝑑𝑘−1)(𝑤𝑘 − 4𝑢𝑘)𝑍𝑘𝑑𝑘൯3
𝑘

ට∑ 𝑍𝑘𝑒−2𝑞(𝑑𝑘−1)3
𝑘 ⎠

⎞

+𝐴 ൭෍(−𝑝)2𝑒−𝑝(𝑑𝑘−1)(4𝑢𝑘𝑍𝑘𝑑𝑘
2) + (−𝑝)𝑒−𝑝(𝑑𝑘−1) (𝑤𝑘 − 4𝑢𝑘)𝑍𝑘𝑑𝑘

3

𝑘

 ൱
⎦
⎥
⎥
⎥
⎥
⎥
⎤

(𝐶3) 

Where 𝑢௞ =
ଵ

ଵଶ
(1,0,1); 𝑣௞ =

ଵ

଺
(1,4,1) and 𝑤௞ =

ଶ

ଷ
(1,1,1) are due to symmetry of the fcc crystal.  

 

  



  
 

  
 

Appendix D 
Extension of the 1NN approximation  

 

1. Equilibrium condition 

We first consider the equilibrium condition 

𝜕𝐸௜

𝜕𝜀
ฬ

ఌୀ଴
= 0

௟೟೓ ேே
ሳልልልሰ −𝜉ඥ𝑍ଵ(−2𝑞)

⎝

⎛
∑ ቀ

𝑍௞
𝑍ଵ

(𝑑௞)𝑒ିଶ௤(ௗೖିଵ)ቁ௟
௞

2ට∑ ቀ
𝑍௞
𝑍ଵ

𝑒ିଶ௤(ௗೖିଵ)ቁ௟
௞ ⎠

⎞ + 𝑍ଵ𝐴(−𝑝) ෍ ൬
𝑍௞

𝑍ଵ
𝑑௞𝑒ି௣(ௗೖିଵ)൰

௟

௞

= 0

௟೟೓ ேே
ሳልልልሰ 𝜉ඥ𝑍ଵ𝑞

⎝

⎛
∑ ቀ

𝑍௞
𝑍ଵ

(𝑑௞)𝑒ିଶ௤(ௗೖିଵ)ቁ௟
௞

ට∑ ቀ
𝑍௞
𝑍ଵ

𝑒ିଶ௤(ௗೖିଵ)ቁ௟
௞ ⎠

⎞ = 𝑍ଵ𝐴𝑝 ෍ ൬
𝑍௞

𝑍ଵ
𝑑௞𝑒ି௣(ௗೖିଵ)൰

௟

௞

(𝐷1)

 

Sums on both side of the equation are only dependant on structures/symmetries of the crystal and on 
parameters 𝑞 and 𝑝 for the attractive and repulsive energies contributions, respectively. Let’s us named 
these sums as 

𝑄௦௧௥௨௖
௟ (𝑞) =

∑ ቀ
𝑍௞
𝑍ଵ

(𝑑௞)𝑒ିଶ௤(ௗೖିଵ)ቁ௟
௞

ට∑ ቀ
𝑍௞
𝑍ଵ

𝑒ିଶ௤(ௗೖିଵ)ቁ௟
௞

 ; 𝑃௦௧௥௨௖
௟ (𝑝) = ෍ ൬

𝑍௞

𝑍ଵ
𝑑௞𝑒ି௣(ௗೖିଵ)൰

௟

௞

(𝐷2) 

Such that the equilibrium condition for the 𝑙௧௛approximation is 

𝜉ඥ𝑍ଵ 𝑞 𝑄௦௧௥௨௖
௟ (𝑞) = 𝑍ଵ 𝐴 𝑝 𝑃௦௧௥௨௖

௟ (𝑝) (𝐷3) 

We can now generalize the definition of 𝑥 given by Ducastelle as 𝑥௟ = 𝑞𝑄௦௧௥௨௖
௟ (𝑞) 𝑝𝑃௦௧௥௨௖

௟ (𝑝)⁄ , which 
leads to 

𝑍ଵ𝐴

𝜉ඥ𝑍ଵ

= 𝑥௟ (𝐷4) 

Note that 𝑥ଵ = 𝑥 =
௤

௣
 since 𝑄௦௧௥௨௖

ଵ (𝑍ଵ, 𝑑ଵ, 𝑞) = 𝑃௦௧௥௨௖
௟ (𝑍ଵ, 𝑑ଵ, 𝑝) = 1. 

2.  Cohesive energy  

The cohesive energy is: 

𝐸௖௢
௟ = 𝐴𝑍ଵ 𝛽௟

ா೎೚ ( 𝑝) − 𝜉ඥ𝑍ଵ 𝛼௟
ா೎೚೓(𝑞) (𝐷5) 

with 𝛼௟
ா೎೚೓(𝑞) = ට∑

௓ೖ

௓భ
𝑒ିଶ௤(ௗೖିଵ)௟

௞  and 𝛽௟
ா೎೚೓(𝑝) = ∑

௓ೖ

௓భ
𝑒ି௣(ௗೖିଵ)௟

௞ .  

Remark that 𝐸௖௢௛ depends only on 𝜉 and 𝐴 for 𝑙 = 1, but depends on all four SMA-TB parameters for 
𝑙 > 1.  

And it can be factorized in the same way as in the 1NN approximation, as 



  
 

  
 

𝐸௖௢௛
௟ = −𝜉ඥ𝑍ଵ ቀ𝛼௟

ா೎೚೓(𝑞) − 𝑥௟𝛽௟
ா೎೚೓(𝑝)ቁ = −𝐴𝑍ଵ ቆ

𝛼௟
ா೎೚ (𝑞) − 𝑥௟𝛽௟

ா೎೚ (𝑝)

𝑥௟
ቇ (𝐷6) 

3. Bulk modulus 
Expression of the bulk modulus 𝐵 based on the 𝑙th approximation is 

𝐵௟ =
−𝜉ඥ𝑍ଵ𝛼௟

஻(𝑞) + 𝐴𝑍ଵ𝛽௟
஻(𝑝)

𝑉஻
௘௙௙(𝑟଴)

(𝐷7) 

where 𝛼௟
஻(𝑞) = 𝑞ଶ ቌ

ቀ∑
ೋೖ
ೋభ

ௗೖ௘షమ೜൫೏ೖషభ൯೗
ೖ ቁ

మ

ቀ∑
ೋೖ
ೋభ

௘షమ೜൫೏ೖషభ൯೗
ೖ ቁ

య
మ

− 2
∑

ೋೖ
ೋభ

ௗೖ
మ௘షమ೜൫೏ೖషభ൯೗

ೖ

ට∑
ೋೖ
ೋభ

௘షమ೜൫೏ೖషభ൯೗
ೖ

ቍ , 𝛽௟
஻(𝑝) = 𝑝ଶ ቀ∑

௓ೖ

௓భ
𝑑௞

ଶ𝑒ି௣(ௗೖିଵ)௟
௞ ቁ are 

functions of the geometry of the crystal and of parameters 𝑞, 𝑝 and of 𝑉஻
௘௙௙(𝑟଴) = 9𝑉௟௔௧(𝑟଴) which is 

related to the volume. 

Relationship between elastic constants and the cohesive energy can still be made, and we find for the 
bulk modulus 

𝐵௟ = 𝑆஻
௟ (𝑝, 𝑞) 

𝐸௖௢௛
௟

𝑉஻
௘௙௙(𝑟଴)

(𝐷8) 

with 𝑆஻
௟ (𝑝, 𝑞) =

௫೗ఉ೗
ಳିఈ೗

ಳ

ఈ
೗

ಶ೎೚ ି௫೗ఉ
೗

ಶ೎೚
 which depends only on the parameters 𝑝 and 𝑞, the structure and 

symmetry of the crystal.  

4. Shear moduli  

Each elastic constants 𝑐௜௝ can be written as the previous expression 

𝑐௜௝ = 𝑆௖೔ೕ
௟ (𝑝, 𝑞) 

𝐸௖௢
௟

𝑉௖೔ೕ

௘௙௙(𝑟଴)
(𝐷9) 

In particular, the two shear moduli are given by 

𝑐௟
ᇱ = 𝑆௖ᇲ

௟ (𝑝, 𝑞) 
𝐸௖௢

௟

𝑉
௖ᇲ
௘௙௙(𝑟଴)

(𝐷10) 

𝑐ସସ
௟ = 𝑆௖రర

௟ (𝑝, 𝑞) 
𝐸௖௢

௟

𝑉௖రర

௘௙௙(𝑟଴)
(𝐷11) 

  



  
 

  
 

Appendix E 

Physical expression for the SMA-TB potential connected with a 
polynomial. 

 

Finally, the three elastic constants within the SMATB potential connected with a fifth-order polynomial 

between the 2௡ௗ nearest neighbors and the 4௧௛ nearest neighbors have the following expressions 

𝐵 =
1

9 ൬
𝑉௙௖௖

4
൰

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜉

4

൫(−2𝑞)𝑍
1

+ (−2𝑞)𝑍2𝑑2𝑒−2𝑞(𝑑2−1) + 𝑍32𝑔𝑔′൯
2

(𝑍1 + 𝑍2𝑒−2𝑞(𝑑2−1) + 𝑍3𝑔2 )
3

2

−
𝜉

2

 (−2𝑞)2𝑍1 + (−2𝑞)2𝑍2𝑑2
2𝑒−2𝑞(𝑑2−1) + 𝑍3 ቀ2൫𝑔′൯

2
+ 2𝑔𝑔′′ቁ

(𝑍1 + 𝑍2𝑒−2𝑞(𝑑2−1) + 𝑍3𝑔2)
1

2

+𝐴൫(−𝑝)2𝑍1 + (−𝑝)2𝑍2𝑑2
2𝑒−𝑝(𝑑2−1) + 𝑍3𝑓′′ ൯ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

(𝐸1) 

𝑐′ =
1

4 ൬
𝑉௙௖௖

4
൰

 ൬
1

6
൰

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝜉
1

2

⎝

⎜⎜
⎛

(2𝑞𝑍1)[2𝑞 − 3] + (2𝑞)2𝑒−2𝑞(𝑑2−1)(4𝑍2𝑑2
2)

ඥ𝑍1 + 𝑍2𝑒−2𝑞(𝑑2−1) + 𝑍3𝑔2

+
2𝑍3 ቂ൫𝑔′൯

2
+ 𝑔𝑔′′ + 3൫𝑔𝑔′൯ቃ

ඥ𝑍1 + 𝑍2𝑒−2𝑞(𝑑2−1) + 𝑍3𝑔2 ⎠

⎟⎟
⎞

+𝐴 ቆ
(𝑝𝑍1)[𝑝 − 3] + 𝑝2𝑒−𝑝(𝑑2−1)(4𝑍2𝑑2

2)

+𝑍3ൣ𝑓′′ + 3𝑓′൧ 
ቇ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(𝐸2) 

𝑐44   =
1

4 ൬
𝑉௙௖௖

4
൰

 ൬
1

3
൰

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝜉
1

2

⎝

⎜
⎜
⎜
⎛

(2𝑞𝑍1)[2𝑞 − 1] + ቀ(−2𝑞)𝑒−2𝑞(𝑑2−1)(2𝑍2𝑑2)ቁ

ඥ𝑍1 + 𝑍2𝑒−2𝑞(𝑑2−1) + 𝑍3𝑔2

+

2𝑍3 ൬(𝑔𝑔′ + ቀ൫𝑔′൯
2

+ 𝑔𝑔′′ቁ൰

ඥ𝑍1 + 𝑍2𝑒−2𝑞(𝑑2−1) + 𝑍3𝑔2
 

⎠

⎟
⎟
⎟
⎞

+𝐴 ቆ
𝑍1𝑝[𝑝 − 1] − 𝑝𝑒−𝑝(𝑑2−1) (2)𝑍2𝑑2

+𝑍3ൣ𝑓′ + 𝑓′′൧
ቇ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(𝐸3) 

 

  

 


