Thermal hysteresis of stress and strain in spin-crossover@polymer composites: towards a rational design of actuator devices - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Materials Advances Année : 2022

Thermal hysteresis of stress and strain in spin-crossover@polymer composites: towards a rational design of actuator devices

Résumé

Polymer composites of molecular spin crossover complexes have emerged as promising mechanical actuator materials, but their effective thermomechanical properties remain elusive. In this work, we investigated a series of iron(II)-triazole@P(VDF-TrFE) particulate composites using a tensile testing stage with temperature control. From these measurements, we assessed the temperature dependence of the Young's modulus as well as the free deformation and blocking stress, associated with the thermally-induced spin transition. The results denote that the expansion of the particles at the spin transition is effectively transferred to the macroscopic composite material, providing ca. 1–3% axial strain for 25% particle load. This strain is in excess of the ‘neat’ particle strain, which we attribute to particle-matrix mechanical coupling. On the other hand, the blocking stress (∼1 MPa) appears reduced by the softening of the composite around the spin transition temperature.
Fichier principal
Vignette du fichier
Angulo-Cervera, Thermal hysteresis of stress and strain, 2022.pdf (2.35 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03708207 , version 1 (29-06-2022)

Licence

Paternité - Pas d'utilisation commerciale

Identifiants

Citer

José Elias Angulo-Cervera, Mario Piedrahita-Bello, Baptiste Martin, Seyed Ehsan Alavi, William Nicolazzi, et al.. Thermal hysteresis of stress and strain in spin-crossover@polymer composites: towards a rational design of actuator devices. Materials Advances, 2022, 3 (12), pp.5131-5137. ⟨10.1039/D2MA00459C⟩. ⟨hal-03708207⟩
38 Consultations
14 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More