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Introduction

Image-based 3D reconstruction has been a long time research focus in computer vision. Impressive advances have been made such that state-of-the-art methods are now able to recover fine geometric details with similar or even better accuracy than expensive laser scanners. While these methods cleverly use the information redundancy of a multi-view setup to recover high-frequency geometric details, there are few methods which do so for computing highly-detailed texture maps. With the increasing demand of 3D content for television, gaming, augmented and virtual reality applications as well as for industrial software, recovering high-resolution texture details is of equal importance. For instance, in tasks like surface or material quality inspection or in medical applications such technology in combination with commodity cameras has the potential to replace expensive task-specific sensor technology.

In this paper, we focus on recovering high resolution texture maps by solving the inverse problem of the physical generative imaging process. Since captured 3D models are often used with different lighting conditions than the ones at capturing time, it is essential to be c 2019. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.

3D Model

Input Image Super-resolved Albedo Super-resolved Shading Super-resolved Texture Figure 1: Overview of our method. We compute super-resolved texture maps while jointly decomposing the texture into albedo and shading components.

able to remove scene dependent light conditions from the high quality texture. Therefore, we propose a method that simultaneously decomposes shading and albedo while super-resolving the texture map. See Fig. 1 for an overview. In sum, we make the following contributions: 1) We present the first method for joint texture super-resolution and intrinsic decomposition in a 3D multi-view setting. We show that the joint estimation of both entities gives superior results than their independent estimation and demonstrate possible applications.

2) We further extend our method to the spatio-temporal case for which we show that the quality and temporal consistency of texture and albedo maps can be further improved by additionally considering further images from neighboring time steps.

Related Work

Since we combine super-resolution texture mapping with intrinsic decomposition in a multiview setting, we exploit results from multiple subfields of computer vision which have been well studied in separate scenarios. This section outlines the most important related works. 2D Intrinsic Decomposition. There have been a plethora of studies performing intrinsic decomposition to retrieve shading and albedo from images. An overview and benchmark can be found in [START_REF] Grosse | Ground truth dataset and baseline evaluations for intrinsic image algorithms[END_REF]. The vast majority of intrinsic decomposition methods impose priors in the log-domain [START_REF] Barron | Intrinsic Scene Properties from a A Single RGB-D Image[END_REF][START_REF] Bell | Intrinsic Images in the Wild[END_REF][START_REF] Peter | Recovering intrinsic images with a global sparsity prior on reflectance[END_REF][START_REF] Grosse | Ground truth dataset and baseline evaluations for intrinsic image algorithms[END_REF][START_REF] Kong | Intrinsic video[END_REF][START_REF] Lee | Estimation of intrinsic image sequences from image+depth video[END_REF][START_REF] Weiss | Deriving Intrinsic Images from Image Sequences[END_REF][START_REF] Zhao | A Closedform Solution to Retinex with Nonlocal Texture Constraints[END_REF], emphasizing pairwise smoothness in the color space. Bell et al. [START_REF] Bell | Intrinsic Images in the Wild[END_REF] integrated multiple prevalent 2D priors and could handle most scenes, but lack the ability to deal with hard shadows. For the intrinsic decomposition of videos, temporal consistency is stressed. Weiss [START_REF] Weiss | Deriving Intrinsic Images from Image Sequences[END_REF] dealt with time variant lighting assuming an albedo constancy. Kong et al. [START_REF] Kong | Intrinsic video[END_REF] processed videos enforcing temporal albedo consistency and shading similarity. Later, a real-time pipeline was built by Meka et al. [START_REF] Meka | Live video[END_REF] utilizing nonlocal spatial-temporal constancy. Yet these methods stick to 2D priors without exploring the underlying geometry that defines the shading, hence the problem is ill-posed to some extent. 3D Intrinsic Decomposition. Intrinsic decomposition in a 3D setting from multiple images has been studied in combination with classical image input [START_REF] Mélou | Variational reflectance estimation from multi-view images[END_REF][START_REF] Mélou | Beyond multi-view stereo: Shading-reflectance decomposition[END_REF], but also in combination with RGB-D input [START_REF] Barron | Intrinsic Scene Properties from a A Single RGB-D Image[END_REF][START_REF] Jeon | Intrinsic image decomposition using structure-texture separation and surface normals[END_REF][START_REF] Lee | Estimation of intrinsic image sequences from image+depth video[END_REF]. In contrast to many 2D intrinsic decomposition methods, several 3D intrinsic decomposition define priors in the color domain rather than in the logcolor domain and approximate the lighting model with spherical harmonics [START_REF] Liu-Yin | Better together: Joint reasoning for non-rigid 3d reconstruction with specularities and shading[END_REF][START_REF] Maier | Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting[END_REF][START_REF] Mélou | Beyond multi-view stereo: Shading-reflectance decomposition[END_REF][START_REF] Zollhöfer | Shading-based Refinement on Volumetric Signed Distance Functions[END_REF].

In [START_REF] Liu-Yin | Better together: Joint reasoning for non-rigid 3d reconstruction with specularities and shading[END_REF] ideas from shape-from-shading approaches are used for the 3D reconstruction of nonrigid monocular image sequences with human faces. Zollhöfer et al. [START_REF] Zollhöfer | Shading-based Refinement on Volumetric Signed Distance Functions[END_REF] additionally refine the 3D model which is computed from a series of RGB-D images. A recent extension of this method [START_REF] Maier | Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting[END_REF] introduces spatially varying spherical harmonics for improved refinement results. Both [START_REF] Maier | Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting[END_REF][START_REF] Zollhöfer | Shading-based Refinement on Volumetric Signed Distance Functions[END_REF] intrinsically decompose only the chromacity channel rather than RGB.

Multi-view Texture Mapping. The simplest way for creating a texture map on an object surface from a set of photographs is to blend the weighted color values of the input [START_REF] Debevec | Modeling and rendering architecture from photographs: a hybrid geometry-and image-based approach[END_REF].This, however, leads to over-smoothed textures. Therefore, many works introduce additional registration in order to reduce the amount of ghosting artifacts [START_REF] Bernardini | High-quality texture reconstruction from multiple scans[END_REF][START_REF] Eisemann | Floating Textures[END_REF][START_REF] Victor | Seamless mosaicing of image-based texture maps[END_REF][START_REF] Hendrik | A silhouette-based algorithm for texture registration and stitching[END_REF][START_REF] Takai | Harmonised texture mapping[END_REF][START_REF] Theobalt | Seeing people in different light-joint shape, motion, and reflectance capture[END_REF][START_REF] Waechter | Let there be color! large-scale texturing of 3d reconstructions[END_REF]. The most generic way to correct for both geometric inaccuracies and camera calibration erros is an optical flow alignment step for registering the down-projected input images, e.g. as done in [START_REF] Eisemann | Floating Textures[END_REF][START_REF] Waechter | Let there be color! large-scale texturing of 3d reconstructions[END_REF]. Mostly these methods merge or select input appearance information with some kind of weigthed averaging scheme and thus limiting the output texture resolution to the one of the input images. In sum, they do not fully exploit the multi-view viewpoint redundancy to generate textures which exceed the resolution of the input images. 2D Image & Video Super-resolution. Although barely studied in the multi-view texturemapping case, single image and video super-resolution has been studied in many works. Many early methods rely on a generative image formation model with blurring, warping, down-sampling and solve the corresponding inverse problem [START_REF] Baker | Limits on super-resolution and how to break them[END_REF], follow a Bayesian approach [START_REF] Fransens | Optical flow based superresolution: A probabilistic approach[END_REF][START_REF] Liu | A Bayesian approach to adaptive video super resolution[END_REF], or use variational approaches [START_REF] Mitzel | Video super resolution using duality based TV-L1 optical flow[END_REF]. Tung et al. [START_REF] Tung | Simultaneous super-resolution and 3D video using graph-cuts[END_REF] considered a multiview setting, yet their approach targeted on super-resolving all input videos rather than the model's texture map. Recently, machine learning-based methods have lead to significant performance improvements, e.g. with residual or generative adversarial networks [START_REF] Ledig | Photo-realistic single image super-resolution using a generative adversarial network[END_REF][START_REF] Mehdi | Enhancenet: Single image super-resolution through automated texture synthesis[END_REF] or regression networks [START_REF] Eirikur Agustsson | Anchored regression networks applied to age estimation and super resolution[END_REF]. Multi-view Texture Super-resolution. In a series of works Goldlücke et al. provided the first approach to compute superresolved texture maps on arbitrary manifolds [START_REF] Goldlüecke | A superresolution framework for highaccuracy multiview reconstruction[END_REF] which then was extended to also jointly refine the geometry [START_REF] Goldlüecke | Superresolution texture maps for multiview reconstruction[END_REF] and camera calibration [START_REF] Goldlücke | A superresolution framework for high-accuracy multiview reconstruction[END_REF]. Improved super-resolution results have been achieved by Tsiminaki et al. [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF] in which they additionally perform optical flow optimization to account for inevitable surface geometry as well as camera calibration errors. We follow the ideas of this approach and generalize it for joint intrinsic texture map decomposition. In [START_REF] Maier | Super-resolution keyframe fusion for 3d modeling with high-quality textures[END_REF] high-res textures are computed from a sequence of RGB-D images in an online setting, but without fully leveraging view redundancy. [START_REF] Haefner | Fight illposedness with ill-posedness: Single-shot variational depth super-resolution from shading[END_REF] compute super-resolved geometry, but no textures or intrinsic decomposition. Tab. 1 summarizes the propterties of the most related works. In sum, no existing method fully exploits multi-view redundancy to generate high-res texture maps and to decompose them into high-res albedo maps that are invariant to light conditions.

Problem Formulation

Problem Setting. Our goal is to compute high-resolution, intrinsically decomposed texture maps for an arbitrary scene model from given input images. We consider an n-view multicamera setup with given projection matrices {P i } n i=1 , P i : R 3 → R 2 and input color images

{I i } n i=1 , with I i : Ω i ⊂ R 2 → R 3 .
For a given scene model, provided as a mesh M, we aim to compute a super-resolved texture map T and a corresponding decomposition into an albedo map A and shading map S, such that T(x) = A(x) • S(x) in every point x. In our setting, the texture, albedo and shading map will also be represented by 2D images, T, A : T ⊂ R 2 → R 3 , and S : T → R which store an unwrapped version of M as a texture atlas which has potentially been cut into separate texture maps. We also consider input videos and temporally changing, dynamically deforming meshes, but for simplicity of notation we first discuss the static case and extend our model for the dynamic case later on. Image Formation Model and Super-resolution. In order to exploit the view redundancy of a multi-camera setup, we target a texture map resolution which is significantly higher than the input image resolution. Intuitively, we are observing a continuous mesh surface that is sampled with a low resolution frequency by each of the input cameras. In practice, the camera chip integrates all incoming light within the area of a pixel to a single value, which we model mathematically with a Gaussian blurring kernel K combined with a downsampling operator D. Thus, a low-res image I LR can be obtained from a high-res image I HR via blurring and downsampling, I LR = DKI HR . In multi-view texture mapping, we also need to model the projective mapping P i between the texture atlas space and every input image i. Similar to [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF][START_REF] Waechter | Let there be color! large-scale texturing of 3d reconstructions[END_REF], we also consider geometric inaccuracies and camera calibration noise with an optical flow alignment step, represented with an per-image warping operator W i : R 2 → R 2 . In sum, in the ideal case a low-res input image I i can be computed from the high-res texture atlas as a concatenation of perspective projection, optical flow warping, blurring and downsampling:

I i = DKW i P i • T. ( 1 
)
For texture super-resolution we aim to fulfill this equation for all input views. An overview of our image formation model is depicted in Fig. 2. Intrinsic Decomposition. As mentioned before, we express the appearance T of the object as a point-wise multiplication of the albedo map A and shading map S. The albedo map is the intrinsic color of the surface that is independent of lighting conditions while the shading map depends on the surface orientation and the local illumination conditions. Under the assumption of a Lambertian reflectance model we approximate the shading map S using spherical harmonics (SH) basis functions [START_REF] Ramamoorthi | An efficient representation for irradiance environment maps[END_REF] that depend on the local surface orientation. In particular, we use a second-order spherical harmonics lighting model with nine coefficients

S = 9 ∑ k=1 H k (n)l k , (2) 
where H k (n) are the spherical harmonics basis functions taken from [START_REF] Zollhöfer | Shading-based Refinement on Volumetric Signed Distance Functions[END_REF] parameterized by the local surface orientation n, and l = (l 1 , l 2 , . . . , l 9 ) are the corresponding spherical harmonics coefficients. Similar to [START_REF] Zollhöfer | Shading-based Refinement on Volumetric Signed Distance Functions[END_REF] we parametrize the spherical harmonics basis functions as {H k } 9 k=1 = {1, n y , n z , n x , n x n y , n y n z , -n x n xn y n y + 2n z n z , n z n x , n x n xn y n y }, where n = (n x , n y , n z ) is the local normalized surface orientation. This parametrization of the shading incorporates geometric information into the lighting model and simplifies the intrinsic decomposition problem.

Joint Intrinsic Decomposition and Super-resolution

Using the image formation model (Eq. ( 1)) , we aim to solve the inverse problem while accounting for noise in the input images, calibration and surface geometry. Thus, we propose an energy minimization model that effectively accounts for missing data and inaccuracies. Energy Formulation. Since the image formation model in Fig. 2 can never be perfectly fulfilled, we minimize the residual in form of the back-projection error. To assure a wellposed energy, we assume piece-wise smooth warping functions and albedo map. The superresolved, decomposed texture map can then be computed as the minimizer of the following energy E(A, S, W) that depends on albedo, shading and optical flow warping:

minimize A,S,W n ∑ i=1 T DKW i P i AS -I i 2 2 + λ A ∇A 2 + λ W ∇W i 2 dx. (3) 
The weights λ A , λ W ∈ R ≥0 account for the expected noise level for albedo and warping.

Optimization

To locally minimize the non-convex energy in Eq. [START_REF] Barron | Intrinsic Scene Properties from a A Single RGB-D Image[END_REF] we alternate the optimization of the optical flow warp, albedo and shading independently while keeping the other entities mutually fixed. The individual energy minimizations are described in the following. Albedo estimation. The albedo map can be estimated by computing the global minimum of Eq. ( 4) with the Fast Iterative Shrinkage and Thresholding Algorithm (FISTA) [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. We denote the first quadratic term by f data (A) and the second term by f TV (A), and compute the minimizer iteratively by updating Eq. ( 5) until convergence:

A * = arg min A n ∑ i=1 T DKW i P i AS -I i 2 2 + λ A ∇A 2 dx, (4) 
A k+1 = prox γ f TV A k -γ∇ f data (A k ) . (5) 
The gradient of the data term is

∇ f data (A k ) = 2N T i (N i A k -I i ) with N i = DKW i P i diag(S)
and is weighted by gradient descent step size γ. The proximal operator performs a generalized projection: prox γG (x) = arg min y 1 2 xy 2 + γG(x) . Shading estimation. For the estimation of the shading parameters l, Eq. ( 3) simplifies to

l * = arg min l n ∑ i=1 T DKW i P i AS(l) -I i 2 2 dx = 3 ∑ c=1 n ∑ i=1 M c i T M c i 3 ∑ c=1 n ∑ i=1 M c i T I c i -1 . (6)
Finding the best SH coefficients l * is straightforward. In the discretized setting, we can rewrite all symbols in Eq. ( 6) with matrices and vectors that cover the entire domain T as l

* = arg min l ∑ 3 c=1 ∑ n i=1 |M c i l -I c i | 2 with M c i = DKW i P i diag(A c
)H and c being the color channel. In practice we solve this problem iteratively with a standard Matlab solver. Optical flow warp estimation. We estimate a vector field W i for each view i ∈ {1, . . . , n}:

W * i = arg min W i T DKW i P i AS -I i 2 2 + λ W ∇W i 2 dx. (7) 
We use the coarse-to-fine scheme in [START_REF] Liu | A Bayesian approach to adaptive video super resolution[END_REF] to compute the flow field. A local minimum of Eq. ( 7) is obtained via iterated re-weighted least squares (IRLS). In sum, the computation of intrinsic decomposition and joint super-resolution is performed by iterating Eqs. ( 4)- [START_REF] Boukhayma | Eigen appearance maps of dynamic shapes[END_REF].

Initialization. We initialize the albedo by utilizing the off-the-shelf intrinsic decomposition system [START_REF] Bell | Intrinsic Images in the Wild[END_REF] that performs well on images in the wild. The texture, treated as a regular image, can be decomposed into initial albedo and shading textures provided an active area mask.

Spatio-temporal Setting

Our approach is easily extended to process multi-view videos and an arbitrarly deforming mesh. To exploit appearance information from several time steps, we assume constant albedo within a temporal window of neighboring frames. In our experiments we found a window size of 3 to provide the best trade-off between additional accuracy and processing time. The energy for the spatio-temporal case is then defined on frames around the current time step τ.

E(A, S, W, τ) = τ+1 ∑ t=τ-1 n ∑ i=1 T D t K t W t i P t i AS t -I t i 2 2 + λ A ∇A 2 + λ W t ∇W t i 2 dx. ( 8 
)
The optimization is analogous to the one in Eq. (3).

Experiments

Setup. We carried out all experiments using a MATLAB implementation on a 2.20GHz Intel Xeon E52660 CPU with 256 GB RAM. We initialize the algorithm by first computing a weighted average texture map of visible inputs and use the code of [START_REF] Bell | Intrinsic Images in the Wild[END_REF] to compute the initial albedo and derive the initial shading. We threshold the relative norm of the energy to stop the optimization (usually 10-60 iterations). The execution time is in the range of 15-40 minutes per iteration depending on the dataset size, i.e. number of views and image resolution. Note that much better performance can be achieved by parallelizing the optimization on a GPU.

Joint Decomposition on Synthetic Data

We evaluate the performance of our model under varying lighting conditions on the synthetic TOAD dataset [START_REF] Ley | Syb3r: A realistic synthetic benchmark for 3d reconstruction from images[END_REF]. We introduce 3 scenes with different lighting scenarios: one light source on the left of the object (Left), one on the front (Front) and two light sources on the left and above the object (Left+Above). In each case, we use the ground truth geometry and albedo from [START_REF] Ley | Syb3r: A realistic synthetic benchmark for 3d reconstruction from images[END_REF] and the synthetic shading to render the model from 56 viewpoints (512 × 512). Table 2: Comparison to sequential approach: Super-resolution by [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF] followed by 2D intrinsic decomposition [START_REF] Bell | Intrinsic Images in the Wild[END_REF]. The table shows MSE and SSIM scores evaluated on the ground truth texture atlases. Our method consistently yields more accurate albedo and shading maps.

We use up-sampling factor ×2, i.e. we reconstruct albedo, shading and texture with an atlas resolution of 1024 × 1024 and compare with the ground truth, as shown in Fig. 3.

Our method yields results close to the ground truth in every case. By changing the light positions and by increasing their number the extraction of the shading becomes more challenging. Our model is able to deal with such variations of lighting conditions.

We further compare to the naive sequential approach consisting of super-resolving the Model Input Wächter [START_REF] Waechter | Let there be color! large-scale texturing of 3d reconstructions[END_REF] Goldlücke [START_REF] Goldlücke | A superresolution framework for high-accuracy multiview reconstruction[END_REF] Tsiminaki [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF] Ours BUNNY BEETHOVEN BIRD Figure 4: Qualitative comparison with state-ofthe-art texturing methods. While our method additionally computes a texture decomposition, the combined results are comparable to [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF]. Table 3: Distance to the method of Tsiminaki et al. [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF]. Mean value of the MSE (lower is better) and SSIM (higher is better) are computed between the rendered images (image domain) and between the texture atlases (texture domain). The higher the SSIM and the lower the MSE, the closer the our output is to [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF].

Figure 5: Output of our method on FOUNTAIN and RELIEF datasets. The albedo contains the color information, the shading reflects the normals of the mesh and the reconstructed texture entails high frequency details.

texture with [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF] followed by 2D intrinsic decomposition [START_REF] Bell | Intrinsic Images in the Wild[END_REF]. In Table 2 we report the MSE and SSIM scores computed in the texture domain with respect to the reconstructed texture, albedo and shading maps. We see that our method consistently outperforms the sequential method. Note that our goal are superior results with our joint intrinsic decomposition over the sequential method rather than outperforming [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF] since the texture optimization is similar.

Joint Decomposition on Real Data

We run experiments on 6 publicly available real-world datasets. The first 3 datasets BUNNY, BEETHOVEN and BIRD used in [START_REF] Goldlücke | A superresolution framework for high-accuracy multiview reconstruction[END_REF] are captured in a controlled capturing studio, while FOUNTAIN [START_REF] Zhou | Color map optimization for 3d reconstruction with consumer depth cameras[END_REF] and RELIEF [START_REF] Zollhöfer | Shading-based Refinement on Volumetric Signed Distance Functions[END_REF] datasets are from less controlled environments. BUNNY, BEETHOVEN and BIRD consist of 19, 33 and 36 calibrated images with 1024 × 768 pixels, and FOUNTAIN and RELIEF consist of 55 and 40 key frames with 1024 × 1280 pixels. We compare to the method of Wächter [START_REF] Waechter | Let there be color! large-scale texturing of 3d reconstructions[END_REF], the state-of-the-art multi-view texture superresolution techniques by Goldlücke et al. [START_REF] Goldlücke | A superresolution framework for high-accuracy multiview reconstruction[END_REF] and Tsiminaki et al. [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF] on BEETHOVEN, BUNNY and BIRD. We use a texture atlas resolution of 2× the input image resolution and use identical 3D models as input. Our method achieves comparable results to [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF], as shown Figure 6: Qualitative results on the Fountain dataset [START_REF] Zhou | Color map optimization for 3d reconstruction with consumer depth cameras[END_REF]. The RGB-D methods [START_REF] Izadi | Kinectfusion: Real-time dynamic 3d surface reconstruction and interaction[END_REF][START_REF] Zollhöfer | Shading-based Refinement on Volumetric Signed Distance Functions[END_REF] blur the texture due to low voxel resolution and camera misalignments, while [START_REF] Maier | Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting[END_REF] generates good results via camera pose and geometry optimization. [START_REF] Waechter | Let there be color! large-scale texturing of 3d reconstructions[END_REF] often introduces artifacts and seams misalignments. We recover high frequency details and remove apparent specularity.

KF [START_REF] Izadi | Kinectfusion: Real-time dynamic 3d surface reconstruction and interaction[END_REF] Zollhöfer [START_REF] Zollhöfer | Shading-based Refinement on Volumetric Signed Distance Functions[END_REF] Maier [START_REF] Maier | Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting[END_REF] Wächter [START_REF] Waechter | Let there be color! large-scale texturing of 3d reconstructions[END_REF] Ours MSE=0.003143 MSE=0.003889 MSE=0.001540 MSE=0.005016 MSE=0.001839

Figure 7: Qualitative results on the Relief dataset [START_REF] Zollhöfer | Shading-based Refinement on Volumetric Signed Distance Functions[END_REF]. Our method successfully denoises and recovers fine details of the texture. Similar to Fig. 6, we also show difference maps and view-averaged MSE values for each method.

Input Re-rendered images using Image [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF] [38]+ [START_REF] Bell | Intrinsic Images in the Wild[END_REF] Our Albedo in Fig. 4. To quantify differences, we take the output of [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF] as reference texture and compute the error between the reconstructed texture of our method as well as the error between the reprojected images. Tab. 3 shows that our method achieves comparable results to [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF].

We use the same upscaling factors for the FOUNTAIN [START_REF] Zhou | Color map optimization for 3d reconstruction with consumer depth cameras[END_REF] and RELIEF [START_REF] Zollhöfer | Shading-based Refinement on Volumetric Signed Distance Functions[END_REF] datasets. Due to the ℓ 2 data term in Eq. ( 3), our method averages out the non-lambertian properties and reconstructs an intrinsic albedo map that is invariant to illumination changes as well as a shading map, as shown in Fig. 5. We compare our method to Kinect fusion [START_REF] Izadi | Kinectfusion: Real-time dynamic 3d surface reconstruction and interaction[END_REF], Zollhöfer et al. [START_REF] Zollhöfer | Shading-based Refinement on Volumetric Signed Distance Functions[END_REF], Maier et al. [START_REF] Maier | Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting[END_REF] and Wächter et al. [START_REF] Waechter | Let there be color! large-scale texturing of 3d reconstructions[END_REF]. A fair comparison of the intrinsic decomposition is not possible since the methods of Zollhöfer et al. [START_REF] Zollhöfer | Shading-based Refinement on Volumetric Signed Distance Functions[END_REF] and Maier et al. [START_REF] Maier | Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting[END_REF] perform intrinsic decomposition only on the chromacity and not on the full RGB information. We thus focus on the reconstruction of the texture and compare the re-projections. Figures 6 and7 show close ups of one selected re-projected image as well as the difference maps with the corresponding mean value of the mean square error. Our method is able to exploit the visual redundancy and recovers high-frequency details. Extension to the Temporal Domain. We evaluate the applicability of our method on the temporal domain and demonstrate the advantage of the joint optimization. We run experiments on a selected time window of size 3 of the Running sequence of TOMAS [START_REF] Boukhayma | Eigen appearance maps of dynamic shapes[END_REF] by downscaling the 64 images to 512 × 512. We compare our proposed joint optimization to the naive sequential approach similarly to Sec. 5.1. By introducing additional time frames, the lighting conditions change and the shading decomposition becomes more challenging. The sequential approach cannot distinguish the high-frequency details of the albedo and it incorrectly introduces them into the shading map. Our method effectively deals with these variations and correctly extracts the shading maps at each frame, as shown in Fig. 9.

Applications, Limitations and Future Work

Applications. An interesting application of our method is object relighting. We qualitatively evaluate our method on object relighting using the TOAD dataset where the light source was placed left of the object and compare it to the naive approach of using the superresolved texture of [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF] and the sequential approach presented in Sec. 5.1. To relight the object we create a new scene with new directional light sources above the object and on the Input Sequential Approach [START_REF] Tsiminaki | High resolution 3d shape texture from multiple videos[END_REF]+ [START_REF] Bell | Intrinsic Images in the Wild[END_REF] Our Spatio-Temporal Approach (for 3 frames) 

Conclusion

We presented a novel texture super-resolution approach which jointly decomposes the highresolution texture into shading and albedo components. Our approach builds on well established state-of-the-art generative super-resolution models and generalizes them for joint intrinsic decomposition. Our method exploits knowledge about the 3D model to guide the intrinsic decomposition with surface normal information. In turn, we do not need strong priors for the decomposition and obtain superior results compared to 2D decomposition techniques.

In addition to experiments on real and synthetic data of static scenes we showed the applicability of our method to spatio-temporal multi-view sequences. Future work will focus on the concurrent refinement of the surface geometry and normal information.

Figure 2 :

 2 Figure 2: Our image formation model and notations. We compute a super-resolved texture map T = AS decomposed into albedo A and shading S components. After projecting the high-resolution texture map into camera view i, distortion warping with W i , blurring with kernel K and downsampling with D, the generated image should look like the corresponding low-resolution input image I i .

Figure 8 :

 8 Figure 8: Relighting Example. (a) Selected input view of TOAD in the original scene. From left to right renderings in the new scene using (b) super-resolved texture of [38] (c) output of sequential approach [38]+[5] (d) output of our method. Our method removes shading effects at capture time and re-rendering looks more realistic.

Figure 9 : 8 .

 98 Figure 9: Sequential vs. Spatio-temporal approach. The sequential approach incorrectly introduces high frequency details of the albedo in the shading map like the logo on the T-Shirt. Our joint optimization successfully decomposes the shading from the albedo.

Table 1 :

 1 Impressive results with super-resolved human face images have recently been achieved by Saito et al.[START_REF] Saito | Photorealistic facial texture inference using deep neural networks[END_REF]. Although it is great to see how far machine learning approaches can push the state-of-art, this deep network is heavily overfit to human faces and the method is not generic to arbitrary textures. Further, these methods may hallucinate details, generating undesirable outputs. In this paper, we only use the physics of the image formation model and solve for the inverse problem. Overview of related methods.
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