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A NOTE ON STARSHAPED HYPERSURFACES WITH ALMOST

CONSTANT MEAN CURVATURE IN SPACE FORMS

JULIEN ROTH AND ABHITOSH UPADHYAY

Abstract. We show that closed starshaped hypersurfaces of space forms with

almost constant mean curvature or almost constant higher order mean curva-
ture are closed to geodesic spheres.

1. Introduction

Over the past years, the stability of many characterizations of geodesic spheres
has been studied. One can cite for example, the stability of the Alexandrov theorem
[10], the study of almost-Einstein [4, 13, 21], almost-umbilical [5, 14, 15], almost
Weingarten [18] or almost stable hypersurfaces [16, 19], as well as for hypersur-
faces that almost satisfy the limitting case of sharp inequalities (see for instance
[1, 8, 12, 13, 16] and references therein).

The aim of this short note is to give a new result in this direction. Namely,
we show that closed, connected and oriented starshaped hypersurfaces with almost
constant mean curvature or almost constant higher order mean curvature in space
forms are close to geodesic spheres for the Hausdorff distance. The setting for this
problem is the followsing

Let (Mn, g) be a closed connected and oriented Riemannian manifold and X :
(Mn, g) −→ Rn+1 an isometric immersion of (Mn, g) into the Euclidean space
Rn+1. We consider ν a global unit normal vector field over M compatible with the
orientation of M . We say that X(M) is starshaped or simply M is starshaped if
the function 〈X, ν〉 has constant sign. It is a classical fact that if M is starshaped
and has constant mean curvature or higher order mean curvature, then X(M) is
a geodesic sphere (see [9]). The proof of this result is a direct consequence of the
classical Hsiung-Minkowski formulas. Moreover, Hsiung-Minkowski formulas have
analogues in the half-sphere and the hyperbolic space which allows to prove the
analogous characterization in these spaces. Namely, if M is a starshaped hypersur-
face of the half-sphere or the hyperbolic space and has constant mean curvature or
higher order mean curvature, then X(M) is a geodesic sphere.

We introduce the following notations before stating the main result of this note.
The second fundamental form will be denoted B, the k-th mean curvature Hk and
Mn+1(δ) is the Euclidean space Rn+1 if δ = 0, the hyperbolic space Hn+1(δ) if
δ < 0 and the upper half-sphere Sn+1

+ (δ) if δ > 0. The main result of this note is
the following stability result associated with the above characterization.

Theorem 1.1. Let n > 2 and r ∈ {1, · · · , n − 1} be two integers. Let M be
a closed, connected and oriented hypersurface of Mn+1(δ) contained in a ball of
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radius R and assume that Hr+1 > 0 if r > 1. We denote by Z the position vector
of M into Mn+1(δ), assume that M is starshaped and set R0 = min

M
(|〈Z, ν〉|) > 0.

Let h be a positive real number. Then, there exist three constants γ, C and ε1,
with γ depending only on n; C and ε1 depending on n, r, δ, h, min

M
(Hr+1;n,1),

‖B‖∞, V (Σ), R0 and R so that if M has almost constant r-th mean curvature in
the following sense

Hr = h+ ε,

where ε is a smooth function satisfying ‖ε‖∞ 6
h

2
and ‖ε‖1 6 ε1, then

dH(Σ, Sρ0) 6 C‖ε‖γ1 ,

where Sρ0 is a geodesic sphere of a certain radius ρ0 and dH is the Hausdorff dis-
tance between compact sets into Mn+1(δ).

Remark 1.2. (1) The function Hr+1;n,1 appearing in the theorem is an ex-
trinsic quantity defined from the second fundamental form. The precise
definition is given by relation (11).

(2) If r = 1, that is, M has almost constant mean curvature, then the constants
C and ε1 do not depend on min

M
(H2;n,1) since in the case min

M
(H2;n,1) is just

a dimensional constant.

(3) The assumption that ‖ε‖∞ 6
h

2
is here to ensure that the minimum of

Hr over M is controlled by h. The choice of
h

2
is arbitrary and can be

replaced by ‖ε‖∞ 6 αh with 0 < α < 1. Therefore the constant C will also
depends on α. Moreover, we could remove this assumption and therefore
the constant C would depends on min

M
(Hr+1) instead of h by the Maclaurin

inequality H
1
r
r > H

1
r+1

r+1 .

2. Preliminaries

Let (Mn, g) be an n-dimensional closed, connected and oriented Riemannian
manifold isometrically immersed into the (n+1)-dimensional simply connected real
space form Mn+1(δ) of constant curvature δ. The (real-valued) second fundamental
form B of the immersion is the bilinear symmetric form on Γ(TM) defined for two
vector fields X,Y by

B(X,Y ) = −g
(
∇Xν, Y

)
,

where ∇ is the Riemannian connection on Mn+1(δ) and ν a normal unit vector field
on M .

From B, we can define the mean curvature,

H =
1

n
tr (B).

Now, we recall the Gauss formula. For X,Y, Z,W ∈ Γ(TM),

(1) R(X,Y, Z,W ) = R(X,Y, Z,W ) + 〈SX,Z〉 〈SY,W 〉 − 〈SY,Z〉 〈SX,W 〉

where R and R are respectively the curvature tensor of M and Mn+1(δ), and S is
the Weingarten operator defined by SX = −∇Xν.
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By taking the trace and for W = Y , we get

(2) Ric(Y ) = Ric(Y )−R(ν, Y, ν, Y ) + nH 〈SY, Y 〉 −
〈
S2Y, Y

〉
.

Since, the ambient space is of constant sectional curvature δ, by taking the trace a
second time, we have

(3) Scal = n(n− 1)δ + n2H2 − ‖S‖2,

or equivalently

(4) Scal = n(n− 1)
(
H2 + δ

)
− ‖τ‖2,

where τ = S −HId is the umbilicity tensor.
Now, we define the higher order mean curvatures, for k ∈ {1, · · · , n}, by

Hk =
1(
n
k

)σk(κ1, · · · , κn),

where σk is the k-th elementary symmetric polynomial and κ1, · · · , κn are the
principal curvatures of the immersion.

From the definition, it is obvious that H1 is the mean curvature H. We also
remark from the Gauss formula (1) that

(5) H2 =
1

n(n− 1)
Scal − δ.

Hence, the equation (4) becomes H2 −H2 =
1

n(n− 1)
‖τ‖2 and thus H2 > H2.

More generally, we have the following classical inequalities between the the higher
order mean curvatures Hr which are well-known. First, for any r ∈ {0, · · · , n− 2},
we have

(6) HrHr+2 6 H
2
r+1,

with equality at umbilical points, cf. [6, p. 104]. Moreover, if Hr+1 > 0, then Hs > 0
for any s ∈ {0, · · · , r} [2] and we have the classical Maclaurin inequalities

(7) H
1
r+1

r+1 6 H
1
r
r 6 · · · 6 H

1
2
2 6 H.

Finally, we recall the well-known Hsiung-Minkowski formula

(8)

∫
M

(
Hk+1 〈Z, ν〉+ cδ(r)Hk

)
= 0,

where r(x) = d(p0, x) is the distance function to a base point p0, Z is the position
vector defined by Z = sδ(r)∇r, and the functions cδ and sδ are defined by

cδ(t) =

 cos(
√
δt) if δ > 0

1 if δ = 0

cosh(
√
−δt) if δ < 0

and sδ(t) =


1√
δ

sin(
√
δt) if δ > 0

t if δ = 0
1√
−δ sinh(

√
−δt) if δ < 0.

3. Proof of Theorem 1.1

The strategy of the proof consists in proving that M is almost umbilical. Pre-
cisely, we will show that the Ln+1-norm of τ is small (compared to ε) in order to
apply the following result of [15] with p = n + 1 and where Nn+1 is either the
half-sphere or the hyperbolic space.
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Theorem 3.1. (Roth-Scheuer [15]) Let D ⊂ Rn+1 be open and let Nn+1 = (D,h)

be a conformally flat Riemannian manifold, i.e., h = e2ϕh̃ where h̃ is the Euclidean
metric and ϕ ∈ C∞(D). Let Σn ↪→ Nn+1 be a closed, connected, oriented and
isometrically immersed hypersurface. Let p > n ≥ 2. Then there exist constants c
and ε0, depending on n, p, V (Σ), ‖B‖p and ‖ϕ‖∞, as well as a constant α = α(n, p),
such that whenever there holds

‖τ‖p 6 ‖H̃‖pε0,

there also holds
dH(Σ, Sρ) 6

cρ

‖H̃‖αp
‖τ‖αp ,

where Sρ is the image of a Euclidean sphere considered as a hypersurface in Nn+1

and the Hausdorff distance is also measured with respect to the metric h.

Remark 3.2. We use the following convention for the Lp-norm

‖f‖p =

(
1

V (M)

∫
M

|f |pdvg
) 1
p

.

First, we have

‖τ‖2(n+1)
n+1 =

(
1

V (Σ)

∫
M

‖τ‖2(n+1)dvg

)2

6
1

V (Σ)2

(∫
M

‖τ‖2ndvg
)(∫

M

‖τ‖2dvg
)

by the Cauchy-Schwarz inequality. From this, we deduce immediately that

(9) ‖τ‖2(n+1)
n+1 6

1

V (Σ)
‖B‖2n∞

(∫
M

‖τ‖2dvg
)
.

Now, using the assumptions that M is starshaped and has almost constant r-th

mean curvature, we estimate

∫
M

‖τ‖2dvg. First, we have the following lemma

which bound ‖τ‖ from above by HHr −Hr+1.

Lemma 3.3. There exists a constant positive constant K1 = K1(n, r,min(Hr+1;n,1), h, ‖B‖∞)
so that

‖τ‖2 6 K1

(
HHr −Hr+1

)
.

Remark 3.4. If r = 1, then ‖τ‖2 = n(n − 1)(H2 −H2) so that, in this case, K1

is just a dimensional constant.

Proof: First, as mention in the preliminaries section, we have the following inequal-
ities, for any k ∈ {1, · · · , n− 1},

H2
k −Hk+1Hk−1 > 0.

Moreover, we have a more precise estimate of the positivity of this term. Namely,

(10) H2
k −Hk+1Hk−1 > cn‖τ‖2H2

k+1;n,1

where cn is a constant depending only on n and where

(11) Hl;i,j =
∂Hl

∂κi∂κj
=

1(
n
l

) ∑
1 6 i1 < · · · < il−2 6 n

i1, · · · , il 6= i, j

κi1 · · · · · κil−2
.
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One can find the proof in [20] for instance. Since we assume that Hr+1 > 0, then
all the functions Hk are also positive for k ∈ {1, · · · , n − 1}. Thus, dividing by
HkHk−1, (10) becomes

(12)
Hk

Hk−1
− Hk+1

Hk
> cn‖τ‖2

H2
k+1;n,1

HkHk−1
.

Thus, by summing equation (12) for k from 1 to r, we get

(13) H − Hr+1

Hr
> cn‖τ‖2

r∑
k=1

H2
k+1;n,1

HkHk−1
,

and so

(14) HHr −Hr+1 > cn‖τ‖2
(

r∑
k=1

H2
k+1;n,1

HkHk−1

)
Hr.

Moreover, we have HkHk−1 6 ‖B‖2k−1
∞ . In addition, since Hr+1 is positive, then all

the function Hk are also positive and thus, as proved by Scheuer in [20], the func-
tions Hk;n,1 are also positive. In addition, since they are the normalized symmetric
polynomial evaluated for κ2, · · · , κn−1, they also satisfy the Maclaurin inequality,
up to a normalization constant, that

(Hk;n,1)
1
k−2 > an,k (Hk+1;n,1)

1
k−1 ,

where an,k is a positive constant depending only on n and k, and so

(Hk;n,1)
1
k−2 > bn,k,r (Hr+1;n,1)

1
r−1 ,

where bn,k,r is a positive constant depending only on n, k and r. Note that the
exponents come from the fact that Hk;n,1 is the symmetric polynomial of degree
k − 2. Thus (14) gives

(15) HHr −Hr+1 > cn‖τ‖2
 r∑
k=1

b
2(k−1)
n,k+1,rH

2(k−1)
r−1

r+1;n,1

‖B‖2k−1
∞

Hr > K1‖τ‖2,

where K1 = cn min
16k6r

(
b
2(k−1)
n,k+1,r

) h

2‖B‖∞

r∑
k=1

min
M

(Hr+1;n,1)
1
r−1

‖B‖∞

2(k−1)

.

This concludes the proof of the lemma sinceK1 depends only on n, r, min(Hr+1;n,1),

h and ‖B‖∞. We have used here that min
M

(Hr) >
h

2
from the assumption Hr = h+ε

with ‖ε‖∞ 6
h

2
. �

Remark 3.5. Note that at the end of the proof, one can remove the assumption

‖ε‖∞ 6
h

2
and, since H

1
r
r > H

1
r+1

r+1 , replace the dependence on h by a dependence

on min
M

(Hr+1). In this case, the constant K1 is replaced by the constant K ′1 given

by

K ′1 = cn min
16k6r

(
b
2(k−1)
n,k+1,r

) (min
M

(Hr+1)
) r
r+1

‖B‖∞

r∑
k=1

min
M

(Hr+1;n,1)
1
r−1

‖B‖∞

2(k−1)

.
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The conclusion of this lemma is obtained independentely of any condition of
starshapedness or on Hr. Now, we will use the assumptions of starshapedness and
almost constant r-th mean curvtaure to estimate the term HHr −Hr+1. The key
point here is the use of the Hsiung-Minkowski formulas. Form the assumption that
〈Z, ν〉 have fixed sign and the definition of R0 = min

M
(|〈Z, ν〉|), we have∫

M

‖τ‖2dvg 6
1

R0

∣∣∣∣∫
M

‖τ‖2〈Z, ν〉dvg
∣∣∣∣ .(16)

Now, using Lemma 3.3, we get∫
M

‖τ‖2dvg 6
K1

R0

∣∣∣∣∫
M

(HHr −Hr+1) 〈Z, ν〉dvg
∣∣∣∣ .(17)

Note that we used again the fact that 〈Z, ν〉 has constant sign to obtain this last
inequality.

Now, using the assumption that Hr = h+ ε, we estimate∫
M

(HHr −Hr+1) 〈Z, ν〉dvg.

Namely, we have∫
M

(HHr −Hr+1) 〈Z, ν〉dvg =

∫
M

(H(h+ ε)−Hr+1) 〈Z, ν〉dvg

= h

∫
M

H〈Z, ν〉dvg +

∫
M

Hε〈Z, ν〉dvg −
∫
M

Hr+1〈Z, ν〉dvg

= −
∫
M

hcδ(ρ)dvg +

∫
M

Hε〈Z, ν〉dvg +

∫
M

Hrcδ(ρ)dvg,(18)

where we have used Hsiung-Minkowski formulas for the first and third terms of the
right-hand side. Using again the assumption Hr = h+ ε, we obtain∫
M

(HHr −Hr+1) 〈Z, ν〉dvg = −
∫
M

(Hr − ε)cδ(ρ)dvg +

∫
M

Hε〈Z, ν〉dvg +

∫
M

Hrcδ(ρ)dvg

=

∫
M

εcδ(ρ)dvg +

∫
M

Hε〈Z, ν〉dvg.(19)

Reporting this into (17), we get∫
M

‖τ‖2dvg 6
K1

R0

∣∣∣∣∫
M

εcδ(ρ)dvg +

∫
M

Hε〈Z, ν〉dvg
∣∣∣∣

6
K1

R0

(
max
M

(cδ(ρ) + ‖B‖∞max
M

(sδ(ρ)
)∫

M

|ε|dvg.(20)

Now, we set

K2 =



K1

R0

(
1 +
‖B‖∞√

δ

)
if δ > 0

K1

R0
(1 + ‖B‖∞R) if δ = 0,

K1

R0

(
cδ(R) + ‖B‖∞sδ(R)

)
if δ < 0,
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where R is the radius of a ball B(p,R) containing M . Thus, we have∫
M

‖τ‖2dvg 6 K2

∫
M

|ε|dvg,(21)

with K2 depending on n, r, δ, h, min
M

(Hr+1;n,1), ‖B‖∞, R0 and R.

In order to apply Theorem 3.1, we need to compare the Ln+1-norms of τ and the

mean curvature H̃ of M viewed as a hypersurface of the Euclidean space after the

conformal change of metric h = e2ϕh̃.
As a first step to prove this, we have the following lemma:

Lemma 3.6. There exists a constant depending only on n and ϕ so that

1 6 c2n,ϕV (M)
2(n+1)
n ‖H̃‖2(n+1)

n+1 .

Proof: For this, we first recall the extrinsic Sobolev inequality of Michael and Simon.
If (Σ, g0) is a closed connected and oriented hypersurface of the Euclidean space,
for any C1 function f on M , the following inequality holds

(22)

(∫
Σ

f
n
n−1 dvg

)n−1
n

6 K(n)

∫
Σ

(|∇f |+ |Hf |) dvg0 ,

where K(n) is a constant that depends only on n. Applying this inequality for the
function f ≡ 1, we get

(23) V (Σ)
n−1
n 6 K(n)

∫
Σ

|H|dvg0 .

Now, since Mn+1(δ) is conformally flat, we have Mn+1(δ) can be viewed as a Eu-

clidean domain D endowed with the metric h = e2ϕh̃ where h̃ is the Euclidean
metric and ϕ ∈ C∞(D). Applying (23) for (Σ, g0) = (M, g̃), we have

(24) Ṽ (M)
n−1
n 6 K(n)

∫
M

|H̃|dvg̃,

where Ṽ (M) is the volume of (M, g̃) and H̃ is the mean curvature of the isometric

immersion (M, g̃) ↪→ (D, h̃). Thus, we deduce immediately that

(25) V (M)
n−1
n 6 cn,ϕ

∫
M

|H̃|dvg̃,

where cn,ϕ is a constant depending on n and ϕ. Note that here, V (M) is the volume
of M with the metric g which explain the dependence of the constant cn,ϕ on the
conformal factor ϕ. Thus, we deduce immediately that

(26) V (M)−
1
n 6 cn,ϕ‖H̃‖1

and so

(27) V (M)−
n+1
n 6 cn,ϕ‖H̃‖n+1

n+1.

Finally we deduce immediately that

(28) 1 6 c2n,ϕV (M)
2(n+1)
n ‖H̃‖2(n+1)

n+1 .
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�
Now inequality (9) together with (21) and Lemma 3.6 gives

‖τ‖2(n+1)
n+1 6 ‖B‖2n∞‖τ‖22

6 ‖B‖2n∞K2‖ε‖1
6 K2c

2
n,ϕV (Σ)

2n+2
n ‖H̃‖2(n+1)

n+1 ‖ε‖1
= K3‖H̃‖2(n+1)

n+1 ‖ε‖1,(29)

where K3 is a constant depending on n, r, δ, h, min
M

(Hr+1;n,1), ‖B‖∞, V (Σ), R0

and R. Note that K3 depends also on ‖ϕ‖∞,Ω due to (25), but since ϕ is the

conformal change of metric between Rn+1 and Hn+1 or Sn+1
+ , this dependence can

be replaced by a dependence on δ and R.

Now, if ‖ε‖1 is supposed to be smaller than ε1 =
ε

2(n+1)
0

K3
, where ε0 is the constant

of Theorem 3.1, then we have

‖τ‖n+1 6 ‖H̃‖n+1ε0,

so that we can apply Theorem 3.1. Note that ε1 is a positive constant depending
on n, r, δ, h, min

Σ
(Hr+1;n,1), ‖B‖∞, V (Σ), R0 and R. Thus, there exists ρ0 > 0 so

that

(30) dH(Σ, Sρ0) 6
cρ0

‖H̃‖αn+1

‖τ‖αn+1.

Using (29) once again, we get

(31) dH(Σ, Sρ0) 6 cρ0K
α

2(n+1)

3 ‖ε‖
α

2(n+1)

1 = C‖ε‖γ1 ,

where C = cρ0K
α

2(n+1)

3 is a positive constant depending on n, r, δ, h, min
M

(Hr+1;n,1),

‖B‖∞, V (Σ), R0 and R and γ is a positive constant depending only on n. This
concludes the proof of Theorem 1.1. �

Remark 3.7. Here again, the dependence on h can be replaced by a dependence on
min
M

(Hr+1) if we use Lemma 3.3 with the constant K ′1 given instead of K1, where

K ′1 is the constant given in Remark 3.5.

Remark 3.8. One can also obtain an anisotropic version of Theorem 1.1 as it
is done for almost Weingarten hypersurfaces in [18]. This generalizes for higher
order anisotropic mean curvatures the result obtain in [17]. The proof is similar
and the conclusion is obtained by using the result of de Rosa and Gioffrè for nearly
umbilical anisotropic hypersurfaces [3]. For a sake of briefness, we do not state this
immediate adaptation here.
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