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We show that closed starshaped hypersurfaces of space forms with almost constant mean curvature or almost constant higher order mean curvature are closed to geodesic spheres.

Introduction

Over the past years, the stability of many characterizations of geodesic spheres has been studied. One can cite for example, the stability of the Alexandrov theorem [START_REF] Magnanini | On the stability for Alexandrov's Soap Bubble theorem[END_REF], the study of almost-Einstein [START_REF] Gioffrè | Quantitative W 2,p -stability for almost Einstein hypersurfaces[END_REF][START_REF] Roth | Pinching of the first eigenvalue of the Laplacian and almost-Einstein hypersurfaces of Euclidean space[END_REF][START_REF] Vlachos | Almost-Einstein hypersurfaces in the Euclidean space[END_REF], almost-umbilical [START_REF] Gioffrè | A W 2,p -estimate for nearly umbilical hypersurfaces[END_REF][START_REF] Roth | A remark on almost umbilical hypersurfaces[END_REF][START_REF] Roth | Explicit rigidity of almost-umbilical hypersurfaces[END_REF], almost Weingarten [START_REF] Roth | On Weingarten hypersurfaces in warped products[END_REF] or almost stable hypersurfaces [START_REF] Roth | Pinching of the first eigenvalue for second order operators on hypersurfaces of the Euclidean space[END_REF][START_REF] Roth | On almost stable CMC hypersurfaces in manifolds of bounded sectional curvature[END_REF], as well as for hypersurfaces that almost satisfy the limitting case of sharp inequalities (see for instance [START_REF] Aubry | Spectrum of hypersurfaces with small extrinsic radius or large λ 1 in Euclidean spaces[END_REF][START_REF] Hu | First eigenvalue pinching for Euclidean hypersurfaces via k-th mean curvatures[END_REF][START_REF] Roth | Extrinsic radius pinching for hypersurfaces of space forms[END_REF][START_REF] Roth | Pinching of the first eigenvalue of the Laplacian and almost-Einstein hypersurfaces of Euclidean space[END_REF][START_REF] Roth | Pinching of the first eigenvalue for second order operators on hypersurfaces of the Euclidean space[END_REF] and references therein).

The aim of this short note is to give a new result in this direction. Namely, we show that closed, connected and oriented starshaped hypersurfaces with almost constant mean curvature or almost constant higher order mean curvature in space forms are close to geodesic spheres for the Hausdorff distance. The setting for this problem is the followsing Let (M n , g) be a closed connected and oriented Riemannian manifold and X : (M n , g) -→ R n+1 an isometric immersion of (M n , g) into the Euclidean space R n+1 . We consider ν a global unit normal vector field over M compatible with the orientation of M . We say that X(M ) is starshaped or simply M is starshaped if the function X, ν has constant sign. It is a classical fact that if M is starshaped and has constant mean curvature or higher order mean curvature, then X(M ) is a geodesic sphere (see [START_REF] Hsiung | Some integral formulas for closed hypersurfaces[END_REF]). The proof of this result is a direct consequence of the classical Hsiung-Minkowski formulas. Moreover, Hsiung-Minkowski formulas have analogues in the half-sphere and the hyperbolic space which allows to prove the analogous characterization in these spaces. Namely, if M is a starshaped hypersurface of the half-sphere or the hyperbolic space and has constant mean curvature or higher order mean curvature, then X(M ) is a geodesic sphere.

We introduce the following notations before stating the main result of this note. The second fundamental form will be denoted B, the k-th mean curvature H k and M n+1 (δ) is the Euclidean space R n+1 if δ = 0, the hyperbolic space H n+1 (δ) if δ < 0 and the upper half-sphere S n+1 + (δ) if δ > 0. The main result of this note is the following stability result associated with the above characterization.

Theorem 1.1. Let n 2 and r ∈ {1, • • • , n -1} be two integers. Let M be a closed, connected and oriented hypersurface of M n+1 (δ) contained in a ball of radius R and assume that H r+1 > 0 if r > 1. We denote by Z the position vector of M into M n+1 (δ), assume that M is starshaped and set R 0 = min

M (| Z, ν |) > 0.
Let h be a positive real number. Then, there exist three constants γ, C and ε 1 , with γ depending only on n; C and ε 1 depending on n, r, δ, h, min M (H r+1;n,1 ), B ∞ , V (Σ), R 0 and R so that if M has almost constant r-th mean curvature in the following sense

H r = h + ε, where ε is a smooth function satisfying ε ∞ h 2 and ε 1 ε 1 , then d H (Σ, S ρ0 ) C ε γ 1
, where S ρ0 is a geodesic sphere of a certain radius ρ 0 and d H is the Hausdorff distance between compact sets into M n+1 (δ).

Remark 1.2.

(1) The function H r+1;n,1 appearing in the theorem is an extrinsic quantity defined from the second fundamental form. The precise definition is given by relation [START_REF] Michael | Sobolev and mean-value inequalities on generalized submanifolds of R n[END_REF] r+1 .

Preliminaries

Let (M n , g) be an n-dimensional closed, connected and oriented Riemannian manifold isometrically immersed into the (n + 1)-dimensional simply connected real space form M n+1 (δ) of constant curvature δ. The (real-valued) second fundamental form B of the immersion is the bilinear symmetric form on Γ(T M ) defined for two vector fields X, Y by

B(X, Y ) = -g ∇ X ν, Y ,
where ∇ is the Riemannian connection on M n+1 (δ) and ν a normal unit vector field on M . From B, we can define the mean curvature,

H = 1 n tr (B). Now, we recall the Gauss formula. For X, Y, Z, W ∈ Γ(T M ), (1) R(X, Y, Z, W ) = R(X, Y, Z, W ) + SX, Z SY, W -SY, Z SX, W
where R and R are respectively the curvature tensor of M and M n+1 (δ), and S is the Weingarten operator defined by SX = -∇ X ν.

By taking the trace and for W = Y , we get

(2) Ric(Y ) = Ric(Y ) -R(ν, Y, ν, Y ) + nH SY, Y -S 2 Y, Y .
Since, the ambient space is of constant sectional curvature δ, by taking the trace a second time, we have

(3) Scal = n(n -1)δ + n 2 H 2 -S 2 ,
or equivalently

(4) Scal = n(n -1) H 2 + δ -τ 2 ,
where τ = S -HId is the umbilicity tensor. Now, we define the higher order mean curvatures, for k ∈ {1, • • • , n}, by

H k = 1 n k σ k (κ 1 , • • • , κ n ),
where σ k is the k-th elementary symmetric polynomial and κ 1 , • • • , κ n are the principal curvatures of the immersion.

From the definition, it is obvious that H 1 is the mean curvature H. We also remark from the Gauss formula (1) that ( 5)

H 2 = 1 n(n -1) Scal -δ.
Hence, the equation ( 4) becomes

H 2 -H 2 = 1 n(n -1) τ 2 and thus H 2 H 2 .
More generally, we have the following classical inequalities between the the higher order mean curvatures H r which are well-known. First, for any r ∈ {0, [START_REF] Barbosa | Stability of hypersurfaces with constant r-mean curvature[END_REF] and we have the classical Maclaurin inequalities [START_REF] He | Integral formula of Minkowski type and new characterization of the Wulff shape[END_REF] H

1 r+1 r+1 H 1 r r • • • H 1 2 2 H.
Finally, we recall the well-known Hsiung-Minkowski formula ( 8)

M H k+1 Z, ν + c δ (r)H k = 0,
where r(x) = d(p 0 , x) is the distance function to a base point p 0 , Z is the position vector defined by Z = s δ (r)∇r, and the functions c δ and s δ are defined by

c δ (t) =    cos( √ δt) if δ > 0 1 if δ = 0 cosh( √ -δt) if δ < 0 and s δ (t) =      1 √ δ sin( √ δt) if δ > 0 t if δ = 0 1 √ -δ sinh( √ -δt) if δ < 0. 3. Proof of Theorem 1.1
The strategy of the proof consists in proving that M is almost umbilical. Precisely, we will show that the L n+1 -norm of τ is small (compared to ε) in order to apply the following result of [START_REF] Roth | Explicit rigidity of almost-umbilical hypersurfaces[END_REF] with p = n + 1 and where N n+1 is either the half-sphere or the hyperbolic space. Theorem 3.1. (Roth-Scheuer [START_REF] Roth | Explicit rigidity of almost-umbilical hypersurfaces[END_REF]) Let D ⊂ R n+1 be open and let N n+1 = (D, h) be a conformally flat Riemannian manifold, i.e., h = e 2ϕ h where h is the Euclidean metric and ϕ ∈ C ∞ (D). Let Σ n → N n+1 be a closed, connected, oriented and isometrically immersed hypersurface. Let p > n ≥ 2. Then there exist constants c and ε 0 , depending on n, p, V (Σ), B p and ϕ ∞ , as well as a constant α = α(n, p), such that whenever there holds

τ p H p ε 0 ,
there also holds

d H (Σ, S ρ ) cρ H α p τ α p ,
where S ρ is the image of a Euclidean sphere considered as a hypersurface in N n+1 and the Hausdorff distance is also measured with respect to the metric h.

Remark 3.2. We use the following convention for the L p -norm

f p = 1 V (M ) M |f | p dv g 1 p
.

First, we have

τ 2(n+1) n+1 = 1 V (Σ) M τ 2(n+1) dv g 2 1 V (Σ) 2 M τ 2n dv g M τ 2 dv g
by the Cauchy-Schwarz inequality. From this, we deduce immediately that [START_REF] Hsiung | Some integral formulas for closed hypersurfaces[END_REF] τ

2(n+1) n+1 1 V (Σ) B 2n ∞ M τ 2 dv g .
Now, using the assumptions that M is starshaped and has almost constant r-th mean curvature, we estimate M τ 2 dv g . First, we have the following lemma which bound τ from above by HH r -H r+1 .

Lemma 3.3. There exists a constant positive constant

K 1 = K 1 (n, r, min(H r+1;n,1 ), h, B ∞ ) so that τ 2 K 1 HH r -H r+1 . Remark 3.4. If r = 1, then τ 2 = n(n -1)(H 2 -H 2 ) so that, in this case, K 1 is just a dimensional constant.
Proof: First, as mention in the preliminaries section, we have the following inequalities, for any

k ∈ {1, • • • , n -1}, H 2 k -H k+1 H k-1 0
. Moreover, we have a more precise estimate of the positivity of this term. Namely, (10)

H 2 k -H k+1 H k-1 c n τ 2 H 2 k+1;n,1
where c n is a constant depending only on n and where (11)

H l;i,j = ∂H l ∂κ i ∂κ j = 1 n l 1 i 1 < • • • < i l-2 n i 1 , • • • , i l = i, j κ i1 • • • • • κ i l-2 .
One can find the proof in [START_REF] Scheuer | Stability from rigidity via umbilicity[END_REF] for instance. Since we assume that H r+1 > 0, then all the functions H k are also positive for k ∈ {1, • • • , n -1}. Thus, dividing by

H k H k-1 , (10) becomes (12) H k H k-1 - H k+1 H k c n τ 2 H 2 k+1;n,1 H k H k-1 .
Thus, by summing equation ( 12) for k from 1 to r, we get

(13) H - H r+1 H r c n τ 2 r k=1 H 2 k+1;n,1 H k H k-1 ,
and so

(14) HH r -H r+1 c n τ 2 r k=1 H 2 k+1;n,1 H k H k-1 H r .
Moreover, we have

H k H k-1 B 2k-1 ∞ .
In addition, since H r+1 is positive, then all the function H k are also positive and thus, as proved by Scheuer in [START_REF] Scheuer | Stability from rigidity via umbilicity[END_REF], the functions H k;n,1 are also positive. In addition, since they are the normalized symmetric polynomial evaluated for κ 2 , • • • , κ n-1 , they also satisfy the Maclaurin inequality, up to a normalization constant, that

(H k;n,1 ) 1 k-2 a n,k (H k+1;n,1 ) 1 k-1 ,
where a n,k is a positive constant depending only on n and k, and so (H k;n,1 )

1 k-2 b n,k,r (H r+1;n,1 ) 1 r-1 ,
where b n,k,r is a positive constant depending only on n, k and r. Note that the exponents come from the fact that H k;n,1 is the symmetric polynomial of degree k -2. Thus [START_REF] Roth | A remark on almost umbilical hypersurfaces[END_REF] gives [START_REF] Roth | Explicit rigidity of almost-umbilical hypersurfaces[END_REF] HH r -

H r+1 c n τ 2   r k=1 b 2(k-1) n,k+1,r H 2(k-1) r-1 r+1;n,1 B 2k-1 ∞   H r K 1 τ 2 ,
where

K 1 = c n min 1 k r b 2(k-1) n,k+1,r h 2 B ∞ r k=1   min M (H r+1;n,1 ) 1 r-1 B ∞   2(k-1)
. This concludes the proof of the lemma since K 1 depends only on n, r, min(H r+1;n,1 ), h and B ∞ . We have used here that min

M (H r ) h 2 from the assumption H r = h+ε with ε ∞ h 2 .
Remark 3.5. Note that at the end of the proof, one can remove the assumption

ε ∞ h 2 and, since H 1 r r H 1 r+1
r+1 , replace the dependence on h by a dependence on min M (H r+1 ). In this case, the constant K 1 is replaced by the constant K 1 given by

K 1 = c n min 1 k r b 2(k-1) n,k+1,r min M (H r+1 ) r r+1 B ∞ r k=1   min M (H r+1;n,1 ) 1 r-1 B ∞   2(k-1)
.

The conclusion of this lemma is obtained independentely of any condition of starshapedness or on H r . Now, we will use the assumptions of starshapedness and almost constant r-th mean curvtaure to estimate the term HH r -H r+1 . The key point here is the use of the Hsiung-Minkowski formulas. Form the assumption that Z, ν have fixed sign and the definition of R 0 = min

M (| Z, ν |), we have M τ 2 dv g 1 R 0 M τ 2 Z, ν dv g . (16) 
Now, using Lemma 3.3, we get

M τ 2 dv g K 1 R 0 M (HH r -H r+1 ) Z, ν dv g . ( 17 
)
Note that we used again the fact that Z, ν has constant sign to obtain this last inequality. Now, using the assumption that H r = h + ε, we estimate

M (HH r -H r+1 ) Z, ν dv g .
Namely, we have

M (HH r -H r+1 ) Z, ν dv g = M (H(h + ε) -H r+1 ) Z, ν dv g = h M H Z, ν dv g + M Hε Z, ν dv g - M H r+1 Z, ν dv g = - M hc δ (ρ)dv g + M Hε Z, ν dv g + M H r c δ (ρ)dv g , (18) 
where we have used Hsiung-Minkowski formulas for the first and third terms of the right-hand side. Using again the assumption H r = h + ε, we obtain

M (HH r -H r+1 ) Z, ν dv g = - M (H r -ε)c δ (ρ)dv g + M Hε Z, ν dv g + M H r c δ (ρ)dv g = M εc δ (ρ)dv g + M Hε Z, ν dv g . (19) 
Reporting this into [START_REF] Roth | On compact anisotropic Weingarten hypersurfaces in Euclidean space[END_REF], we get

M τ 2 dv g K 1 R 0 M εc δ (ρ)dv g + M Hε Z, ν dv g K 1 R 0 max M (c δ (ρ) + B ∞ max M (s δ (ρ) M |ε|dv g . (20) 
Now, we set

K 2 =                      K 1 R 0 1 + B ∞ √ δ if δ > 0 K 1 R 0 (1 + B ∞ R) if δ = 0, K 1 R 0 c δ (R) + B ∞ s δ (R) if δ < 0,
Now inequality (9) together with (21) and Lemma 3.6 gives

τ 2(n+1) n+1 B 2n ∞ τ 2 2 B 2n ∞ K 2 ε 1 K 2 c 2 n,ϕ V (Σ) 2n+2 n H 2(n+1) n+1 ε 1 = K 3 H 2(n+1) n+1 ε 1 , (29) 
where K 3 is a constant depending on n, r, δ, h, min M (H r+1;n,1 ), B ∞ , V (Σ), R 0 and R. Note that K 3 depends also on ϕ ∞,Ω due to (25), but since ϕ is the conformal change of metric between R n+1 and H n+1 or S n+1 + , this dependence can be replaced by a dependence on δ and R.

Now, if ε 1 is supposed to be smaller than ε 1 = ε 2(n+1) 0 K 3
, where ε 0 is the constant of Theorem 3.1, then we have τ n+1 H n+1 ε 0 , so that we can apply Theorem 3.1. Note that ε 1 is a positive constant depending on n, r, δ, h, min Remark 3.8. One can also obtain an anisotropic version of Theorem 1.1 as it is done for almost Weingarten hypersurfaces in [START_REF] Roth | On Weingarten hypersurfaces in warped products[END_REF]. This generalizes for higher order anisotropic mean curvatures the result obtain in [START_REF] Roth | On compact anisotropic Weingarten hypersurfaces in Euclidean space[END_REF]. The proof is similar and the conclusion is obtained by using the result of de Rosa and Gioffrè for nearly umbilical anisotropic hypersurfaces [START_REF] Rosa | Absence of bubbling phenomena for non convex anisotropic nearly umbilical and quasi Einstein hypersurfaces[END_REF]. For a sake of briefness, we do not state this immediate adaptation here.

Σ(H 1 = C ε γ 1 ,

 11 r+1;n,1 ), B ∞ , V (Σ), R 0 and R. Thus, there exists ρ 0 > 0 whereC = cρ 0 K α 2(n+1)3 is a positive constant depending on n, r, δ, h, min M (H r+1;n,1 ), B ∞ , V (Σ), R 0 and R and γ is a positive constant depending only on n. This concludes the proof of Theorem 1.1. Remark 3.7. Here again, the dependence on h can be replaced by a dependence on min M (H r+1 ) if we use Lemma 3.3 with the constant K 1 given instead of K 1 , where K 1 is the constant given in Remark 3.5.

  .(2) If r = 1, that is, M has almost constant mean curvature, then the constants C and ε 1 do not depend on min

	M	(H 2;n,1 ) since in the case min M (H 2;n,1 ) is just
	a dimensional constant. (3) The assumption that ε ∞ H r over M is controlled by h. The choice of h is here to ensure that the minimum of 2 h is arbitrary and can be 2 replaced by ε

∞ αh with 0 < α < 1. Therefore the constant C will also depends on α. Moreover, we could remove this assumption and therefore the constant C would depends on min M (H r+1 ) instead of h by the Maclaurin inequality H 1 r r H 1 r+1
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where R is the radius of a ball B(p, R) containing M . Thus, we have

with K 2 depending on n, r, δ, h, min M (H r+1;n,1 ), B ∞ , R 0 and R.

In order to apply Theorem 3.1, we need to compare the L n+1 -norms of τ and the mean curvature H of M viewed as a hypersurface of the Euclidean space after the conformal change of metric h = e 2ϕ h. As a first step to prove this, we have the following lemma: Lemma 3.6. There exists a constant depending only on n and ϕ so that

.

Proof: For this, we first recall the extrinsic Sobolev inequality of Michael and Simon. If (Σ, g 0 ) is a closed connected and oriented hypersurface of the Euclidean space, for any C 1 function f on M , the following inequality holds

where K(n) is a constant that depends only on n. Applying this inequality for the function f ≡ 1, we get

Now, since M n+1 (δ) is conformally flat, we have M n+1 (δ) can be viewed as a Euclidean domain D endowed with the metric h = e 2ϕ h where h is the Euclidean metric and ϕ ∈ C ∞ (D). Applying (23) for (Σ, g 0 ) = (M, g), we have

where V (M ) is the volume of (M, g) and H is the mean curvature of the isometric immersion (M, g) → (D, h). Thus, we deduce immediately that (25)

where c n,ϕ is a constant depending on n and ϕ. Note that here, V (M ) is the volume of M with the metric g which explain the dependence of the constant c n,ϕ on the conformal factor ϕ. Thus, we deduce immediately that (26) V (M ) - .