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Observer design for 1 + m linear hyperbolic ODE-PDE-ODE systems

Jean Auriol!, Federico Bribiesca Argomedo?

Abstract— In this paper, an observer design is presented for a
system of n+m hetero-directional transport partial differential
equations (PDEs) coupled on both boundaries of the domain to
ordinary differential equations (ODEs). This class of systems
can represent, for instance, actuator and load dynamics at the
boundaries of a hyperbolic system. The results in this paper
provide a constructive way to reconstruct the state of the ODEs
and the PDEs using only available measurements on one of
the two ODEs. This observer design completes existing full-
state feedback designs for this class of systems and enables,
together with previous results, the construction of output-
feedback stabilizers. As a complementary result, this paper
includes a simple (constructive) method to obtain a stable left-
inverse of a specific transfer matrix required in the observer
design, which can also be applied (after a transposition) to the
computation of the analogous stable right-inverses required for
the control design.

I. INTRODUCTION

Many recent publications have focused on the control
of interconnections involving hyperbolic PDEs (particularly
ODE-PDE-ODE systems where the ODEs correspond to
actuator and load dynamics). Indeed, this class of systems
can model, e.g., the propagation of torsional waves in drilling
systems [2] or deepwater construction vessels [27] (where the
top of a cable is attached to a crane on a vessel at the ocean
surface and the bottom attached to equipment to be installed
at the seafloor).

Interconnections of hyperbolic PDEs and ODEs are not
a new problem. Most constructive control results in the
literature for these systems are based on the backstep-
ping approach. Indeed, in the seminal paper [22], a re-
interpretation of the classical Finite Spectrum Assignment
[24] was proposed, modeling ODEs with input delays as
PDE-ODE interconnections. Subsequently, this result has
enabled the design of observers, controllers, or parameter
estimation methods for a plethora of interconnected systems:
systems with varying delays [8], [11], cascades of PDEs [4].
Of particular note are results concerning cascaded intercon-
nections of hyperbolic PDE-ODE systems, such as [1], [19],
[32]. More recently, constructive results on non-cascaded
PDE-ODE systems have been proposed. In particular, a
stabilizing state-feedback control law has been proposed
in [15], [30]. Recently, a backstepping approach has been
proposed in [13] for the output regulation for coupled linear
wave—ODE systems. Some results also concern other types
of PDE-ODE interconnections, such as parabolic PDEs, e.g.
[28], [5], [12], however this class of systems is beyond the
scope of this article.

Regarding ODE-hyperbolic PDE-ODE systems with full
interconnections (not limited to cascades), a stabilizing
observer-controller robust to delays has been proposed in the
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case of a scalar proximal ODE in [16]. In [14], an output-
feedback controller is designed based on assumptions that
guarantee the existence of a Byrnes—Isidori normal form for
the proximal ODE, as well as a relative degree one condition.
These restrictions are partially avoided in [9] for the case
of a scalar PDE system as the proximal ODE is simply
assumed to be minimum phase for the output that affects
the PDE. In [10], a strictly-proper control law was proposed
using less restrictive assumptions on the structure of the ODE
components. This approach was later extended in [29] to
encompass a state-observer (thus allowing the design of an
output-feedback controller). However, the PDE subsystem is
still assumed to be scalar in this work. Some recent results
have also been obtained for interconnected PDE systems with
non-linear ODEs [21].

This paper deals with observer design for systems of n+m
linear first-order hyperbolic Partial Differential Equations
coupled with Ordinary Differential Equations at both bound-
aries of a one-dimensional spatial domain. The available
measurements are obtained from one of the ODEs. The pro-
posed approach extends the methodology introduced in [10]
to n+m transport equations (instead of 14 1), and combines
the backstepping methodology with time-delay approaches.
The assumptions made on the structure of the ODE com-
ponents do not require the system to be of relative degree
1, nor to be in a specific canonical form. As such, existing
results in the literature do not cover this class of systems. Our
approach relies on the backstepping methodology. Using an
invertible integral transformation, we map the system into
a simpler target system. Then, we design a state observer
for this target system using a time-delay representation and
an analysis in the Laplace domain. The proposed design
relies on the stable dynamic left-inversion of the (measured)
ODE dynamics. We present a simple constructive procedure
to find such a stable left-inverse. This procedure requires
the same condition on the transfer function (full-column
rank for all s € CT) than presented in Theorem 2 of
[25], yet operates directly on the transfer function instead
of requiring switching back and forth between a frequency-
domain and time-domain representations. In practice, a state-
space realisation of this inverse system will only be found
after adding an adequate low-pass filter, as in the case of the
control (e.g. [10]). Such a filtering procedure also guarantees
the existence of robustness margins.

The paper is organized as follows: in Section II, we present
the problem under consideration, as well as the hypotheses
required for the observer design. In Section III, we design
the state-observer using the backstepping methodology. In
Section IV we present a simple constructive procedure to
construct the a stable left-inverse for the ODE dynamics.
Some concluding remarks are given in Section V.

Notations We denote the state
RP x L2([0,1;R)"*™ x RY,
are  positive  integers.  For

space =
where  p,n,m,q
(XO,’LL,’U,Xl) €



we  introduce  the correspondlng X—norm
||(X07u v, X)IF = [1Xol[&e + [[ullZ + [[v]|72 + [ X1][Re-
The Vanable s denotes the Laplace variable. To simplify
the notations, the Laplace transform of a function f(t)
(provided it is well-defined) will be denoted f(s). The
space CT corresponds to the complex right half plane:
Ct = {s € C, Re(s) > 0}. The notation I, stands for the
r X r identity matrix (if the dimensions are not ambiguous,
the subindex will be omitted).

II. PROBLEM STATEMENT

A. Presentation of the system

In this paper, we consider a n+m linear hetero-directional
hyperbolic system coupled through its boundaries with linear
ODEs:

Xo(t) = AUXU(t) + E(ﬂ)(t7 0)7 (1)
u(t,0) = CoXo(t)+ Qu(t,0), )

w + ATy, = E++( Yu(t,z) + X7 (2)v(t,x), (3)
—ANv, = T@)ult,z) + 7 (z)v(t, z), 4)
v(t,1) = Ru(t 1) + C1.X1(t), (5)
X1(t) A1 X1(t) + Eru(t, 1), (6)

defined for a.e. (t,z) € [0,400] x [0,1]. The state of
the system is (Xo(t),u(t, ), v(t,-), X1(¢t)) € x. The initial
condition is taken as ((Xg)o, %0, v0, (X1)o) € x and we
consider weak solutions to (1)-(6) [7]. The system is well-
posed in the sense of [7, Theorem A.6, page 254]. The
matrices AT and A~ are diagonal and represent the transport
velocities. We have AT = diag (\;) and A~ = diag (u;)
and we assume that their coefficients satisfy —pu,, < - <
-1 < 0 < M < < An. The spatially-varying
matrices X are continuous (each coefficient of the matrix is
a continuous function). With no loss of generality, we assume
that the matrices ¥ 7" and ¥~ have zero diagonal elements
[14]. The different coupling matrices satisfy Ag € RP*P,
Ey € RPX™ Cy € R™P, Ay € R, E; € RI*",
C; € Rm*4 R € R™*™, @Q € R™ ™, As we consider an
observer design problem in this paper, and since the system
under consideration is linear, we do not consider any control
input in the system. We measure a part of one of the ODE
state (as it is the case for drilling applications [2]), i.e. the
measurement Y (¢) is defined by

Y(t) = CXa(t), (7

where C' € R4, d > n. Having d > n means that the
number of measurements is greater than the dimension of
the PDE state u. Without this assumption, it may not be
possible to reconstruct the value of the function u(t,1). As
no result currently exist for under-measured hyperbolic PDE
systems, it is a reasonable assumption.

B. General objectives

The objective of this paper is to design a state observer for
the system (1)-(6) based on the available measurement Y ()
given by equation (7). Even if the velocities are considered
constant here, the proposed methodology could be extended
to the case of spatially-varying transport velocities (following
the approach given in [20]). Note that, due to the symetry
of the system, measuring the X state would not change the
nature of the problem.

C. Assumptions

Similarly to what has been done in [10], we make the
following assumptions

Assumption 1: The pairs (A1, C), (Ao, Cp) are detectable
(i.e. there exist Ly € RP*™ and L; € R7*¢ such that A; =
A1+ L1C and Ay = Ag + LoCy are Hurwitz).
Assumption 1 is a classical requirement found in most of the
papers dealing with ODE-PDE-ODE systems [17], [14]. It
is not overly conservative since without the detectability of
(A, Cp) it becomes impossible to reconstruct the Xg-state
independently of the PDE or interconnection structure. The
detectability condition on (A;, C) allows us to for a simpler
observer design (no modes of X are reconstructed indirectly
through the PDE). It results in a set of conditions that can
be easily tested.

Assumption 2: For all s € C*, the matrices (A, F1,C)
satisfy

rank (('SI CAl %)) =q+n. (8)
This last assumption (that requires d > n) serves multiples
purposes. First, it implies that C' and F; are not identically
zero. It is necessary to observe the PDE and the X states
from the available measurements. Under Assumption 2, the
function

Pi(s) = C(sI — A))"'E; )

does not have any zeros in CT that is common to all its com-
ponents. Thus, the function P;(s) admits a left inverse (de-
noted P, ) whose entries have no unstable poles (such a left
inverse is not proper) [25]. A possible choice is given by the
Moore-Penrose left inverse P; (s) = (PL'(s)P1(s)) "t P{ (s)
(which should be verified to be stable a posteriori). If this is
not stable, then a more involved stable inversion procedure
is needed, an example of which is given in Section IV. This
assumption is directly used in the constructive design of a
observer and can be tested in a simple way.
Assumption 3: The system defined for all ¢ € [1,n| by

m

1 1
ZZszRMZ t— i )\*[)»

k=1 /=1

(10)

is exponentially stable.

Assumption 3 constitutes a reasonable assumption since it
prevents system (1)-(6) from having an asymptotic chain
of eigenvalues with non-negative real parts [18], [6]. It
has been shown in [23] that having an open-loop trans-
fer function with an infinite number of poles on the
closed right half-plane implies no (delay-)robustness mar-
gins in closed-loop (i.e., the introduction of any arbi-
trarily small delay in the actuation will destabilize the
closed-loop system). Therefore, Assumption 3 is slightly
stronger than a necessary condition for delay-robust sta-
bilization and guarantees exponential stability of system
system (1)-(6). If the delays are rationally independent!,
Assumption 3 is equivalent to the following condition [18]:
, [(S)lépl (Ohey 2oy QikRieexp(jfre)) < 1,
ke €[0,2m]nxm

where Sp denotes the spectral radius and j is the imaginary
unit. This condition is simplified if the delays are rationally
dependent. Furthermore, since the spectral radius of a matrix

Extending the variable z, it is always possible to rewrite the system in
a situation where the delays are rationally independent [18, Chapter 9].



is upper-bounded by any norm of the matrix, easy to compute
sufficient conditions for this spectral radius condition to hold
can be derived using different norms of the matrices involved
at the cost of increased conservatism.

ITII. OBSERVER DESIGN

The objective of this section is to design a state-observer
for the system (1)-(6) using the available measurement (7).
In what follows, we denote with a * superscript the estimated
states and with a * superscript the error state, i.e. the
difference between the real state and the observer state. The
objective is that the estimated state converges to the real
state or equivalently that the error state, converges to 0, in
the sense of the y-norm. To simplify the computations and
the design of the observer, we will work with a target system
obtained from (1)-(6) using a backstepping transformation,
for which the in-domain coupling terms > have been moved
to the boundary. Then, we design a state-observer that is a
copy of this dynamics with some output injection operators.

A. Backstepping transformation

Inspired by [20], we use an integral transformation to
move the local coupling terms ¥ to the boundary (in the
form of integral terms). Consider the Volterra transformation
T, similar to the one introduced in [20], [6]

Xo(t) = £(t) - / Ly(y)oy) + La(y)B(y)dy, (1)
u(t.z) = oftx)— / Loz, y)aly)dy
1
- [ By + e Xa 0, 12
’ 1
o(tix) = B(tz)— / L%z, y)aly)dy.
- /Lﬁﬁ(l‘,y)ﬂ(y)dy+’Vﬂ(x)X1(t)7 (13)
X1(t) = X1(t)7 (14)

where the kernels are bounded functions defined either on
Tu = {(z,y) € [0,1)%, z < y}, or [0, 1]. This transformation
rewrites (Xo,u,v,X1) = T(§,a,8,X1). Denoting A =

ding(A*,~A-), ¥ = (FLET ) anad L= (2 40)
¥ = (Yas ’m), we obtain

AL, + LyA = X(2)L, Avy.(z)=X(z)y—~"A; (15)

(Li(x))o AT = AgLi(2) + EoLP*(0,2) — Lo(L**(0, x)

— QLP(0,2) — CoL:(x)), (16)

(La(x))zA™ = —AgLa(x) — EgLPP(0,2) + Lo(L*(0,2)

— QLP(0,2) — CoLa(x)), (17
with the boundary conditions

AL(z,z) — L(z,2)A = ¥(x), (18)

L1(0) = Lo(AT) ™, La(0)A™ = La(0)ATQ + Eo, (19)
and 7,(1) = 0, v5(1) = Ci. Finally, we define L{*(0,y)
for i < j by

L(0,y) = QL*(0,y) + CoLa(y). (20)

To this set of equations, we add arbitrary values for
L§*(x,1) (when i > j) and L (2,1) (when i > j)

and L? 76 (0,y) (when ¢ < j). Relnterpretlng the ODE:s in
(16)-(17) as PDEs evolving in the triangular domain 7,
with horizontal characteristic lines (since there is only an
evolution along the x axis), it is possible to adjust the
results from [15, Theorem 3.2] to guarantee that the set
of PDEs and ODEs (15)-(20) has a unique solution which
is piecewise continuous.The boundedness of transformation
(12)-(14) is a direct consequence of the structure of the
transform (identities, integral operator and matrices) and
the regularity of the different kernels. Its invertibility is a
consequence of the structure of the transformation which is
block triangular with the blocks on the diagonal being either
identities (for the ODEs) or invertible Volterra operators (for
the PDEs).The invertible backstepping transformation (12)-
(14) maps the original system (1)-(6) to the following target
system

£(t) = Ao(t) + Galt, 1) + Ga X (t), 1)
a(t,0) = QB(t,0) + Co&(t) + (Q(0) — 7a(0)) X1 (t)

+/O F(y)a(t,y) + F7(y)B(t, y)dy, (22)
ai(t, ) + At (t,x) = Gi(z)a(t, 1), (23)
5t(ta x) - Aiﬂr(t ‘T) = G2($)a(t, 1)7 24)
B(t,1) = Ra(t,1), X1(t) = A1 X1(t) + Era(t,1). (25)

The functions G and G5 satisfy

Gi(z) = / L (2, y)G1(y) + L (2,y)G2(y)dy
— L*(z, AT +

Ga(x) = / LP(2, )G () + L7 (2, )Ga(y)dy
— LP%(z, 1)AT + LPP(2,1)A" R — y5(2) E;.

The set of equations (26)-(27) has a unique solution (Volterra
equations of the second kind [31]). The matrices G'3 and
G4 are defined by G3(z) = La(z,1)A”"R — Ly(z, 1)AT +
fO L1 Gl( )+L2(I’)G2(l‘))d$, and G4(£Z?) = Eo’}/g((])‘i’
LO(Q*yg( ) — Ya/(0)). Finally, the matrix F'# the matrix F'*
are defined by F(y) = L**(0,y) = QL *(0,y) = CoL1(y),
and FP(y) = LY3(0,y) — QLPP(0,y) — CoLa(y). Note that
F< is strictly lower triangular due to equation (20). The
measurement Y (¢) remains unchanged.

Laﬁ(xal)A_R_'ya(x)Eh (26)

27)

B. Observer equations

We can now design an observer for the target system (21)-
(25). The observer state (5, B, X1) is the solution of a set
of equations that is a copy of the original dynamics to which
we add dynamical output injection gains. We denote Y (t) =
Y (t) — CX;(t), the difference between the real output and
the observer output. The observer equations read as

E(t) = Aof(t) + Gsa(t,1) + Ga Xy (t) — Oo(Y),  (28)
a(t,0) = QB(E, 0) + Cof (1) + (Qrp(0) — 7 (0) X1 (1)

/ F)alt,y) + FP () (t.y)dy — OL(V),
Ay (t, o) + A+a3;(t,1') = Gi(z)a(t, 1) —

(29)

Ou(z,Y), (30)



Bt(t,ac) — A_Bw(tmc) = Ga(z)a(t,1) — Og(z, 17), (31)
B(t,1) = Ra(t, 1),
X1(t) = A Xy (1) + Era(t, 1)~ L, CY, (32)

with any (arbitrary) initial conditions in . The stable oper-
ators O; still have to be defined. Substracting the observer
dynamics to the real one, we obtain the error system

£(t) = Aoé(t) + Gsa( 1)+ GaXi(t) + Oo(Y),  (33)
a(t,0) = Co&(t) + QB(t,0) + (Qv5(0) — 7a(0)) X1 (t)

+ /O F(y)a(t,y) + FP(y)B(t,y)dy + O1(Y),  (34)
a(t,z) + Ay (t, ) = Gi(z)alt,1) + Ou(z,Y)  (35)
Bt(t x) — A‘Bw(t, x) = Ga(x)a(t, 1) + Op(z, }7) (36)
B(t,1) = Ra(t, 1), (37)
Xi(t) = A, X0 (1) + Brat, 1). (38)

The objective is now to tune the different operators O; such
that the error system exponentially converges to zero. To do
so, it is sufficient to show the convergence of &, &(t,1) and
X, to zero. More precisely, we have the following lemma

Lemma 1: If £(t), a&(t,1) and Xl( ) exponentially con-
verge to zero, then the state (5 ,a, 3, X 1) converges to zero
in the sense of the y-norm. This implies the convergence of
the observer state to the real state.

Proof: Due to the stability of the observer operators and
using the transport structure of (35) and (36), the exponential
convergence of X; and &(t, 1) to zero imply the exponential
convergence of the states &(t,z) and 5(¢, z). |

C. Design of the operators O;

We now want to define the operators O; such that &, a(t, 1)
and X, exponentially converge to zero. The analysis will be
done in the Laplace domain. The Laplace transform 2 of
equation (38) yields

(sI — A1) X1(s) = Era(s, 1). (39)

Due to Assumption 1, the matrix (sI — /}1) is invertible
on C*. This implies Y(s) = C(sI — A;)"1Eia(s,1).
Thus, we obtain &(s,1) = Py (s)Y(s), where P is a
left-inverse of P in (9). This in turns implies Xl( ) =
(sI — Ay)"'E, P (s)Y (s). This means that the terms that
are functions X; and a(s, 1) that appear in the error system
can directly be compensated using the observer gains. In
particular, we can define Oy as

O0(Y () = —(G3Py (s) + Ga(sI—
A)TIE P (5))Y (s) (40)

so that equation (33) can be rewritten as (sI — Ag)&(s) =0,
which implies the exponential convergence of £ to zero due
to Assumption 1. Similarly, to get rid of the terms G; and
G, we define the operators O, (x,Y) and Og(xz,Y) by

On(x,Y) = —G1(z) P (5)Y (s) (41)
Op(a,Y) = =Ga(a) P ()Y (5), (42)

2We omit the effect of the initial condition when taking the Laplace
transform since it does not modify the stability analysis [18]

such that equations (35)-(36) rewrite as transport equations.
Indeed, for ¢ > /\% + i, for every 1 < i < n and every
1 < j < m we now have for every x € [0, 1]

x
N 0) (43)

x) :ZR- A (
k=1
1

In what follows, we consider that ¢ > N + L. The
design of the operator O; is more involved since this
operator must compensate almost all the terms that appear in
equation (34) (including the integral terms). To design this
observer operator, we will omit the term Cyé that appear
in equation (34) since this term exponentially converges to
zero. For all 1 <4 < n, we aim to obtain

ZZszRu&e t— — = %50)7

k=1/¢=1

). (44)

(45)

so that &(-,0) will exponentially converge to zero in virtue
of Assumption 3 (see [6] for details). Since the matrix
F< is strictly lower triangular, we will recursively compute
the different components of ;. Consider the first line
of equation (34) expressed in the Laplace domain. Using
equations (43)-(44), we obtain

a1(s,0) = ((Q15(0) = 7a(0)) X1 + (O1(Y)

+ Z Z QuxRice” #r 3 dy(s,0)

k=1/¢=1

/ Z V)Ryee Q(i‘;we*idz(s,O)du,
0 k=1¢=
which gives (O3 (7))1 = —((Q4(0) - <o>><s1 Ay

v

Elfff(s)y(s)){ D DR By fo lk V)Ryee
e *edv(Py ()Y (s))e. By induction, let us consider ¢ > 1
and assume that for any j < ¢, we have managed to design
the j" component of our observer operator (J; such that
equation (45) holds. Consequently, using the triangular

structure or F'*, we obtain for any y € [0, 1]

(F(y)alt,y) z—z v)a;(t,y) (46)
=S r0 iimma—i—i )
4 i J M )\Ja )
j=1 k=1¢=1

where the last equality holds since j < <. Consequently, the
 line of equation (34) now reads as

@i(s,0) = ((Qv(0) — 7a(0) X1)i +

+ Z Z QirRiee” #r 3 (s, 0)

klél

o s(1-v)
/ )nge Kk d((&l)dv
0 k= 113 1

(01(Y));

m n

+ /0 Z Fyw)) ) Q i Rice % e 7 dig(s, 1)dv.
j=1

k=1/¢=1



To reach the desired target (as given by equation (45)) we
choose

A
3
s
=
=
=
=
3
I

~((Qy5(0) = 7 (0))(sT = A1)~!

m n 1 st
Z Z /0 F;}(u)ijnge_

sy _ s
e mkdy
s(1—v)

E\ P (s)

(P (s)Y(s))e — /0 F (v)Ryee™ dv

(47)

We can now write the following theorem

Theorem 1: Consider the operators Oy, O, Og, Oq,
respectively defined by equations (40), (41), (42) and (47).
Define the observer states (Xo, 4,0, X1) = (f, ,B,Xl)
where the transformation T is defined by equation (12) (14)
and where (§ A, B3, X 1) is the solution of the system (21)-
(25). Then the state (X, 1,0, Xl) exponentially converges
to (Xo,u,v,X1) in the sense of the x-norm.

Proof: With this choice of operators, we have already
shown that X; and ¢ exponentially converges to zero.
Moreover the recursive design of O; implies that for all
t > /\ + —, all i < n, az(t 0) is solutlon of &;(t,0) =

dohet 2 1szRk£Oéz( o ,0) + (9(5), where O
is a linear bounded operator. Thus a(t,0) exponentially
converges to zero (Assumption 3), which in turns imply
the exponential convergence of G(t, 1) due to equation (43).
Consequently, Lemma 1 implies that the state (&, @, 5, X1)
exponentially converges to zero for the y-norm. Using the
invertibility and boundedness of the linear transformation 7,
we can easily conclude the proof. [ ]
Using the linearity and invertibility of the different backstep-
ping transformations, it is possible to express the observer
system (28)-(32) in the original coordinates. This is omitted
due to space restrictions.

Remark 1: In a similar way to what has been done in [26,
Chapter 7] for the control and observer design in the 2 4 2
case, it is possible (thanks to Assumption 3) to low-pass filter
the measured output signal Y (¢) to use only strictly proper
observer operators. Indeed, without filtering, the observer
operators J; may not be strictly proper (due to the use of
the left inverses) and the observer system may consequently
be sensitive to delays in the measurements.

Remark 2: The proposed observer could be combined
with existing state-feedback laws [14], [17] to obtain output-
feedback controllers. Note that we are currently extending the
results of [10] to deal with the case of non-scalar hyperbolic
systems using assumptions that are less restrictive than those
existing in the literature.

IV. STABLE LEFT-INVERSION ALGORITHM

In the construction of the observer, a stable left-inverse is
required for the ODE system. In this section, we present
a simple procedure to construct a stable left-inverse for
Py (s). This procedure is given in order to give a complete,
self-contained method in this paper and also to present an
alternative, in many cases simpler, to the computation of a
Hermite normal form of a matrix.

A. Preliminary Definitions

Recall that Assumption 2 guarantees that P (s) is full-
column rank for all s € C*. Furthermore, taking det(sl, —

1211) as a common denominator (of degree ¢, with all its roots
in the complex open left half-plane) we can factor Pj(s)
as Pi(s) = WP{‘““‘( s), where PM™(s) has real

polynomial entries of degree at most g—1 (it is a d X n matrix
over a Principal Ideal Domain, which is in fact an Euclidean
Domain, see e.g. [3]). The full-column rank property for

s € C* also applies to P™™(s).

Given a list of real polynomials P = (I1(s),l2(s),...l;(s)),
we will denote by ged(lq,l2,...;) the polynomial great-
est common divisor of the elements of P, and by
(a1(s),a2(s),...,a;(s)) = bezout(ly,ls,...l;) a corre-
sponding list of real polynomial coefficients such that
o7 ak(s)lk(s) = ged(ly, lo, ...15).

In order to construct a left-inverse for P"™(s) we will
first transform it into an upper-triangular form. One possible
upper-triangular form is the Hermite normal form, see for
instance Theorem 2.9, in [3, Ch. 5]. However, in practice
we do not require the uniqueness provided by this normal
form, and it might be simpler to find a different upper-
trlangular form with the right properties. We provide a simple
method that allows for one such construction. We begin
defining some matrices that we will use to operate on the
rows of PM™(s) to construct the desired upper-triangular
form. The hrst matrix, a d X d upper-triangular matrix with
real polynomial entries (of degree at most g— 1) will allow us
to replace the i-th row of a matrix by a combination of that
row and the following ones and allow us to place a “pivot”
element in the diagonal of the transformed matrix:

i I 0i—1,d—i+1
Tp[cz,. 7Cd]( )= Od—ir1i1 Ulciy..., cal(s) (48)
where Ulc;, ..., cq](s) is any d—i+1 x d— i+ 1 polynomial

matrix with full rank for s € C* and having as first row
the polynomials [c;, ..., ¢q]. Note that a particular choice for
this matrix would be the unimodular (invertible) matrix used
to construct the Hermite normal form (see for instance the
matrix U; in the inductive proof of Theorem 2.9 in [3, Ch.
5]), it is also worth mentioning that, unlike the construction
of the Hermite normal form, we do not require the elements
above the diagonal to belong to a set of residues modulo the
element on the diagonal. We believe that for the application
considered in this paper, this formulation simplifies the
necessary computations since, in many cases, one can simply
complete the first line with d — ¢ adequately chosen rows of
the identity I;_;11, as long as one avoids rank deficiencies
in C* (trivial if at least one of the cj polynomials has no
roots in CT). A second, d x d lower-triangular matrix with
with real polynomial entries, T} [p; 1, ..., pal(s), will allow
us eliminate the elements under the previously constructed
“pivot”. It is constructed by replacing all the elements below
the diagonal on the ¢’th column of a d x d identity matrix,
by the column of polynomials [p;1, ..., pa]”.

B. Construction of a stable left-inverse

A stable left-inverse of Pj(s) can then be found by a
method similar to Gaussian elimination detailed in Algorithm
1. Let us remark that a completely analogous algorithm can
be used to find a stable right-inverse in the control case
(simply acting on the columns of the transfer matrix, instead
of the rows, or transposing the system).

If the reader already knows P(s), the Hermite normal form
of PM"™(s) and associated unimodular matrix 7'(s) such that



P(s) =

T(s)PM™™(s), they can skip directly to step 11 of

the algorithm. Remark that we do not require the classical
condition of the Hermite normal form of having the elements
above the diagonal (in the full column rank case) belonging
to a complete set of residues modulo the elements of the
diagonal (see [3, Ch. 5]), which also simplifies the procedure.

Algorithm 1

R IR A it e

._
=

11:

. Py (s)  det(s],

P(s) < PM™(s)

T(S) — 1y

fori=1[1,2,...,n] do
(ciy - ) <— bezout(P;.q;(s))
P(s) < Tylci, s cal(s)P(s)
T(s) + TZ’,[ci7 ey cal(8)T'(s)
(pi+17 7pd) = ‘PZ+1 d,l(s)/PZﬂ( )
P(s) < T} [pit1,---spal(s)P(s)
T'(s) < T} [Pit1, - pal()T(5)

end for > At the end
of this loop, we obtain an upper triangular polynomial
matrix P(s) with Hurwitz polynomials on the diagonal
and zeros below the diagonal.

P(s) < [In 0n,4-n] P(s) > We extract the first n
rows of the matrix P(s), which are full rank in C*.
T(s) « P7Y(s)[I, Opn,a—n]T(s) > P, at this
step a square, triangular matrix with Hurwitz polynomial
entries in the diagonal, has a trivial stable inverse, and
T'(s) is therefore a stable, left inverse of Py'™(s)

— A1)T(s) > Py (s) now contains a
stable, left-inverse of P;(s)

V. CONCLUDING REMARKS

In this paper, we have designed a dynamic observer for a
class of n + m linear hyperbolic ODE-PDE-ODE systems.
The proposed approach combines backstepping transforma-
tions and frequency-domain design methods. The resulting
observer requires the computation of a stable left-inverse,
for which we have proposed a simple constructive procedure
that can be easier to construct than a Hermite normal form.
This observer can be combined with existing state-feedback
control laws to obtain output-feedback controllers. In future
works we will consider networks of ODE and PDEs with a
more complex structure (star-shaped networks).
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