Jean Auriol 
  
Federico Bribiesca Argomedo 
  
Observer design for n + m linear hyperbolic ODE-PDE-ODE systems

In this paper, an observer design is presented for a system of n+m hetero-directional transport partial differential equations (PDEs) coupled on both boundaries of the domain to ordinary differential equations (ODEs). This class of systems can represent, for instance, actuator and load dynamics at the boundaries of a hyperbolic system. The results in this paper provide a constructive way to reconstruct the state of the ODEs and the PDEs using only available measurements on one of the two ODEs. This observer design completes existing fullstate feedback designs for this class of systems and enables, together with previous results, the construction of outputfeedback stabilizers. As a complementary result, this paper includes a simple (constructive) method to obtain a stable leftinverse of a specific transfer matrix required in the observer design, which can also be applied (after a transposition) to the computation of the analogous stable right-inverses required for the control design.

I. INTRODUCTION

Many recent publications have focused on the control of interconnections involving hyperbolic PDEs (particularly ODE-PDE-ODE systems where the ODEs correspond to actuator and load dynamics). Indeed, this class of systems can model, e.g., the propagation of torsional waves in drilling systems [START_REF] Aarsnes | Torsional vibrations with bit off bottom: Modeling, characterization and field data validation[END_REF] or deepwater construction vessels [START_REF] Stensgaard | Subsea hardware installation from a FDPSO[END_REF] (where the top of a cable is attached to a crane on a vessel at the ocean surface and the bottom attached to equipment to be installed at the seafloor).

Interconnections of hyperbolic PDEs and ODEs are not a new problem. Most constructive control results in the literature for these systems are based on the backstepping approach. Indeed, in the seminal paper [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF], a reinterpretation of the classical Finite Spectrum Assignment [START_REF] Manitius | Finite spectrum assignment problem for systems with delays[END_REF] was proposed, modeling ODEs with input delays as PDE-ODE interconnections. Subsequently, this result has enabled the design of observers, controllers, or parameter estimation methods for a plethora of interconnected systems: systems with varying delays [START_REF] Bekiaris-Liberis | Nonlinear control under nonconstant delays[END_REF], [START_REF] Bresch-Pietri | Commande robuste de systèmes à retard variable: Contributions théoriques et applications au contrôle moteur[END_REF], cascades of PDEs [START_REF] Auriol | Delay robust state feedback stabilization of an underactuated network of two interconnected PDE systems[END_REF]. Of particular note are results concerning cascaded interconnections of hyperbolic PDE-ODE systems, such as [START_REF] Aamo | Disturbance rejection in 2 x 2 linear hyperbolic systems[END_REF], [START_REF] Hasan | Boundary observer design for hyperbolic PDE-ODE cascade systems[END_REF], [START_REF] Zhou | Boundary stabilization of a coupled wave-ode system with internal anti-damping[END_REF]. More recently, constructive results on non-cascaded PDE-ODE systems have been proposed. In particular, a stabilizing state-feedback control law has been proposed in [START_REF] Di Meglio | Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems[END_REF], [START_REF] Wang | Control of a 2× 2 coupled linear hyperbolic system sandwiched between 2 ODEs[END_REF]. Recently, a backstepping approach has been proposed in [START_REF] Deutscher | A backstepping approach to output regulation for coupled linear wave-ode systems[END_REF] for the output regulation for coupled linear wave-ODE systems. Some results also concern other types of PDE-ODE interconnections, such as parabolic PDEs, e.g. [START_REF] Tang | State and output feedback boundary control for a coupled PDE-ODE system[END_REF], [START_REF] Auriol | A differential-delay estimator for thermoacoustic oscillations in a Rijke tube using indomain pressure measurements[END_REF], [START_REF] De Andrade | Backstepping stabilization of a linearized ODE-PDE rijke tube model[END_REF], however this class of systems is beyond the scope of this article.

Regarding ODE-hyperbolic PDE-ODE systems with full interconnections (not limited to cascades), a stabilizing observer-controller robust to delays has been proposed in the case of a scalar proximal ODE in [START_REF] Di Meglio | Robust output feedback stabilization of an ODE-PDE-ODE interconnection[END_REF]. In [START_REF] Deutscher | Output feedback control of general linear heterodirectional hyperbolic ODE-PDE-ODE systems[END_REF], an outputfeedback controller is designed based on assumptions that guarantee the existence of a Byrnes-Isidori normal form for the proximal ODE, as well as a relative degree one condition. These restrictions are partially avoided in [START_REF] Bou Saba | Backstepping stabilization of 2× 2 linear hyperbolic pdes coupled with potentially unstable actuator and load dynamics[END_REF] for the case of a scalar PDE system as the proximal ODE is simply assumed to be minimum phase for the output that affects the PDE. In [START_REF] Bou Saba | Strictly proper control design for the stabilization of 2 × 2 linear hyperbolic ODE-PDE-ODE systems[END_REF], a strictly-proper control law was proposed using less restrictive assumptions on the structure of the ODE components. This approach was later extended in [START_REF] Wang | Delay-compensated control of sandwiched ODE-PDE-ODE hyperbolic systems for oil drilling and disaster relief[END_REF] to encompass a state-observer (thus allowing the design of an output-feedback controller). However, the PDE subsystem is still assumed to be scalar in this work. Some recent results have also been obtained for interconnected PDE systems with non-linear ODEs [START_REF] Irscheid | Observer design for 2× 2 linear hyperbolic PDEs that are bidirectionally coupled with nonlinear ODEs[END_REF].

This paper deals with observer design for systems of n+m linear first-order hyperbolic Partial Differential Equations coupled with Ordinary Differential Equations at both boundaries of a one-dimensional spatial domain. The available measurements are obtained from one of the ODEs. The proposed approach extends the methodology introduced in [START_REF] Bou Saba | Strictly proper control design for the stabilization of 2 × 2 linear hyperbolic ODE-PDE-ODE systems[END_REF] to n+m transport equations (instead of 1+1), and combines the backstepping methodology with time-delay approaches. The assumptions made on the structure of the ODE components do not require the system to be of relative degree 1, nor to be in a specific canonical form. As such, existing results in the literature do not cover this class of systems. Our approach relies on the backstepping methodology. Using an invertible integral transformation, we map the system into a simpler target system. Then, we design a state observer for this target system using a time-delay representation and an analysis in the Laplace domain. The proposed design relies on the stable dynamic left-inversion of the (measured) ODE dynamics. We present a simple constructive procedure to find such a stable left-inverse. This procedure requires the same condition on the transfer function (full-column rank for all s ∈ C + ) than presented in Theorem 2 of [START_REF] Moylan | Stable inversion of linear systems[END_REF], yet operates directly on the transfer function instead of requiring switching back and forth between a frequencydomain and time-domain representations. In practice, a statespace realisation of this inverse system will only be found after adding an adequate low-pass filter, as in the case of the control (e.g. [START_REF] Bou Saba | Strictly proper control design for the stabilization of 2 × 2 linear hyperbolic ODE-PDE-ODE systems[END_REF]). Such a filtering procedure also guarantees the existence of robustness margins.

The paper is organized as follows: in Section II, we present the problem under consideration, as well as the hypotheses required for the observer design. In Section III, we design the state-observer using the backstepping methodology. In Section IV we present a simple constructive procedure to construct the a stable left-inverse for the ODE dynamics. Some concluding remarks are given in Section V.

Notations We denote the state space

χ = R p × L 2 ([0, 1]; R) n+m × R q ,
where p, n, m, q are positive integers.

For

(X 0 , u, v, X 1 ) ∈ χ, we introduce the corresponding χ-norm ||(X 0 , u, v, X 1 )|| 2 χ = ||X 0 || 2 R p + ||u|| 2 L 2 + ||v|| 2 L 2 + ||X 1 || 2 R q .
The variable s denotes the Laplace variable. To simplify the notations, the Laplace transform of a function f (t) (provided it is well-defined) will be denoted f (s). The space C + corresponds to the complex right half plane: C + = {s ∈ C, Re(s) ≥ 0}. The notation I r stands for the r × r identity matrix (if the dimensions are not ambiguous, the subindex will be omitted).

II. PROBLEM STATEMENT

A. Presentation of the system

In this paper, we consider a n+m linear hetero-directional hyperbolic system coupled through its boundaries with linear ODEs:

Ẋ0 (t) = A 0 X 0 (t) + E 0 v(t, 0), (1) 
u(t, 0) = C 0 X 0 (t) + Qv(t, 0), (2) 
u t + Λ + u x = Σ ++ (x)u(t, x) + Σ +-(x)v(t, x), (3) v t -Λ -v x = Σ -+ (x)u(t, x) + Σ --(x)v(t, x), (4) v(t, 1) = Ru(t, 1) + C 1 X 1 (t), (5) 
Ẋ1 (t) = A 1 X 1 (t) + E 1 u(t, 1), (6) 
defined for a.e.

(t, x) ∈ [0, +∞] × [0, 1]. The state of the system is (X 0 (t), u(t, •), v(t, •), X 1 (t)) ∈ χ.
The initial condition is taken as ((X 0 ) 0 , u 0 , v 0 , (X 1 ) 0 ) ∈ χ and we consider weak solutions to (1)-( 6) [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF]. The system is wellposed in the sense of [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF]Theorem A.6, page 254]. The matrices Λ + and Λ -are diagonal and represent the transport velocities. We have Λ + = diag (λ i ) and Λ -= diag (µ i ) and we assume that their coefficients satisfy

-µ m < • • • < -µ 1 < 0 < λ 1 < • • • < λ n .
The spatially-varying matrices Σ •• are continuous (each coefficient of the matrix is a continuous function). With no loss of generality, we assume that the matrices Σ ++ and Σ --have zero diagonal elements [START_REF] Deutscher | Output feedback control of general linear heterodirectional hyperbolic ODE-PDE-ODE systems[END_REF]. The different coupling matrices satisfy

A 0 ∈ R p×p , E 0 ∈ R p×m , C 0 ∈ R n×p , A 1 ∈ R q×q , E 1 ∈ R q×n , C 1 ∈ R m×q , R ∈ R m×n , Q ∈ R n×m .
As we consider an observer design problem in this paper, and since the system under consideration is linear, we do not consider any control input in the system. We measure a part of one of the ODE state (as it is the case for drilling applications [START_REF] Aarsnes | Torsional vibrations with bit off bottom: Modeling, characterization and field data validation[END_REF]), i.e. the measurement Y (t) is defined by

Y (t) . = CX 1 (t), (7) 
where C ∈ R d×q , d ≥ n. Having d ≥ n means that the number of measurements is greater than the dimension of the PDE state u. Without this assumption, it may not be possible to reconstruct the value of the function u(t, 1). As no result currently exist for under-measured hyperbolic PDE systems, it is a reasonable assumption.

B. General objectives

The objective of this paper is to design a state observer for the system (1)-( 6) based on the available measurement Y (t) given by equation [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF]. Even if the velocities are considered constant here, the proposed methodology could be extended to the case of spatially-varying transport velocities (following the approach given in [START_REF] Hu | Boundary exponential stabilization of 1-dimensional inhomogeneous quasi-linear hyperbolic systems[END_REF]). Note that, due to the symetry of the system, measuring the X 0 state would not change the nature of the problem.

C. Assumptions

Similarly to what has been done in [START_REF] Bou Saba | Strictly proper control design for the stabilization of 2 × 2 linear hyperbolic ODE-PDE-ODE systems[END_REF], we make the following assumptions Assumption 1: The pairs (A 1 , C), (A 0 , C 0 ) are detectable (i.e. there exist L 0 ∈ R p×n and L 1 ∈ R q×d such that Ã1 . = A 1 + L 1 C and Ã0 . = A 0 + L 0 C 0 are Hurwitz). Assumption 1 is a classical requirement found in most of the papers dealing with ODE-PDE-ODE systems [START_REF] Gehring | A systematic backstepping design of tracking controllers for ODE-PDE-ODE systems with nonlinear actuator dynamics[END_REF], [START_REF] Deutscher | Output feedback control of general linear heterodirectional hyperbolic ODE-PDE-ODE systems[END_REF]. It is not overly conservative since without the detectability of (A 0 , C 0 ) it becomes impossible to reconstruct the X 0 -state independently of the PDE or interconnection structure. The detectability condition on (A 1 , C) allows us to for a simpler observer design (no modes of X 1 are reconstructed indirectly through the PDE). It results in a set of conditions that can be easily tested.

Assumption 2: For all s ∈ C + , the matrices

(A 1 , E 1 , C) satisfy rank ( sI -A 1 E 1 C 0 ) = q + n. (8) 
This last assumption (that requires d ≥ n) serves multiples purposes. First, it implies that C and E 1 are not identically zero. It is necessary to observe the PDE and the X 1 states from the available measurements. Under Assumption 2, the function

P 1 (s) . = C(sI -Ã1 ) -1 E 1 (9) 
does not have any zeros in C + that is common to all its components. Thus, the function P 1 (s) admits a left inverse (denoted P - 1 ) whose entries have no unstable poles (such a left inverse is not proper) [START_REF] Moylan | Stable inversion of linear systems[END_REF]. A possible choice is given by the Moore-Penrose left inverse P - 1 (s) = (P T 1 (s)P 1 (s)) -1 P T 1 (s) (which should be verified to be stable a posteriori). If this is not stable, then a more involved stable inversion procedure is needed, an example of which is given in Section IV. This assumption is directly used in the constructive design of a observer and can be tested in a simple way.

Assumption 3: The system defined for all i ∈ [1, n] by

z(t) = m k=1 n ℓ=1 Q ik R kℓ z(t - 1 µ k - 1 λ ℓ ), (10) 
is exponentially stable. Assumption 3 constitutes a reasonable assumption since it prevents system (1)-( 6) from having an asymptotic chain of eigenvalues with non-negative real parts [START_REF] Hale | Introduction to functional differential equations[END_REF], [START_REF] Auriol | An explicit mapping from linear first order hyperbolic PDEs to difference systems[END_REF]. It has been shown in [START_REF] Logemann | Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop[END_REF] that having an open-loop transfer function with an infinite number of poles on the closed right half-plane implies no (delay-)robustness margins in closed-loop (i.e., the introduction of any arbitrarily small delay in the actuation will destabilize the closed-loop system). Therefore, Assumption 3 is slightly stronger than a necessary condition for delay-robust stabilization and guarantees exponential stability of system system (1)- [START_REF] Auriol | An explicit mapping from linear first order hyperbolic PDEs to difference systems[END_REF]. If the delays are rationally independent 1 , Assumption 3 is equivalent to the following condition [START_REF] Hale | Introduction to functional differential equations[END_REF]: sup

θ kℓ ∈[0,2π] n×m Sp ( m k=1 n ℓ=1 Q ik R kℓ exp(jθ kℓ )) < 1,
where Sp denotes the spectral radius and j is the imaginary unit. This condition is simplified if the delays are rationally dependent. Furthermore, since the spectral radius of a matrix is upper-bounded by any norm of the matrix, easy to compute sufficient conditions for this spectral radius condition to hold can be derived using different norms of the matrices involved at the cost of increased conservatism.

III. OBSERVER DESIGN

The objective of this section is to design a state-observer for the system (1)-( 6) using the available measurement [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF]. In what follows, we denote with a • superscript the estimated states and with a • superscript the error state, i.e. the difference between the real state and the observer state. The objective is that the estimated state converges to the real state or equivalently that the error state, converges to 0, in the sense of the χ-norm. To simplify the computations and the design of the observer, we will work with a target system obtained from ( 1)-( 6) using a backstepping transformation, for which the in-domain coupling terms Σ •• have been moved to the boundary. Then, we design a state-observer that is a copy of this dynamics with some output injection operators.

A. Backstepping transformation

Inspired by [START_REF] Hu | Boundary exponential stabilization of 1-dimensional inhomogeneous quasi-linear hyperbolic systems[END_REF], we use an integral transformation to move the local coupling terms Σ •• to the boundary (in the form of integral terms). Consider the Volterra transformation T , similar to the one introduced in [START_REF] Hu | Boundary exponential stabilization of 1-dimensional inhomogeneous quasi-linear hyperbolic systems[END_REF], [START_REF] Auriol | An explicit mapping from linear first order hyperbolic PDEs to difference systems[END_REF] 

X 0 (t) = ξ(t) - 1 0 L 1 (y)α(y) + L 2 (y)β(y)dy,(11) u(t, x) = α(t, x) - 1 x L αα (x, y)α(y)dy - 1 x L αβ (x, y)β(y)dy + γ α (x)X 1 (t), (12) v(t, x) = β(t, x) - 1 x L βα (x, y)α(y)dy, - 1 x L ββ (x, y)β(y)dy + γ β (x)X 1 (t), (13) X 1 (t) = X 1 (t), (14) 
where the kernels are bounded functions defined either on

T u = {(x, y) ∈ [0, 1] 2 , x ≤ y}, or [0, 1]. This transformation rewrites (X 0 , u, v, X 1 ) = T (ξ, α, β, X 1 ). Denoting Λ = diag(Λ + , -Λ-), Σ = Σ ++ Σ +- Σ -+ Σ -- and L = L αα L αβ L βα L ββ , γ = (γ α , γ β ), we obtain ΛL x + L y Λ = Σ(x)L, Λγ x (x) = Σ(x)γ -γ ⊤ A 1 (15) (L 1 (x)) x Λ + = A 0 L 1 (x) + E 0 L βα (0, x) -L 0 (L αα (0, x) -QL βα (0, x) -C 0 L 1 (x)), ( 16 
) (L 2 (x)) x Λ -= -A 0 L 2 (x) -E 0 L ββ (0, x) + L 0 (L αβ (0, x) -QL ββ (0, x) -C 0 L 2 (x)), (17) 
with the boundary conditions [START_REF] Hasan | Boundary observer design for hyperbolic PDE-ODE cascade systems[END_REF] and γ α (1) = 0, γ β (1) = C 1 . Finally, we define L αα ij (0, y) for i ≤ j by

ΛL(x, x) -L(x, x)Λ = Σ(x), (18) 
L 1 (0) = L 0 (Λ + ) -1 , L 2 (0)Λ -= L 1 (0)Λ + Q + E 0 ,
L αα (0, y) = QL βα (0, y) + C 0 L 1 (y). (20) 
To this set of equations, we add arbitrary values for L αα ij (x, 1) (when i > j) and L ββ ij (x, 1) (when i > j) and L ββ ij (0, y) (when i ≤ j). Reinterpreting the ODEs in ( 16)- [START_REF] Gehring | A systematic backstepping design of tracking controllers for ODE-PDE-ODE systems with nonlinear actuator dynamics[END_REF] as PDEs evolving in the triangular domain T u with horizontal characteristic lines (since there is only an evolution along the x axis), it is possible to adjust the results from [START_REF] Di Meglio | Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems[END_REF]Theorem 3.2] to guarantee that the set of PDEs and ODEs ( 15)-( 20) has a unique solution which is piecewise continuous.The boundedness of transformation ( 12)-( 14) is a direct consequence of the structure of the transform (identities, integral operator and matrices) and the regularity of the different kernels. Its invertibility is a consequence of the structure of the transformation which is block triangular with the blocks on the diagonal being either identities (for the ODEs) or invertible Volterra operators (for the PDEs).The invertible backstepping transformation ( 12)-( 14) maps the original system (1)-( 6) to the following target system

ξ(t) = Ã0 ξ(t) + G 3 α(t, 1) + G 4 X 1 (t), (21) 
α(t, 0) = Qβ(t, 0) + C 0 ξ(t) + (Qγ β (0) -γ α (0))X 1 (t) + 1 0 F α (y)α(t, y) + F β (y)β(t, y)dy, (22) 
α t (t, x) + Λ + α x (t, x) = G 1 (x)α(t, 1), ( 23 
) β t (t, x) -Λ -β x (t, x) = G 2 (x)α(t, 1), (24) 
β(t, 1) = Rα(t, 1), Ẋ1 (t) = A 1 X 1 (t) + E 1 α(t, 1). ( 25 
)
The functions G 1 and G 2 satisfy

G 1 (x) = 1 x L αα (x, y)G 1 (y) + L αβ (x, y)G 2 (y)dy -L αα (x, 1)Λ + + L αβ (x, 1)Λ -R -γ α (x)E 1 , (26) 
G 2 (x) = 1 x L βα (x, y)G 1 (y) + L ββ (x, y)G 2 (y)dy -L βα (x, 1)Λ + + L ββ (x, 1)Λ -R -γ β (x)E 1 . (27) 
The set of equations ( 26)-( 27) has a unique solution (Volterra equations of the second kind [START_REF] Yoshida | Lectures on differential and integral equations[END_REF]). The matrices G 3 and G 4 are defined by

G 3 (x) = L 2 (x, 1)Λ -R -L 1 (x, 1)Λ + + 1 0 (L 1 (x)G 1 (x)+L 2 (x)G 2 (x))dx, and G 4 (x) = E 0 γ β (0)+ L 0 (Qγ β (0) -γ α (0)).
Finally, the matrix F β the matrix F α are defined by F α (y) = L αα (0, y)-QL βα (0, y)-C 0 L 1 (y), and F β (y) = L αβ (0, y) -QL ββ (0, y) -C 0 L 2 (y). Note that F α is strictly lower triangular due to equation [START_REF] Hu | Boundary exponential stabilization of 1-dimensional inhomogeneous quasi-linear hyperbolic systems[END_REF]. The measurement Y (t) remains unchanged.

B. Observer equations

We can now design an observer for the target system ( 21)- [START_REF] Moylan | Stable inversion of linear systems[END_REF]. The observer state ( ξ, α, β, X1 ) is the solution of a set of equations that is a copy of the original dynamics to which we add dynamical output injection gains. We denote Ỹ (t) = Y (t) -C X1 (t), the difference between the real output and the observer output. The observer equations read as

ξ(t) = Ã0 ξ(t) + G 3 α(t, 1) + G 4 X1 (t) -O 0 ( Ỹ ), (28) 
α(t, 0) = Q β(t, 0) + C 0 ξ(t) + (Qγ β (0) -γ α (0)) X1 (t) + 1 0 F α (y)α(t, y) + F β (y) β(t, y)dy -O 1 ( Ỹ ), (29) 
αt (t, x) + Λ + αx (t, x) = G 1 (x) α(t, 1) -O α (x, Ỹ ), ( 30 
)
βt (t, x) -Λ - βx (t, x) = G 2 (x)α(t, 1) -O β (x, Ỹ ), (31) 
β(t, 1) = R α(t, 1), Ẋ1 (t) = A 1 X1 (t) + E 1 α(t, 1)-L 1 C Ỹ , (32) 
with any (arbitrary) initial conditions in χ. The stable operators O i still have to be defined. Substracting the observer dynamics to the real one, we obtain the error system

ξ(t) = Ã0 ξ(t) + G 3 α(t, 1) + G 4 X1 (t) + O 0 ( Ỹ ), (33) 
α(t, 0) = C 0 ξ(t) + Q β(t, 0) + (Qγ β (0) -γ α (0)) X1 (t) + 1 0 F α (y)α(t, y) + F β (y) β(t, y)dy + O 1 ( Ỹ ), (34) 
αt (t, x) + Λ + αx (t, x) = G 1 (x) α(t, 1) + O α (x, Ỹ ) (35) βt (t, x) -Λ - βx (t, x) = G 2 (x)α(t, 1) + O β (x, Ỹ ) (36) β(t, 1) = R α(t, 1), (37) Ẋ1 (t) = Ã1 X1 (t) + E 1 α(t, 1). ( 38 
)
The objective is now to tune the different operators O i such that the error system exponentially converges to zero. To do so, it is sufficient to show the convergence of ξ, α(t, 1) and X1 to zero. More precisely, we have the following lemma Lemma 1: If ξ(t), α(t, 1) and X1 (t) exponentially converge to zero, then the state ( ξ, α, β, X1 ) converges to zero in the sense of the χ-norm. This implies the convergence of the observer state to the real state.

Proof: Due to the stability of the observer operators and using the transport structure of ( 35) and (36), the exponential convergence of X1 and α(t, 1) to zero imply the exponential convergence of the states α(t, x) and β(t, x).

C. Design of the operators O i

We now want to define the operators O i such that ξ, α(t, 1) and X1 exponentially converge to zero. The analysis will be done in the Laplace domain. The Laplace transform 2 of equation ( 38) yields

(sI -Ã1 ) X1 (s) = E 1 α(s, 1). ( 39 
)
Due to Assumption 1, the matrix (sI -Ã1 ) is invertible on C + . This implies Ỹ (s) = C(sI -Ã1 ) -1 E 1 α(s, 1). Thus, we obtain α(s, 1) = P - 1 (s) Ỹ (s), where P - 1 is a left-inverse of P 1 in ( 9). This in turns implies X1 (s) = (sI -Ã1 ) -1 E 1 P - 1 (s) Ỹ (s). This means that the terms that are functions X1 and α(s, 1) that appear in the error system can directly be compensated using the observer gains. In particular, we can define O 0 as

O 0 ( Ỹ (s)) = -(G 3 P - 1 (s) + G 4 (sI- Ã1 ) -1 E 1 P - 1 (s)) Ỹ (s) (40) 
so that equation (33) can be rewritten as (sI -Ã0 ) ξ(s) = 0, which implies the exponential convergence of ξ to zero due to Assumption 1. Similarly, to get rid of the terms G 1 and G 2 , we define the operators O α (x, Ỹ ) and O β (x, Ỹ ) by 2 We omit the effect of the initial condition when taking the Laplace transform since it does not modify the stability analysis [START_REF] Hale | Introduction to functional differential equations[END_REF] such that equations ( 35)-(36) rewrite as transport equations. Indeed, for t > 1 λ1 + 1 µ1 , for every 1 ≤ i ≤ n and every 1 ≤ j ≤ m we now have for every

O α (x, Ỹ ) = -G 1 (x)P - 1 (s) Ỹ (s) (41) O β (x, Ỹ ) = -G 2 (x)P - 1 (s) Ỹ (s), (42) 
x ∈ [0, 1] αi (t, x) = αi (t - x λ i , 0) (43) βj (t, x) = n k=1 R jk αk (t - 1 -x µ j , 1). ( 44 
)
In what follows, we consider that t > 1 λ1 + 1 µ1 . The design of the operator O 1 is more involved since this operator must compensate almost all the terms that appear in equation (34) (including the integral terms). To design this observer operator, we will omit the term C 0 ξ that appear in equation ( 34) since this term exponentially converges to zero. For all 1 ≤ i ≤ n, we aim to obtain

αi (t, 0) = m k=1 n ℓ=1 Q ik R kℓ αℓ (t - 1 µ k - 1 λ ℓ , 0), (45) 
so that α(•, 0) will exponentially converge to zero in virtue of Assumption 3 (see [START_REF] Auriol | An explicit mapping from linear first order hyperbolic PDEs to difference systems[END_REF] for details). Since the matrix F α is strictly lower triangular, we will recursively compute the different components of O 1 . Consider the first line of equation ( 34) expressed in the Laplace domain. Using equations ( 43)-( 44), we obtain

α1 (s, 0) = ((Qγ β (0) -γ α (0)) X1 ) 1 + (O 1 ( Ỹ )) 1 + m k=1 n ℓ=1 Q 1k R kℓ e -s µ k -s λ ℓ αℓ (s, 0) + 1 0 m k=1 n ℓ=1 F β 1k (ν)R kℓ e - s(1-ν) µ k e -s λ ℓ αℓ (s, 0)dν, which gives (O 1 ( Ỹ )) 1 = -((Qγ β (0) -γ α (0))(sI -Ã1 ) -1 E 1 P - 1 (s) Ỹ (s)) 1 - m k=1 n ℓ=1 1 0 F β 1k (ν)R kℓ e - s(1-ν) µ k e -s
λ ℓ dν(P - 1 (s) Ỹ (s)) ℓ . By induction, let us consider i > 1 and assume that for any j < i, we have managed to design the j th component of our observer operator O 1 such that equation (45) holds. Consequently, using the triangular structure or F α , we obtain for any y ∈ [0, 1]

(F α (y) α(t, y)) i = i-1 j=1 F α ij (y) αj (t, y) (46) 
= i-1 j=1 F α ij (y) m k=1 n ℓ=1 Q jk R kℓ αℓ (t - 1 µ k - y λ j , 1),
where the last equality holds since j < i. Consequently, the i th line of equation (34) now reads as

αi (s, 0) = ((Qγ β (0) -γ α (0)) X1 ) i + (O 1 ( Ỹ )) i + m k=1 n ℓ=1 Q ik R kℓ e -s µ k -s λ ℓ αℓ (s, 0) + 1 0 m k=1 n ℓ=1 F β ik (ν)R kℓ e - s(1-ν) µ k αℓ (s, 1)dν + 1 0 i j=1 F α ij (ν) m k=1 n ℓ=1 Q jk R kℓ e -sν
λ j e -s µ k αℓ (s, 1)dν.

To reach the desired target (as given by equation ( 45)) we choose

(O 1 ( Ỹ )) i = -((Qγ β (0) -γ α (0))(sI -Ã1 ) -1 E 1 P - 1 (s) Ỹ (s)) i - i j=1 m k=1 n ℓ=1 1 0 F α ij (ν)Q jk R kℓ e -sν λ j e -s µ k dν (P - 1 (s) Ỹ (s)) ℓ - m k=1 n ℓ=1 1 0 F β 1k (ν)R kℓ e - s(1-ν) µ k dν • (P - 1 (s) Ỹ (s)) ℓ . (47) 
We can now write the following theorem Theorem 1: Consider the operators O 0 , O α , O β , O 1 , respectively defined by equations ( 40), ( 41), ( 42) and (47). Define the observer states ( X0 , û, v, X1 ) = T ( ξ, α, β, X1 ), where the transformation T is defined by equation ( 12)-( 14) and where ( ξ, α, β, X1 ) is the solution of the system ( 21)- [START_REF] Moylan | Stable inversion of linear systems[END_REF]. Then the state ( X0 , û, v, X1 ) exponentially converges to (X 0 , u, v, X 1 ) in the sense of the χ-norm.

Proof: With this choice of operators, we have already shown that X1 and ξ exponentially converges to zero. Moreover, the recursive design of O 1 implies that for all

t > 1 λ1 + 1 µ1 , all i ≤ n, αi (t, 0) is solution of αi (t, 0) = m k=1 n ℓ=1 Q ik R kℓ αℓ (t -1 µ k -1 λ ℓ , 0) + O( ξ),
where O is a linear bounded operator. Thus, α(t, 0) exponentially converges to zero (Assumption 3), which in turns imply the exponential convergence of α(t, 1) due to equation (43). Consequently, Lemma 1 implies that the state ( ξ0 , α, β, X1 ) exponentially converges to zero for the χ-norm. Using the invertibility and boundedness of the linear transformation T , we can easily conclude the proof. Using the linearity and invertibility of the different backstepping transformations, it is possible to express the observer system (28)- [START_REF] Zhou | Boundary stabilization of a coupled wave-ode system with internal anti-damping[END_REF] in the original coordinates. This is omitted due to space restrictions.

Remark 1: In a similar way to what has been done in [START_REF] Redaud | Practical output regulation and tracking for linear ODE-hyperbolic PDE-ODE systems[END_REF]Chapter 7] for the control and observer design in the 2 + 2 case, it is possible (thanks to Assumption 3) to low-pass filter the measured output signal Y (t) to use only strictly proper observer operators. Indeed, without filtering, the observer operators O i may not be strictly proper (due to the use of the left inverses) and the observer system may consequently be sensitive to delays in the measurements.

Remark 2:

The proposed observer could be combined with existing state-feedback laws [START_REF] Deutscher | Output feedback control of general linear heterodirectional hyperbolic ODE-PDE-ODE systems[END_REF], [START_REF] Gehring | A systematic backstepping design of tracking controllers for ODE-PDE-ODE systems with nonlinear actuator dynamics[END_REF] to obtain outputfeedback controllers. Note that we are currently extending the results of [START_REF] Bou Saba | Strictly proper control design for the stabilization of 2 × 2 linear hyperbolic ODE-PDE-ODE systems[END_REF] to deal with the case of non-scalar hyperbolic systems using assumptions that are less restrictive than those existing in the literature.

IV. STABLE LEFT-INVERSION ALGORITHM

In the construction of the observer, a stable left-inverse is required for the ODE system. In this section, we present a simple procedure to construct a stable left-inverse for P 1 (s). This procedure is given in order to give a complete, self-contained method in this paper and also to present an alternative, in many cases simpler, to the computation of a Hermite normal form of a matrix.

A. Preliminary Definitions

Recall that Assumption 2 guarantees that P 1 (s) is fullcolumn rank for all s ∈ C + . Furthermore, taking det(sI q -Ã1 ) as a common denominator (of degree q, with all its roots in the complex open left half-plane) we can factor P 1 (s) as P 1 (s) . = 1 det(sIq-Ã1) P num 1 (s), where P num 1 (s) has real polynomial entries of degree at most q-1 (it is a d×n matrix over a Principal Ideal Domain, which is in fact an Euclidean Domain, see e.g. [START_REF] Adkins | Algebra: An approach via module theory[END_REF]). The full-column rank property for s ∈ C + also applies to P num 1 (s). Given a list of real polynomials P = (l 1 (s), l 2 (s), ...l j (s)), we will denote by gcd(l 1 , l 2 , ...l j ) the polynomial greatest common divisor of the elements of P, and by (a 1 (s), a 2 (s), ..., a j (s)) .

= bezout(l 1 , l 2 , ...l j ) a corresponding list of real polynomial coefficients such that j k=1 a k (s)l k (s) = gcd(l 1 , l 2 , ...l j ). In order to construct a left-inverse for P num 1 (s) we will first transform it into an upper-triangular form. One possible upper-triangular form is the Hermite normal form, see for instance Theorem 2.9, in [START_REF] Adkins | Algebra: An approach via module theory[END_REF]Ch. 5]. However, in practice we do not require the uniqueness provided by this normal form, and it might be simpler to find a different uppertriangular form with the right properties. We provide a simple method that allows for one such construction. We begin defining some matrices that we will use to operate on the rows of P num 1 (s) to construct the desired upper-triangular form. The first matrix, a d × d upper-triangular matrix with real polynomial entries (of degree at most q-1) will allow us to replace the i-th row of a matrix by a combination of that row and the following ones and allow us to place a "pivot" element in the diagonal of the transformed matrix:

T i p [ci, ..., c d ](s) . = Ii-1 0 i-1,d-i+1 0 d-i+1,i-1 U [ci, ..., c d ](s) (48) 
where U [c i , ..., c d ](s) is any d -i + 1 × d -i + 1 polynomial matrix with full rank for s ∈ C + and having as first row the polynomials [c i , ..., c d ]. Note that a particular choice for this matrix would be the unimodular (invertible) matrix used to construct the Hermite normal form (see for instance the matrix U 1 in the inductive proof of Theorem 2.9 in [3, Ch. 5]), it is also worth mentioning that, unlike the construction of the Hermite normal form, we do not require the elements above the diagonal to belong to a set of residues modulo the element on the diagonal. We believe that for the application considered in this paper, this formulation simplifies the necessary computations since, in many cases, one can simply complete the first line with d -i adequately chosen rows of the identity I d-i+1 , as long as one avoids rank deficiencies in C + (trivial if at least one of the c k polynomials has no roots in C + ). A second, d × d lower-triangular matrix with with real polynomial entries, T i l [p i+1 , ..., p d ](s), will allow us eliminate the elements under the previously constructed "pivot". It is constructed by replacing all the elements below the diagonal on the i'th column of a d × d identity matrix, by the column of polynomials [p i+1 , ..., p d ] T .

B. Construction of a stable left-inverse

A stable left-inverse of P 1 (s) can then be found by a method similar to Gaussian elimination detailed in Algorithm 1. Let us remark that a completely analogous algorithm can be used to find a stable right-inverse in the control case (simply acting on the columns of the transfer matrix, instead of the rows, or transposing the system).

If the reader already knows P (s), the Hermite normal form of P num 1 (s) and associated unimodular matrix T (s) such that P (s) = T (s)P num 1 (s), they can skip directly to step 11 of the algorithm. Remark that we do not require the classical condition of the Hermite normal form of having the elements above the diagonal (in the full column rank case) belonging to a complete set of residues modulo the elements of the diagonal (see [START_REF] Adkins | Algebra: An approach via module theory[END_REF]Ch. 5]), which also simplifies the procedure. (p i+1 , ..., p d ) = -P i+1:d,i (s)/P i,i (s) T (s) ← T i l [p i+1 , ..., p d ](s)T (s) 10: end for ▷ At the end of this loop, we obtain an upper triangular polynomial matrix P (s) with Hurwitz polynomials on the diagonal and zeros below the diagonal. 11: P (s) ← [I n 0 n,d-n ] P (s)

▷ We extract the first n rows of the matrix P (s), which are full rank in C + . 12: T (s) ← P -1 (s) [I n 0 n,d-n ] T (s)

▷ P , at this step a square, triangular matrix with Hurwitz polynomial entries in the diagonal, has a trivial stable inverse, and T (s) is therefore a stable, left inverse of P num 1 (s) 13: P - 1 (s) ← det(sI q -Ã1 )T (s) ▷ P - 1 (s) now contains a stable, left-inverse of P 1 (s)

V. CONCLUDING REMARKS

In this paper, we have designed a dynamic observer for a class of n + m linear hyperbolic ODE-PDE-ODE systems. The proposed approach combines backstepping transformations and frequency-domain design methods. The resulting observer requires the computation of a stable left-inverse, for which we have proposed a simple constructive procedure that can be easier to construct than a Hermite normal form. This observer can be combined with existing state-feedback control laws to obtain output-feedback controllers. In future works we will consider networks of ODE and PDEs with a more complex structure (star-shaped networks).

Algorithm 1 1 :

 1 P (s) ← P num 1 (s) 2: T (s) ← I d 3: for i = [1, 2, ..., n] do 4: (c i , ..., c d ) ← bezout(P i:d,i (s)) 5: P (s) ← T i p [c i , ..., c d ](s)P (s) 6:T (s) ← T i p [c i , ..., c d ](s)T (s)7:

8 :

 8 P (s) ← T i l [p i+1 , ..., p d ](s)P (s)

	9:
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Extending the variable z, it is always possible to rewrite the system in a situation where the delays are rationally independent[START_REF] Hale | Introduction to functional differential equations[END_REF] Chapter 9].