
A Topological Tree of Shapes

Nicolas Passat(1) & Yukiko Kenmochi(2)

(1) Université de Reims Champagne-Ardenne, CReSTIC, Reims, France

(2) Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France

DGMM 2022, Strasbourg, 26 October 2022



Introduction



Foreword

How to visualize/quantify topological differences between

and ?

For example, we can use tools of persistent homology:

Context

● Grey-level imaging

● Morphological hierarchies

● Topological descriptors

Motivations

● Morphological hierarchies as topological descriptors

→ “Beyond persistent homology”

Contributions

● New hierarchical models

● Unification of well-known hierarchical models

● Theoretical study

1



Foreword

Context

● Grey-level imaging

● Morphological hierarchies

● Topological descriptors

Motivations

● Morphological hierarchies as topological descriptors

→ “Beyond persistent homology”

Contributions

● New hierarchical models

● Unification of well-known hierarchical models

● Theoretical study

1



Foreword

Context

● Grey-level imaging

● Morphological hierarchies

● Topological descriptors

Motivations

● Morphological hierarchies as topological descriptors

→ “Beyond persistent homology”

Contributions

● New hierarchical models

● Unification of well-known hierarchical models

● Theoretical study

1



Foreword

Context

● Grey-level imaging

● Morphological hierarchies

● Topological descriptors

Motivations

● Morphological hierarchies as topological descriptors

→ “Beyond persistent homology”

Contributions

● New hierarchical models

● Unification of well-known hierarchical models

● Theoretical study

1



Graphical abstract (for those who are too tired. . . )

Grey-level image

Max-treeMin-tree Adjacency tree

+

Graph of valued shapes

Tree of valued shapes

Complete tree of shapes

Tree of shapes Topological tree of shapes

Topological monotonic tree

Transitive reduction

Lossless compression

Lossy compression

Lossy compression

2



Overview

Introduction

Component-tree

Component-tree as a topological descriptor

Step 1 – Enrichment: Graph of valued shapes

Step 2 – Simplification: Tree of valued shapes

Step 3 – Compression: New trees of shapes

Links between hierarchical structures

Conclusion

3



Component-tree



Grey-level images

Space, values, image

● Space U = Zn (n ≥ 2) endowed with digital topology

(but other tesselations of Rn would work. . . )

● Values V ≃ Z (i.e. endowed with a total order ⩽V)
● Image = function F ∶ U→ V

4



Grey-level images

Space, values, image

● Space U = Zn (n ≥ 2) endowed with digital topology

(but other tesselations of Rn would work. . . )

● Values V ≃ Z (i.e. endowed with a total order ⩽V)
● Image = function F ∶ U→ V

4



Thresholding(s), binary images

Thresholding(s)

● Λ○v(F) ⊆ U: upper threshold set of F at value v (in white)

● Λ●v(F) ⊆ U: lower threshold set of F at value v (in black)

5



Thresholding(s), binary images

Thresholding(s)

● Λ○v(F) ⊆ U: upper threshold set of F at value v (in white)

● Λ●v(F) ⊆ U: lower threshold set of F at value v (in black)

5



Thresholding(s), binary images

Thresholding(s)

● Λ○v(F) ⊆ U: upper threshold set of F at value v (in white)

● Λ●v(F) ⊆ U: lower threshold set of F at value v (in black)

5



Thresholding(s), binary images

Thresholding(s)

● Λ○v(F) ⊆ U: upper threshold set of F at value v (in white)

● Λ●v(F) ⊆ U: lower threshold set of F at value v (in black)

5



Thresholding(s), binary images

Thresholding(s)

● Λ○v(F) ⊆ U: upper threshold set of F at value v (in white)

● Λ●v(F) ⊆ U: lower threshold set of F at value v (in black)

5



Thresholding(s), binary images

Thresholding(s)

● Λ○v(F) ⊆ U: upper threshold set of F at value v (in white)

● Λ●v(F) ⊆ U: lower threshold set of F at value v (in black)

5



Thresholding(s), binary images

Thresholding(s)

● Λ○v(F) ⊆ U: upper threshold set of F at value v (in white)

● Λ●v(F) ⊆ U: lower threshold set of F at value v (in black)

5



Thresholding(s), binary images

Thresholding(s)

● Λ○v(F) ⊆ U: upper threshold set of F at value v (in white)

● Λ●v(F) ⊆ U: lower threshold set of F at value v (in black)

5



Connected components (CCs)

Connected components of a threshold set

● X ∈ 2U: a CC of F at value v

● Θ ⊂ 2U: the set of all the CCs of F at all values v

6



Connected components (CCs)

Connected components of a threshold set

● X ∈ 2U: a CC of F at value v

● Θ ⊂ 2U: the set of all the CCs of F at all values v

6



Connected components (CCs)

Connected components of a threshold set

● X ∈ 2U: a CC of F at value v

● Θ ⊂ 2U: the set of all the CCs of F at all values v

6



Connected components (CCs)

Connected components of a threshold set

● X ∈ 2U: a CC of F at value v

● Θ ⊂ 2U: the set of all the CCs of F at all values v

6



Connected components (CCs)

Connected components of a threshold set

● X ∈ 2U: a CC of F at value v

● Θ ⊂ 2U: the set of all the CCs of F at all values v

6



Component-tree

Ordering on Θ

Two CCs X ,Y ∈ Θ are either:

● non-intersecting: X ∩Y = ∅; or
● included one in the other: X ⊆ Y

Ô⇒ The partial ordering ⊆ has a specific structure

Ð→ Its Hasse diagram is a tree.

Component-tree

Component-tree = Hasse diagram of (Θ,⊆)
If Θ is induced by:

● upper thresholding → max-tree

● lower thresholding → min-tree

7



Component-tree

Ordering on Θ

Two CCs X ,Y ∈ Θ are either:

● non-intersecting: X ∩Y = ∅; or
● included one in the other: X ⊆ Y

Ô⇒ The partial ordering ⊆ has a specific structure

Ð→ Its Hasse diagram is a tree.

Component-tree

Component-tree = Hasse diagram of (Θ,⊆)
If Θ is induced by:

● upper thresholding → max-tree

● lower thresholding → min-tree

7



Component-tree: max-tree

0

1

2

3

4

5

6

7

8



Component-tree: min-tree

0

1

2

3

4

5

6

7

9



Component-tree: max-tree and min-tree

0

1

2

3

4

5

6

7

10



Valued connected components

Connected components of a threshold set

● X ∈ 2U: a CC of F at value v

● Θ ⊂ 2U: the set of all the CCs of F at all values v

We can enrich the CCs with the values at which they are defined.

Valued connected components of a threshold set

● (X , v) ∈ 2U×V: a valued CC of F at value v

● Ξ ⊂ 2U×V: the set of all the valued CCs of F at all values v

11



Valued connected components

Connected components of a threshold set

● X ∈ 2U: a CC of F at value v

● Θ ⊂ 2U: the set of all the CCs of F at all values v

We can enrich the CCs with the values at which they are defined.

Valued connected components of a threshold set

● (X , v) ∈ 2U×V: a valued CC of F at value v

● Ξ ⊂ 2U×V: the set of all the valued CCs of F at all values v

11



Ordering on valued connected components

Ordering on CCs

● CC: X ∈ 2U
→ Set of CCs: Θ ⊆ 2U
→ Ordering on Θ : X ⊆ Y

Ordering on valued CCs

● Valued CC: (X , v) ∈ 2U×V
→ Set of CCs: Ξ ⊆ 2U×V
→ Ordering on Ξ :

((X , v) ⊑ (Y ,w))⇔ (X ⊆ Y∧w ⩽ v) (max-tree)

((X , v) ⊑ (Y ,w))⇔ (X ⊆ Y∧w ⩾ v) (min-tree)

12



Ordering on valued connected components

Ordering on CCs

● CC: X ∈ 2U
→ Set of CCs: Θ ⊆ 2U
→ Ordering on Θ : X ⊆ Y

Ordering on valued CCs

● Valued CC: (X , v) ∈ 2U×V
→ Set of CCs: Ξ ⊆ 2U×V
→ Ordering on Ξ :

((X , v) ⊑ (Y ,w))⇔ (X ⊆ Y∧w ⩽ v) (max-tree)

((X , v) ⊑ (Y ,w))⇔ (X ⊆ Y∧w ⩾ v) (min-tree)

12



Valued component-tree

Component-tree

Component-tree = Hasse diagram of (Θ,⊆)
If Θ is generated by:

● upper thresholding → max-tree

● lower thresholding → min-tree

Valued component-tree

Valued component-tree = Hasse diagram of (Ξ,⊑)
If Ξ is generated by:

● upper thresholding → valued max-tree

● lower thresholding → valued min-tree

13



Valued component-tree

Component-tree

Component-tree = Hasse diagram of (Θ,⊆)
If Θ is generated by:

● upper thresholding → max-tree

● lower thresholding → min-tree

Valued component-tree

Valued component-tree = Hasse diagram of (Ξ,⊑)
If Ξ is generated by:

● upper thresholding → valued max-tree

● lower thresholding → valued min-tree

13



Component-tree: max-tree and min-tree

0

1

2

3

4

5

6

7

14



Valued component-tree: valued max-tree and valued min-tree

0

1

2

3

4

5

6

7

15



Component-tree as a topological

descriptor



Topological description of images

Binary images

● Low-level: Euler characteristics, Betti numbers. . .

● High-level: homology groups, homotopy. . .

● Hierarchical: adjacency tree

Grey-level images

● High-level: persistent homology

● Hierarchical: component-tree, tree of shapes

16



Topological description of images

Binary images

● Low-level: Euler characteristics, Betti numbers. . .

● High-level: homology groups, homotopy. . .

● Hierarchical: adjacency tree

Grey-level images

● High-level: persistent homology

● Hierarchical: component-tree, tree of shapes

16



Persistent homology vs. Component-trees

Both compute binary images by thresholding, ∀v ∈ V (“timeline”).

Then, for each binary image,

● persistent homology computes homology groups

● component-trees compute CCs

Persistent homology Component-trees

Foreground/background CCs + +
3D handles (tunnels) + −
Component creation/deletion + +
Component merging/splitting − +

, max-tree + min tree: richer descriptor for grey-level images.

/ No topological links between min- and max-trees.

Component-trees as topological descriptor: a step forward

Add topological links between valued min- and max-trees thanks to the

notion of adjacency-tree.

17



Persistent homology vs. Component-trees

Both compute binary images by thresholding, ∀v ∈ V (“timeline”).

Then, for each binary image,

● persistent homology computes homology groups

● component-trees compute CCs

Persistent homology Component-trees

Foreground/background CCs + +
3D handles (tunnels) + −
Component creation/deletion + +
Component merging/splitting − +

, max-tree + min tree: richer descriptor for grey-level images.

/ No topological links between min- and max-trees.

Component-trees as topological descriptor: a step forward

Add topological links between valued min- and max-trees thanks to the

notion of adjacency-tree.

17



Persistent homology vs. Component-trees

Both compute binary images by thresholding, ∀v ∈ V (“timeline”).

Then, for each binary image,

● persistent homology computes homology groups

● component-trees compute CCs

Persistent homology Component-trees

Foreground/background CCs + +
3D handles (tunnels) + −
Component creation/deletion + +
Component merging/splitting − +

, max-tree + min tree: richer descriptor for grey-level images.

/ No topological links between min- and max-trees.

Component-trees as topological descriptor: a step forward

Add topological links between valued min- and max-trees thanks to the

notion of adjacency-tree.
17



Step 1 – Enrichment: Graph of

valued shapes



Adjacency tree: a topological descriptor for binary images

Adjacency tree

● B ⊆ U is a binary image foreground and B = U ∖B its

complement

● ΘB the CCs of B and of B

● ⊑ψ the order relation “nested” on ΘB

X ⊑ψ Y ⇔ τ(X ) ⊆ τ(Y ) with τ the “hole closing” operator

● Adjacency tree of B = Hasse diagram of (ΘB ,⊑ψ)

18



Adjacency tree: a topological descriptor for binary images

Adjacency tree

● B ⊆ U is a binary image foreground and B = U ∖B its

complement

● ΘB the CCs of B and of B

● ⊑ψ the order relation “nested” on ΘB

X ⊑ψ Y ⇔ τ(X ) ⊆ τ(Y ) with τ the “hole closing” operator

● Adjacency tree of B = Hasse diagram of (ΘB ,⊑ψ)

18



Adjacency tree: a topological descriptor for binary images

Adjacency tree

● B ⊆ U is a binary image foreground and B = U ∖B its

complement

● ΘB the CCs of B and of B

● ⊑ψ the order relation “nested” on ΘB

X ⊑ψ Y ⇔ τ(X ) ⊆ τ(Y ) with τ the “hole closing” operator

● Adjacency tree of B = Hasse diagram of (ΘB ,⊑ψ)

18



Adjacency tree: a topological descriptor for binary images

Adjacency tree

● B ⊆ U is a binary image foreground and B = U ∖B its

complement

● ΘB the CCs of B and of B

● ⊑ψ the order relation “nested” on ΘB

X ⊑ψ Y ⇔ τ(X ) ⊆ τ(Y ) with τ the “hole closing” operator

● Adjacency tree of B = Hasse diagram of (ΘB ,⊑ψ)

18



Adjacency tree: a topological descriptor for binary images

Adjacency tree

● B ⊆ U is a binary image foreground and B = U ∖B its

complement

● ΘB the CCs of B and of B

● ⊑ψ the order relation “nested” on ΘB

X ⊑ψ Y ⇔ τ(X ) ⊆ τ(Y ) with τ the “hole closing” operator

● Adjacency tree of B = Hasse diagram of (ΘB ,⊑ψ)

18



Graph of valued shapes: General idea

Idea: enriching the information of an image F carried by

● the valued min-tree

● the valued max-tree

. . . with additional information

● carried by the adjacency tree

● for each binary image

● at each threshold set of F

In other words

Modeling topological relations between the valued min- and

max-trees by the adjacency trees

19



Graph of valued shapes: General idea

Idea: enriching the information of an image F carried by

● the valued min-tree

● the valued max-tree

. . . with additional information

● carried by the adjacency tree

● for each binary image

● at each threshold set of F

In other words

Modeling topological relations between the valued min- and

max-trees by the adjacency trees

19



Graph of valued shapes: General idea

Idea: enriching the information of an image F carried by

● the valued min-tree

● the valued max-tree

. . . with additional information

● carried by the adjacency tree

● for each binary image

● at each threshold set of F

In other words

Modeling topological relations between the valued min- and

max-trees by the adjacency trees

19



Valued min-tree + valued max-tree

0

1

2

3

4

5

6

7
20



Valued min-tree + valued max-tree + 1 adjacency tree

0

1

2

3

4

5

6

7
21



Valued min-tree + valued max-tree + 1 adjacency tree

0

1

2

3

4

5

6

7
22



Valued min-tree + valued max-tree + 1 adjacency tree

0

1

2

3

4

5

6

7
23



Valued min-tree + valued max-tree + 2 adjacency trees

0

1

2

3

4

5

6

7
24



Valued min-tree + valued max-tree + 3 adjacency trees

0

1

2

3

4

5

6

7
25



Valued min-tree + valued max-tree + 4 adjacency trees

0

1

2

3

4

5

6

7
26



Valued min-tree + valued max-tree + 5 adjacency trees

0

1

2

3

4

5

6

7
27



Valued min-tree + valued max-tree + ∑ adjacency trees

0

1

2

3

4

5

6

7
28



Graph of valued shapes: structure

The graph of valued shapes is modeled as (Ξ,⊲Ξ) with
● Ξ = all the valued CCs of the valued min- and max-trees

● ⊲φ the edges of the min-tree and max-tree

● ⊲ψ the edges of all the the adjacency trees

● ⊲Ξ the union of ⊲φ and ⊲ψ

29



Graph of valued shapes: structure

The graph of valued shapes is modeled as (Ξ,⊲Ξ) with
● Ξ = all the valued CCs of the valued min- and max-trees

● ⊲φ the edges of the min-tree and max-tree

● ⊲ψ the edges of all the the adjacency trees

● ⊲Ξ the union of ⊲φ and ⊲ψ

Bad news

The graph of valued shapes is rather complex!

29



Graph of valued shapes: structure

The graph of valued shapes is modeled as (Ξ,⊲Ξ) with
● Ξ = all the valued CCs of the valued min- and max-trees

● ⊲φ the edges of the min-tree and max-tree

● ⊲ψ the edges of all the the adjacency trees

● ⊲Ξ the union of ⊲φ and ⊲ψ

Good news

● The graph of valued shapes is a directed acyclic graph

(DAG)

⇒ It induces an order relation ⊑Ξ
● We can simplify it. . .

29



Step 2 – Simplification: Tree of

valued shapes



Structures of the graph of valued shapes

Structure around a node

Let

● (Ξ,⊲Ξ) be a graph of valued shapes,

● P = (X , v) ∈ Ξ be a node of the graph.

There exist:

● at most one Q ∈ Ξ such that P ⊲φ Q

Ð→ “father” Q = φ(P) of P in the valued min- or max-tree

● at most one R ∈ Ξ such that P ⊲ψ R

Ð→ “father” R = ψ(P) of P in the adjacency tree(s)

30



Structures of the graph of valued shapes

Structure around a node

Let

● (Ξ,⊲Ξ) be a graph of valued shapes,

● P = (X , v) ∈ Ξ be a node of the graph.

There exist:

● at most one Q ∈ Ξ such that P ⊲φ Q

Ð→ “father” Q = φ(P) of P in the valued min- or max-tree

● at most one R ∈ Ξ such that P ⊲ψ R

Ð→ “father” R = ψ(P) of P in the adjacency tree(s)

30



Structures of the graph of valued shapes

Structure around a node

Let

● (Ξ,⊲Ξ) be a graph of valued shapes,

● P = (X , v) ∈ Ξ be a node of the graph.

There exist:

● at most one Q ∈ Ξ such that P ⊲φ Q

Ð→ “father” Q = φ(P) of P in the valued min- or max-tree

● at most one R ∈ Ξ such that P ⊲ψ R

Ð→ “father” R = ψ(P) of P in the adjacency tree(s)

30



Examples: structures of the graph of valued shapes

0

1

2

3

4

5

6

7
31



Examples: structures of the graph of valued shapes

0

1

2

3

4

5

6

7
31



Transitive patterns: characterization

Redundant links

ψ(P) ←Ð P Ð→ φ(P)
If both edges exist, exactly one is redundant by transitivity

Three transitive patterns

1. if ψ(P) = [φ ○ ψ ○ φ](P) then ψ(P) ←Ð P is removed

2. if φ(P) = [φ ○ ψ ○ ψ](P) then P Ð→ φ(P) is removed

3. if φ(P) = [φ∣V∣−2 ○ ψ](P) then P Ð→ φ(P) is removed

32



Transitive patterns: characterization

Redundant links

ψ(P) ←Ð P Ð→ φ(P)
If both edges exist, exactly one is redundant by transitivity

Three transitive patterns

1. if ψ(P) = [φ ○ ψ ○ φ](P) then ψ(P) ←Ð P is removed

2. if φ(P) = [φ ○ ψ ○ ψ](P) then P Ð→ φ(P) is removed

3. if φ(P) = [φ∣V∣−2 ○ ψ](P) then P Ð→ φ(P) is removed

32



Transitive pattern 1

Redundant links

ψ(P) ←Ð P Ð→ φ(P)
If both edges exist, exactly one is redundant by transitivity

Three transitive patterns

1. if ψ(P) = [φ ○ ψ ○ φ](P) then ψ(P) ←Ð P is removed

2.

3.

33



Transitive pattern 1

0

1

2

3

4

5

6

7

34



Transitive pattern 1

0

1

2

3

4

5

6

7

35



Transitive pattern 2

Redundant links

ψ(P) ←Ð P Ð→ φ(P)
If both edges exist, exactly one is redundant by transitivity

Three transitive patterns

●
● if φ(P) = [φ ○ ψ ○ ψ](P) then P Ð→ φ(P) is removed

●

36



Transitive pattern 2

0

1

2

3

4

5

6

7

37



Transitive pattern 2

0

1

2

3

4

5

6

7

38



Transitive pattern 3

Redundant links

ψ(P) ←Ð P Ð→ φ(P)
If both edges exist, exactly one is redundant by transitivity

Three transitive patterns

1.

2.

3. if φ(P) = [φ∣V∣−2 ○ ψ](P) then P Ð→ φ(P) is removed

39



Transitive pattern 3

0

1

2

3

4

5

6

7

40



Transitive pattern 3

0

1

2

3

4

5

6

7

∞

∞
41



Transitive pattern 3

0

1

2

3

4

5

6

7

∞

∞
42



Transitive reduction

Transitive reduction

Removal from the graph of valued shapes (Ξ,⊲Ξ) of all the
redundant (transitive) edges related to the transitive patterns:

1. ψ(P) = [φ ○ ψ ○ φ](P)
2. φ(P) = [φ ○ ψ ○ ψ](P)
3. φ(P) = [φ∣V∣−2 ○ ψ](P)

43



Transitive reduction

Transitive reduction

Removal from the graph of valued shapes (Ξ,⊲Ξ) of all the
redundant (transitive) edges related to the transitive patterns:

1. ψ(P) = [φ ○ ψ ○ φ](P)
2. φ(P) = [φ ○ ψ ○ ψ](P)
3. φ(P) = [φ∣V∣−2 ○ ψ](P)

Before transitive reduction

For each node P ∈ Ξ, we may have either:

● ψ(P) ←Ð P Ð→ φ(P)
● P Ð→ φ(P) (infinite “background” nodes)

● P (node(s) ∞)
43



Transitive reduction

Transitive reduction

Removal from the graph of valued shapes (Ξ,⊲Ξ) of all the
redundant (transitive) edges related to the transitive patterns:

1. ψ(P) = [φ ○ ψ ○ φ](P)
2. φ(P) = [φ ○ ψ ○ ψ](P)
3. φ(P) = [φ∣V∣−2 ○ ψ](P)

After transitive reduction

For each node P ∈ Ξ, we have either:

● ψ(P) ←Ð P

● P Ð→ φ(P)
● P (node(s) ∞)

43



Transitive reduction: before

0

1

2

3

4

5

6

7
44



Transitive reduction: transitive pattern 1

0

1

2

3

4

5

6

7
45



Transitive reduction: transitive patterns 1 & 2

0

1

2

3

4

5

6

7
46



Transitive reduction: transitive patterns 1 & 2 & 3

0

1

2

3

4

5

6

7

∞

∞
47



Tree of valued shapes

Before transitive reduction: graph of valued shapes

Before transitive reduction:

● Graph of valued shapes

● (Ξ,⊲Ξ)
● The graph of valued shapes is a DAG

After transitive reduction: tree of valued shapes

After transitive reduction:

● Tree of valued shapes

● (Ξ,◂Ξ) with ◂Ξ a subset of ⊲Ξ
● The tree of valued shapes is a tree (rooted in ∞)

48



Tree of valued shapes

Before transitive reduction: graph of valued shapes

Before transitive reduction:

● Graph of valued shapes

● (Ξ,⊲Ξ)
● The graph of valued shapes is a DAG

After transitive reduction: tree of valued shapes

After transitive reduction:

● Tree of valued shapes

● (Ξ,◂Ξ) with ◂Ξ a subset of ⊲Ξ
● The tree of valued shapes is a tree (rooted in ∞)

48



Step 3 – Compression: New trees of

shapes



Spatial compression: Complete tree of shape

Nodes with similar supports

P = (X , v), Q = (Y ,w) two nodes of Ξ

If P ≠ Q, 2 possible cases:

● X ≠ Y
● X = Y but v ≠ w

Equivalence classes of nodes

● Equivalence relation: P ∼Θ Q ⇐⇒ X = Y
● Bijection π̃Θ between Ξ/∼Θ and Θ

● π̃Θ induces a homeomorphism between the tree of valued

shapes (Ξ,◂Ξ) and another tree (Θ,◂Θ)
● This new tree (Θ,◂Θ) is called the complete tree of shapes.

● (Θ,◂Θ) is a lossless compression of (Ξ,◂Ξ)

49



Spatial compression: Complete tree of shape

Nodes with similar supports

P = (X , v), Q = (Y ,w) two nodes of Ξ

If P ≠ Q, 2 possible cases:

● X ≠ Y

● X = Y but v ≠ w
Equivalence classes of nodes

● Equivalence relation: P ∼Θ Q ⇐⇒ X = Y
● Bijection π̃Θ between Ξ/∼Θ and Θ

● π̃Θ induces a homeomorphism between the tree of valued

shapes (Ξ,◂Ξ) and another tree (Θ,◂Θ)
● This new tree (Θ,◂Θ) is called the complete tree of shapes.

● (Θ,◂Θ) is a lossless compression of (Ξ,◂Ξ)

49



Spatial compression: Complete tree of shape

Nodes with similar supports

P = (X , v), Q = (Y ,w) two nodes of Ξ

If P ≠ Q, 2 possible cases:

● X ≠ Y
● X = Y but v ≠ w

Equivalence classes of nodes

● Equivalence relation: P ∼Θ Q ⇐⇒ X = Y
● Bijection π̃Θ between Ξ/∼Θ and Θ

● π̃Θ induces a homeomorphism between the tree of valued

shapes (Ξ,◂Ξ) and another tree (Θ,◂Θ)
● This new tree (Θ,◂Θ) is called the complete tree of shapes.

● (Θ,◂Θ) is a lossless compression of (Ξ,◂Ξ)

49



Spatial compression: Complete tree of shape

Nodes with similar supports

P = (X , v), Q = (Y ,w) two nodes of Ξ

If P ≠ Q, 2 possible cases:

● X ≠ Y
● X = Y but v ≠ w

Equivalence classes of nodes

● Equivalence relation: P ∼Θ Q ⇐⇒ X = Y

● Bijection π̃Θ between Ξ/∼Θ and Θ

● π̃Θ induces a homeomorphism between the tree of valued

shapes (Ξ,◂Ξ) and another tree (Θ,◂Θ)
● This new tree (Θ,◂Θ) is called the complete tree of shapes.

● (Θ,◂Θ) is a lossless compression of (Ξ,◂Ξ)

49



Spatial compression: Complete tree of shape

Nodes with similar supports

P = (X , v), Q = (Y ,w) two nodes of Ξ

If P ≠ Q, 2 possible cases:

● X ≠ Y
● X = Y but v ≠ w

Equivalence classes of nodes

● Equivalence relation: P ∼Θ Q ⇐⇒ X = Y
● Bijection π̃Θ between Ξ/∼Θ and Θ

● π̃Θ induces a homeomorphism between the tree of valued

shapes (Ξ,◂Ξ) and another tree (Θ,◂Θ)
● This new tree (Θ,◂Θ) is called the complete tree of shapes.

● (Θ,◂Θ) is a lossless compression of (Ξ,◂Ξ)

49



Spatial compression: Complete tree of shape

Nodes with similar supports

P = (X , v), Q = (Y ,w) two nodes of Ξ

If P ≠ Q, 2 possible cases:

● X ≠ Y
● X = Y but v ≠ w

Equivalence classes of nodes

● Equivalence relation: P ∼Θ Q ⇐⇒ X = Y
● Bijection π̃Θ between Ξ/∼Θ and Θ

● π̃Θ induces a homeomorphism between the tree of valued

shapes (Ξ,◂Ξ) and another tree (Θ,◂Θ)

● This new tree (Θ,◂Θ) is called the complete tree of shapes.

● (Θ,◂Θ) is a lossless compression of (Ξ,◂Ξ)

49



Spatial compression: Complete tree of shape

Nodes with similar supports

P = (X , v), Q = (Y ,w) two nodes of Ξ

If P ≠ Q, 2 possible cases:

● X ≠ Y
● X = Y but v ≠ w

Equivalence classes of nodes

● Equivalence relation: P ∼Θ Q ⇐⇒ X = Y
● Bijection π̃Θ between Ξ/∼Θ and Θ

● π̃Θ induces a homeomorphism between the tree of valued

shapes (Ξ,◂Ξ) and another tree (Θ,◂Θ)
● This new tree (Θ,◂Θ) is called the complete tree of shapes.

● (Θ,◂Θ) is a lossless compression of (Ξ,◂Ξ)

49



Spatial compression: Complete tree of shape

Nodes with similar supports

P = (X , v), Q = (Y ,w) two nodes of Ξ

If P ≠ Q, 2 possible cases:

● X ≠ Y
● X = Y but v ≠ w

Equivalence classes of nodes

● Equivalence relation: P ∼Θ Q ⇐⇒ X = Y
● Bijection π̃Θ between Ξ/∼Θ and Θ

● π̃Θ induces a homeomorphism between the tree of valued

shapes (Ξ,◂Ξ) and another tree (Θ,◂Θ)
● This new tree (Θ,◂Θ) is called the complete tree of shapes.

● (Θ,◂Θ) is a lossless compression of (Ξ,◂Ξ)
49



From the tree of valued shapes to the complete tree of shapes

∞

∞
50



From the tree of valued shapes to the complete tree of shapes

∞
51



Complete tree of shapes

52



Topological compression: strong deletability

Strong deletability (Ronse 1986)

X ,D ⊆ U. Y = X ∖D ⊆ U.
D is strongly deletable (from X ) if ⊆ induces:

● a bijection between the CCs of Y and the CCs of X

● a bijection between the CCs of U ∖X and the CCs if U ∖Y

Strong deletability vs. homotopy

● U = Z2: strong deletability ⇔ decreasing homotopy

● U = Z3: strong deletability ⇐ decreasing homotopy

Remarks on strong deletability

, Good topological invariant (pretty good in 2D)

, Easy to manipulate

/ Does not deal with tunnels/handles in 3D

53



Topological compression: strong deletability

Strong deletability (Ronse 1986)

X ,D ⊆ U. Y = X ∖D ⊆ U.
D is strongly deletable (from X ) if ⊆ induces:

● a bijection between the CCs of Y and the CCs of X

● a bijection between the CCs of U ∖X and the CCs if U ∖Y

Strong deletability vs. homotopy

● U = Z2: strong deletability ⇔ decreasing homotopy

● U = Z3: strong deletability ⇐ decreasing homotopy

Remarks on strong deletability

, Good topological invariant (pretty good in 2D)

, Easy to manipulate

/ Does not deal with tunnels/handles in 3D

53



Topological compression: strong deletability

Strong deletability (Ronse 1986)

X ,D ⊆ U. Y = X ∖D ⊆ U.
D is strongly deletable (from X ) if ⊆ induces:

● a bijection between the CCs of Y and the CCs of X

● a bijection between the CCs of U ∖X and the CCs if U ∖Y

Strong deletability vs. homotopy

● U = Z2: strong deletability ⇔ decreasing homotopy

● U = Z3: strong deletability ⇐ decreasing homotopy

Remarks on strong deletability

, Good topological invariant (pretty good in 2D)

, Easy to manipulate

/ Does not deal with tunnels/handles in 3D 53



Topological compression: Topological equivalent relation

Successive nodes

P = (X , v), Q = (Y ,w) two nodes of Ξ such that P Ð→ Q, i.e.

● PÐ→Q or

● PÐ→Q

Relation based on strong deletability

Q ↘ P if

● PÐ→Q
● P is unique (coded in the graph of valued shapes)

● Q ∖ P is strongly deletable (idem)

Equivalence relation

We define the topological equivalence relation ∼H on Ξ as the

reflexive-transitive-symmetric closure of ↘.

54



Topological compression: Topological equivalent relation

Successive nodes

P = (X , v), Q = (Y ,w) two nodes of Ξ such that P Ð→ Q, i.e.

● PÐ→Q or

● PÐ→Q

Relation based on strong deletability

Q ↘ P if

● PÐ→Q

● P is unique (coded in the graph of valued shapes)

● Q ∖ P is strongly deletable (idem)

Equivalence relation

We define the topological equivalence relation ∼H on Ξ as the

reflexive-transitive-symmetric closure of ↘.

54



Topological compression: Topological equivalent relation

Successive nodes

P = (X , v), Q = (Y ,w) two nodes of Ξ such that P Ð→ Q, i.e.

● PÐ→Q or

● PÐ→Q

Relation based on strong deletability

Q ↘ P if

● PÐ→Q
● P is unique (coded in the graph of valued shapes)

● Q ∖ P is strongly deletable (idem)

Equivalence relation

We define the topological equivalence relation ∼H on Ξ as the

reflexive-transitive-symmetric closure of ↘.

54



Topological compression: Topological equivalent relation

Successive nodes

P = (X , v), Q = (Y ,w) two nodes of Ξ such that P Ð→ Q, i.e.

● PÐ→Q or

● PÐ→Q

Relation based on strong deletability

Q ↘ P if

● PÐ→Q
● P is unique (coded in the graph of valued shapes)

● Q ∖ P is strongly deletable (idem)

Equivalence relation

We define the topological equivalence relation ∼H on Ξ as the

reflexive-transitive-symmetric closure of ↘.

54



Topological compression: Topological equivalent relation

Successive nodes

P = (X , v), Q = (Y ,w) two nodes of Ξ such that P Ð→ Q, i.e.

● PÐ→Q or

● PÐ→Q

Relation based on strong deletability

Q ↘ P if

● PÐ→Q
● P is unique (coded in the graph of valued shapes)

● Q ∖ P is strongly deletable (idem)

Equivalence relation

We define the topological equivalence relation ∼H on Ξ as the

reflexive-transitive-symmetric closure of ↘. 54



Topological compression: Topological tree of shape

0

1

2

3

4

5

6

7
55



Topological compression: Topological tree of shape

0

1

2

3

4

5

6

7
56



Topological compression: Topological tree of shape

Topological tree of shapes

● H = Ξ/∼H

● ◂H : the relation on H induced by ◂Ξ on Ξ wrt ∼H
● (H,◂H) is a new tree called the topological tree of shapes

● Decreasing homeomorphism from (Ξ,◂Ξ) to (H,◂H)
● (H,◂Θ) is a lossy compression of (Ξ,◂Ξ)

57



Topological compression: Topological tree of shape

Topological tree of shapes

● H = Ξ/∼H
● ◂H : the relation on H induced by ◂Ξ on Ξ wrt ∼H

● (H,◂H) is a new tree called the topological tree of shapes

● Decreasing homeomorphism from (Ξ,◂Ξ) to (H,◂H)
● (H,◂Θ) is a lossy compression of (Ξ,◂Ξ)

57



Topological compression: Topological tree of shape

Topological tree of shapes

● H = Ξ/∼H
● ◂H : the relation on H induced by ◂Ξ on Ξ wrt ∼H
● (H,◂H) is a new tree called the topological tree of shapes

● Decreasing homeomorphism from (Ξ,◂Ξ) to (H,◂H)
● (H,◂Θ) is a lossy compression of (Ξ,◂Ξ)

57



Topological compression: Topological tree of shape

Topological tree of shapes

● H = Ξ/∼H
● ◂H : the relation on H induced by ◂Ξ on Ξ wrt ∼H
● (H,◂H) is a new tree called the topological tree of shapes

● Decreasing homeomorphism from (Ξ,◂Ξ) to (H,◂H)

● (H,◂Θ) is a lossy compression of (Ξ,◂Ξ)

57



Topological compression: Topological tree of shape

Topological tree of shapes

● H = Ξ/∼H
● ◂H : the relation on H induced by ◂Ξ on Ξ wrt ∼H
● (H,◂H) is a new tree called the topological tree of shapes

● Decreasing homeomorphism from (Ξ,◂Ξ) to (H,◂H)
● (H,◂Θ) is a lossy compression of (Ξ,◂Ξ)

57



Topological tree of shapes

58



Links between hierarchical

structures



Graph of valued shapes vs. morphological trees

The graph of valued shapes (Ξ,⊲Ξ) includes
● the valued max-tree (homeomorphic to the max-tree)

● the valued min-tree (homeomorphic to the min-tree)

● all the adjacency trees at each threshold set

The graph of valued shapes (Ξ,⊲Ξ) includes
● the tree of valued shapes (Ξ,◂Ξ)
and the transformation between both is reversible

59



Graph of valued shapes vs. morphological trees

The graph of valued shapes (Ξ,⊲Ξ) includes
● the valued max-tree (homeomorphic to the max-tree)

● the valued min-tree (homeomorphic to the min-tree)

● all the adjacency trees at each threshold set

The graph of valued shapes (Ξ,⊲Ξ) includes
● the tree of valued shapes (Ξ,◂Ξ)
and the transformation between both is reversible

59



Graph of valued shapes vs. morphological trees

The graph of valued shapes (Ξ,⊲Ξ) includes
● the valued max-tree (homeomorphic to the max-tree)

● the valued min-tree (homeomorphic to the min-tree)

● all the adjacency trees at each threshold set

The graph of valued shapes (Ξ,⊲Ξ) includes
● the tree of valued shapes (Ξ,◂Ξ)
and the transformation between both is reversible

59



Graph of valued shapes vs. morphological trees

The graph of valued shapes (Ξ,⊲Ξ) includes
● the valued max-tree (homeomorphic to the max-tree)

● the valued min-tree (homeomorphic to the min-tree)

● all the adjacency trees at each threshold set

The graph of valued shapes (Ξ,⊲Ξ) includes
● the tree of valued shapes (Ξ,◂Ξ)
and the transformation between both is reversible

59



Tree of valued shapes vs. morphological trees

The tree of valued shapes (Ξ,◂Ξ) is homeomorphic to

● the complete topological tree of shapes

which is homeomorphic to

● the topological tree of shapes

● the tree of shapes (Monasse et al. 2000)

which are both homeomorphic to

● the monotonic tree (Song et al. 2002)

60



Tree of valued shapes vs. morphological trees

The tree of valued shapes (Ξ,◂Ξ) is homeomorphic to

● the complete topological tree of shapes

which is homeomorphic to

● the topological tree of shapes

● the tree of shapes (Monasse et al. 2000)

which are both homeomorphic to

● the monotonic tree (Song et al. 2002)

60



Tree of valued shapes vs. morphological trees

The tree of valued shapes (Ξ,◂Ξ) is homeomorphic to

● the complete topological tree of shapes

which is homeomorphic to

● the topological tree of shapes

● the tree of shapes (Monasse et al. 2000)

which are both homeomorphic to

● the monotonic tree (Song et al. 2002)

60



Tree of valued shapes vs. morphological trees

The tree of valued shapes (Ξ,◂Ξ) is homeomorphic to

● the complete topological tree of shapes

which is homeomorphic to

● the topological tree of shapes

● the tree of shapes (Monasse et al. 2000)

which are both homeomorphic to

● the monotonic tree (Song et al. 2002)

60



Complete, topological and “standard” trees of shapes

61



Conclusion



Contributions

New hierarchical structures

● (DAG) graph of valued shapes

● (Tree) tree of valued shapes

● (Tree) Complete tree of shapes

● (Tree) Topological tree of shapes

Unification of morphological trees

A new vision about the links between:

● component-trees

● trees of shapes

Embedding topology in morphological trees

● Adjacency-trees / component-trees

● Strong deletability / trees of shapes

62



Contributions

New hierarchical structures

● (DAG) graph of valued shapes

● (Tree) tree of valued shapes

● (Tree) Complete tree of shapes

● (Tree) Topological tree of shapes

Unification of morphological trees

A new vision about the links between:

● component-trees

● trees of shapes

Embedding topology in morphological trees

● Adjacency-trees / component-trees

● Strong deletability / trees of shapes

62



Contributions

New hierarchical structures

● (DAG) graph of valued shapes

● (Tree) tree of valued shapes

● (Tree) Complete tree of shapes

● (Tree) Topological tree of shapes

Unification of morphological trees

A new vision about the links between:

● component-trees

● trees of shapes

Embedding topology in morphological trees

● Adjacency-trees / component-trees

● Strong deletability / trees of shapes

62



Contributions

New hierarchical structures

● (DAG) graph of valued shapes

● (Tree) tree of valued shapes

● (Tree) Complete tree of shapes

● (Tree) Topological tree of shapes

Unification of morphological trees

A new vision about the links between:

● component-trees

● trees of shapes

Embedding topology in morphological trees

● Adjacency-trees / component-trees

● Strong deletability / trees of shapes

62



Contributions

New hierarchical structures

● (DAG) graph of valued shapes

● (Tree) tree of valued shapes

● (Tree) Complete tree of shapes

● (Tree) Topological tree of shapes

Unification of morphological trees

A new vision about the links between:

● component-trees

● trees of shapes

Embedding topology in morphological trees

● Adjacency-trees / component-trees

● Strong deletability / trees of shapes

62



Contributions

New hierarchical structures

● (DAG) graph of valued shapes

● (Tree) tree of valued shapes

● (Tree) Complete tree of shapes

● (Tree) Topological tree of shapes

Unification of morphological trees

A new vision about the links between:

● component-trees

● trees of shapes

Embedding topology in morphological trees

● Adjacency-trees / component-trees

● Strong deletability / trees of shapes 62



Contributions

Grey-level image

Max-treeMin-tree Adjacency tree

+

Graph of valued shapes

Tree of valued shapes

Complete tree of shapes

Tree of shapes Topological tree of shapes

Topological monotonic tree

Transitive reduction

Lossless compression

Lossy compression

Lossy compression

63



Perspectives

Theory

● Deeper exploration of the links between trees

● Topological handling in higher dimensions

Algorithmics

● Construction of these new trees / DAGs

● Optimal bounds

Applications

● Grey-scale / fuzzy topology

● Topological data analysis

● Homotopic morphology operators

● Topological image compression

64



Perspectives

Theory

● Deeper exploration of the links between trees

● Topological handling in higher dimensions

Algorithmics

● Construction of these new trees / DAGs

● Optimal bounds

Applications

● Grey-scale / fuzzy topology

● Topological data analysis

● Homotopic morphology operators

● Topological image compression

64



Perspectives

Theory

● Deeper exploration of the links between trees

● Topological handling in higher dimensions

Algorithmics

● Construction of these new trees / DAGs

● Optimal bounds

Applications

● Grey-scale / fuzzy topology

● Topological data analysis

● Homotopic morphology operators

● Topological image compression

64



Thank you!

65


	Introduction
	Component-tree
	Component-tree as a topological descriptor
	Step 1 – Enrichment: Graph of valued shapes
	Step 2 – Simplification: Tree of valued shapes
	Step 3 – Compression: New trees of shapes
	Links between hierarchical structures
	Conclusion

