A Topological Tree of Shapes

Nicolas Passat ${ }^{(1)}$ \& Yukiko Kenmochi ${ }^{(2)}$
(1) Université de Reims Champagne-Ardenne, CReSTIC, Reims, France
(2) Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France

DGMM 2022, Strasbourg, 26 October 2022

Introduction

Foreword

How to visualize/quantify topological differences between

For example, we can use tools of persistent homology:

Foreword

Context

- Grey-level imaging
- Morphological hierarchies
- Topological descriptors

Foreword

Context

- Grey-level imaging
- Morphological hierarchies
- Topological descriptors

Motivations

- Morphological hierarchies as topological descriptors
\rightarrow "Beyond persistent homology"

Foreword

Context

- Grey-level imaging
- Morphological hierarchies
- Topological descriptors

Motivations

- Morphological hierarchies as topological descriptors
\rightarrow "Beyond persistent homology"

Contributions

- New hierarchical models
- Unification of well-known hierarchical models
- Theoretical study

Graphical abstract (for those who are too tired. . .)

Graph of valued shapes
Transitive reduction

Topological monotonic tree

Overview

Introduction

Component-tree
Component-tree as a topological descriptor
Step 1 - Enrichment: Graph of valued shapes
Step 2 - Simplification: Tree of valued shapes
Step 3 - Compression: New trees of shapes
Links between hierarchical structures
Conclusion

Component-tree

Grey-level images

Space, values, image

- Space $\mathbb{U}=\mathbb{Z}^{n}(n \geq 2)$ endowed with digital topology (but other tesselations of \mathbb{R}^{n} would work. . .)
- Values $\mathbb{V} \simeq \mathbb{Z}$ (i.e. endowed with a total order $\leqslant \mathbb{V}$)
- Image $=$ function $\mathcal{F}: \mathbb{U} \rightarrow \mathbb{V}$

Grey-level images

Space, values, image

- Space $\mathbb{U}=\mathbb{Z}^{n}(n \geq 2)$ endowed with digital topology (but other tesselations of \mathbb{R}^{n} would work...)
- Values $\mathbb{V} \simeq \mathbb{Z}$ (i.e. endowed with a total order $\leqslant \mathbb{v}$)
- Image $=$ function $\mathcal{F}: \mathbb{U} \rightarrow \mathbb{V}$

Thresholding(s), binary images

Thresholding(s)

- $\Lambda_{v}^{\circ}(\mathcal{F}) \subseteq \mathbb{U}$: upper threshold set of \mathcal{F} at value v (in white)
- $\Lambda_{v}^{\bullet}(\mathcal{F}) \subseteq \mathbb{U}$: lower threshold set of \mathcal{F} at value v (in black)

Thresholding(s), binary images

Thresholding(s)

- $\Lambda_{v}^{\circ}(\mathcal{F}) \subseteq \mathbb{U}$: upper threshold set of \mathcal{F} at value v (in white)
- $\Lambda_{v}^{\bullet}(\mathcal{F}) \subseteq \mathbb{U}$: lower threshold set of \mathcal{F} at value v (in black)

Thresholding(s), binary images

Thresholding(s)

- $\Lambda_{v}^{\circ}(\mathcal{F}) \subseteq \mathbb{U}$: upper threshold set of \mathcal{F} at value v (in white)
- $\Lambda_{v}^{\bullet}(\mathcal{F}) \subseteq \mathbb{U}$: lower threshold set of \mathcal{F} at value v (in black)

Thresholding(s), binary images

Thresholding(s)

- $\Lambda_{v}^{\circ}(\mathcal{F}) \subseteq \mathbb{U}$: upper threshold set of \mathcal{F} at value v (in white)
- $\Lambda_{v}^{\bullet}(\mathcal{F}) \subseteq \mathbb{U}$: lower threshold set of \mathcal{F} at value v (in black)

Thresholding(s), binary images

Thresholding(s)

- $\Lambda_{v}^{\circ}(\mathcal{F}) \subseteq \mathbb{U}$: upper threshold set of \mathcal{F} at value v (in white)
- $\Lambda_{v}^{\bullet}(\mathcal{F}) \subseteq \mathbb{U}$: lower threshold set of \mathcal{F} at value v (in black)

Thresholding(s), binary images

Thresholding(s)

- $\Lambda_{v}^{\circ}(\mathcal{F}) \subseteq \mathbb{U}$: upper threshold set of \mathcal{F} at value v (in white)
- $\Lambda_{v}^{\bullet}(\mathcal{F}) \subseteq \mathbb{U}$: lower threshold set of \mathcal{F} at value v (in black)

Thresholding(s), binary images

Thresholding(s)

- $\Lambda_{v}^{\circ}(\mathcal{F}) \subseteq \mathbb{U}$: upper threshold set of \mathcal{F} at value v (in white)
- $\Lambda_{v}^{\bullet}(\mathcal{F}) \subseteq \mathbb{U}$: lower threshold set of \mathcal{F} at value v (in black)

Thresholding(s), binary images

Thresholding(s)

- $\Lambda_{v}^{\circ}(\mathcal{F}) \subseteq \mathbb{U}$: upper threshold set of \mathcal{F} at value v (in white)
- $\Lambda_{v}^{\bullet}(\mathcal{F}) \subseteq \mathbb{U}$: lower threshold set of \mathcal{F} at value v (in black)

Connected components (CCs)

Connected components of a threshold set

- $X \in 2^{\mathbb{U}}$: a CC of \mathcal{F} at value v
- $\Theta \subset 2^{\mathbb{U}}$: the set of all the CCs of \mathcal{F} at all values v

Connected components (CCs)

Connected components of a threshold set

- $X \in 2^{\mathbb{U}}$: a CC of \mathcal{F} at value v
- $\Theta \subset 2^{\mathbb{U}}$: the set of all the CCs of \mathcal{F} at all values v

Connected components (CCs)

Connected components of a threshold set

- $X \in 2^{\mathbb{U}}$: a CC of \mathcal{F} at value v
- $\Theta \subset 2^{\mathbb{U}}$: the set of all the CCs of \mathcal{F} at all values v

Connected components (CCs)

Connected components of a threshold set

- $X \in 2^{\mathbb{U}}$: a CC of \mathcal{F} at value v
- $\Theta \subset 2^{\mathbb{U}}$: the set of all the CCs of \mathcal{F} at all values v

Connected components (CCs)

Connected components of a threshold set

- $X \in 2^{\mathbb{U}}$: a CC of \mathcal{F} at value v
- $\Theta \subset 2^{\mathbb{U}}$: the set of all the CCs of \mathcal{F} at all values v

Component-tree

Ordering on Θ

Two CCs $X, Y \in \Theta$ are either:

- non-intersecting: $X \cap Y=\varnothing$; or
- included one in the other: $X \subseteq Y$
\Longrightarrow The partial ordering \subseteq has a specific structure
\longrightarrow Its Hasse diagram is a tree.

Component-tree

Ordering on Θ

Two CCs $X, Y \in \Theta$ are either:

- non-intersecting: $X \cap Y=\varnothing$; or
- included one in the other: $X \subseteq Y$
\Longrightarrow The partial ordering \subseteq has a specific structure
\longrightarrow Its Hasse diagram is a tree.

Component-tree

Component-tree $=$ Hasse diagram of (Θ, \subseteq)
If Θ is induced by:

- upper thresholding \rightarrow max-tree
- lower thresholding \rightarrow min-tree

Component-tree: max-tree

Component-tree: min-tree

Component-tree: max-tree and min-tree

Valued connected components

Connected components of a threshold set

- $X \in 2^{\mathbb{U}}$: a CC of \mathcal{F} at value v
- $\Theta \subset 2^{\mathbb{U}}$: the set of all the CCs of \mathcal{F} at all values v

We can enrich the CCs with the values at which they are defined.

Valued connected components

Connected components of a threshold set

- $X \in 2^{\mathbb{U}}$: a CC of \mathcal{F} at value v
- $\Theta \subset 2^{\mathbb{U}}$: the set of all the CCs of \mathcal{F} at all values v

We can enrich the CCs with the values at which they are defined.

Valued connected components of a threshold set

- $(X, v) \in 2^{\mathbb{U}} \times \mathbb{V}$: a valued $C C$ of \mathcal{F} at value v
- 三c $2^{\mathbb{U}} \times \mathbb{V}$: the set of all the valued CCs of \mathcal{F} at all values v

Ordering on valued connected components

Ordering on CCs

- CC: $X \in 2^{\mathbb{U}}$
\rightarrow Set of CCs: $\Theta \subseteq 2^{\mathbb{U}}$
\rightarrow Ordering on $\Theta: X \subseteq Y$

Ordering on valued connected components

Ordering on CCs

- CC: $X \in 2^{\mathbb{U}}$
\rightarrow Set of CCs: $\Theta \subseteq 2^{U}$
\rightarrow Ordering on $\Theta: X \subseteq Y$

Ordering on valued CCs

- Valued CC: $(X, v) \in 2^{\mathbb{U}} \times \mathbb{V}$
\rightarrow Set of CCs: $\equiv \subseteq 2^{\mathbb{U}} \times \mathbb{V}$
\rightarrow Ordering on \equiv :
$((X, v) \sqsubseteq(Y, w)) \Leftrightarrow(X \subseteq Y \wedge w \leqslant v)$ (max-tree)
$((X, v) \sqsubseteq(Y, w)) \Leftrightarrow(X \subseteq Y \wedge w \geqslant v)$ (min-tree)

Valued component-tree

Component-tree

Component-tree $=$ Hasse diagram of (Θ, \subsetneq)
If Θ is generated by:

- upper thresholding \rightarrow max-tree
- lower thresholding \rightarrow min-tree

Valued component-tree

Component-tree

Component-tree $=$ Hasse diagram of (Θ, \subsetneq)
If Θ is generated by:

- upper thresholding \rightarrow max-tree
- lower thresholding \rightarrow min-tree

Valued component-tree

Valued component-tree $=$ Hasse diagram of (\equiv, \sqsubseteq)
If \equiv is generated by:

- upper thresholding \rightarrow valued max-tree
- lower thresholding \rightarrow valued min-tree

Component-tree: max-tree and min-tree

Valued component-tree: valued max-tree and valued min-tree

Component-tree as a topological descriptor

Topological description of images

Binary images

- Low-level: Euler characteristics, Betti numbers...
- High-level: homology groups, homotopy...
- Hierarchical: adjacency tree

Topological description of images

Binary images

- Low-level: Euler characteristics, Betti numbers...
- High-level: homology groups, homotopy...
- Hierarchical: adjacency tree

Grey-level images

- High-level: persistent homology
- Hierarchical: component-tree, tree of shapes

Persistent homology vs. Component-trees

Both compute binary images by thresholding, $\forall v \in \mathbb{V}$ ("timeline").
Then, for each binary image,

- persistent homology computes homology groups
- component-trees compute CCs

	Persistent homology	Component-trees
Foreground/background CCs	+	+
3D handles (tunnels)	+	-
Component creation/deletion	+	+
Component merging/splitting	-	+

Persistent homology vs. Component-trees

Both compute binary images by thresholding, $\forall v \in \mathbb{V}$ ("timeline").
Then, for each binary image,

- persistent homology computes homology groups
- component-trees compute CCs

	Persistent homology	Component-trees
Foreground/background CCs	+	+
3D handles (tunnels)	+	-
Component creation/deletion	+	+
Component merging/splitting	-	+

© max-tree + min tree: richer descriptor for grey-level images.
(2) No topological links between min- and max-trees.

Persistent homology vs. Component-trees

Both compute binary images by thresholding, $\forall v \in \mathbb{V}$ ("timeline").
Then, for each binary image,

- persistent homology computes homology groups
- component-trees compute CCs

	Persistent homology	Component-trees
Foreground/background CCs	+	+
3D handles (tunnels)	+	-
Component creation/deletion	+	+
Component merging/splitting	-	+

© max-tree $+\mathbf{m i n}$ tree: richer descriptor for grey-level images.
(3) No topological links between min- and max-trees.

Component-trees as topological descriptor: a step forward
Add topological links between valued min- and max-trees thanks to the notion of adjacency-tree.

Step 1 - Enrichment: Graph of valued shapes

Adjacency tree: a topological descriptor for binary images

Adjacency tree

- $B \subseteq \mathbb{U}$ is a binary image foreground and $\bar{B}=\mathbb{U} \backslash B$ its complement

Adjacency tree: a topological descriptor for binary images

Adjacency tree

- $B \subseteq \mathbb{U}$ is a binary image foreground and $\bar{B}=\mathbb{U} \backslash B$ its complement
- Θ_{B} the CCs of B and of \bar{B}

Adjacency tree: a topological descriptor for binary images

Adjacency tree

- $B \subseteq \mathbb{U}$ is a binary image foreground and $\bar{B}=\mathbb{U} \backslash B$ its complement
- Θ_{B} the CCs of B and of \bar{B}
- \sqsubseteq^{ψ} the order relation "nested" on Θ_{B} $X \sqsubseteq^{\psi} Y \Leftrightarrow \tau(X) \subseteq \tau(Y)$ with τ the "hole closing" operator

Adjacency tree: a topological descriptor for binary images

Adjacency tree

- $B \subseteq \mathbb{U}$ is a binary image foreground and $\bar{B}=\mathbb{U} \backslash B$ its complement
- Θ_{B} the CCs of B and of \bar{B}
- \sqsubseteq^{ψ} the order relation "nested" on Θ_{B} $X \sqsubseteq^{\psi} Y \Leftrightarrow \tau(X) \subseteq \tau(Y)$ with τ the "hole closing" operator
- Adjacency tree of $B=$ Hasse diagram of $\left(\Theta_{B}, \sqsubseteq^{\psi}\right)$

Adjacency tree: a topological descriptor for binary images

Adjacency tree

- $B \subseteq \mathbb{U}$ is a binary image foreground and $\bar{B}=\mathbb{U} \backslash B$ its complement
- Θ_{B} the CCs of B and of \bar{B}
- \underline{I}^{ψ} the order relation "nested" on Θ_{B} $X \sqsubseteq^{\psi} Y \Leftrightarrow \tau(X) \subseteq \tau(Y)$ with τ the "hole closing" operator
- Adjacency tree of $B=$ Hasse diagram of $\left(\Theta_{B}, \Xi^{\psi}\right)$

Graph of valued shapes: General idea

Idea: enriching the information of an image \mathcal{F} carried by

- the valued min-tree
- the valued max-tree

Graph of valued shapes: General idea

Idea: enriching the information of an image \mathcal{F} carried by

- the valued min-tree
- the valued max-tree
... with additional information
- carried by the adjacency tree
- for each binary image
- at each threshold set of \mathcal{F}

Graph of valued shapes: General idea

Idea: enriching the information of an image \mathcal{F} carried by

- the valued min-tree
- the valued max-tree

... with additional information

- carried by the adjacency tree
- for each binary image
- at each threshold set of \mathcal{F}

In other words

Modeling topological relations between the valued min- and max-trees by the adjacency trees

Valued min-tree + valued max-tree

Valued min-tree + valued max-tree + 1 adjacency tree

Valued min-tree + valued max-tree + 1 adjacency tree

Valued min-tree + valued max-tree + 1 adjacency tree

Valued min-tree + valued max-tree +2 adjacency trees

Valued min-tree + valued max-tree +3 adjacency trees

Valued min-tree + valued max-tree +4 adjacency trees

Valued min-tree + valued max-tree + 5 adjacency trees

Valued min-tree + valued max-tree $+\sum$ adjacency trees

Graph of valued shapes: structure

The graph of valued shapes is modeled as $(\equiv, \triangleleft \equiv)$ with

- 三 = all the valued CCs of the valued min- and max-trees
- \triangleleft^{φ} the edges of the min-tree and max-tree
- \triangleleft^{ψ} the edges of all the the adjacency trees
- $\triangleleft \equiv$ the union of \triangleleft^{φ} and \triangleleft^{ψ}

Graph of valued shapes: structure

The graph of valued shapes is modeled as ($\Xi, \triangleleft \equiv)$ with

- ミ = all the valued CCs of the valued min- and max-trees
- \triangleleft^{φ} the edges of the min-tree and max-tree
- \triangleleft^{ψ} the edges of all the the adjacency trees
- \triangleleft 三 the union of \triangleleft^{φ} and \triangleleft^{ψ}

Bad news

The graph of valued shapes is rather complex!

Graph of valued shapes: structure

The graph of valued shapes is modeled as ($\Xi, \triangleleft \equiv)$ with

- ミ = all the valued CCs of the valued min- and max-trees
- \triangleleft^{φ} the edges of the min-tree and max-tree
- \triangleleft^{ψ} the edges of all the the adjacency trees
- \triangleleft 三 the union of \triangleleft^{φ} and \triangleleft^{ψ}

Good news

- The graph of valued shapes is a directed acyclic graph (DAG)
\Rightarrow It induces an order relation $\sqsubseteq \equiv$
- We can simplify it. . .

Step 2 - Simplification: Tree of valued shapes

Structures of the graph of valued shapes

Structure around a node

Let

- $(\equiv, \triangleleft \equiv)$ be a graph of valued shapes,
- $P=(X, v) \in$ 三 be a node of the graph.

There exist:

Structures of the graph of valued shapes

Structure around a node

Let

- ($\overline{\text { I }} \triangleleft \equiv)$ be a graph of valued shapes,
- $P=(X, v) \in$ 三 be a node of the graph.

There exist:

- at most one $Q \in$ 三 such that $P \triangleleft^{\varphi} Q$
\longrightarrow "father" $Q=\varphi(P)$ of P in the valued min- or max-tree

Structures of the graph of valued shapes

Structure around a node

Let

- ($\overline{\text { I }} \triangleleft \equiv)$ be a graph of valued shapes,
- $P=(X, v) \in$ 三 be a node of the graph.

There exist:

- at most one $Q \in \equiv$ such that $P \triangleleft^{\varphi} Q$
\longrightarrow "father" $Q=\varphi(P)$ of P in the valued min- or max-tree
- at most one $R \in \equiv$ such that $P \triangleleft^{\psi} R$
\longrightarrow "father" $R=\psi(P)$ of P in the adjacency tree(s)

Examples: structures of the graph of valued shapes

Examples: structures of the graph of valued shapes

Transitive patterns: characterization

Redundant links

$$
\psi(P) \longleftarrow P \longrightarrow \varphi(P)
$$

If both edges exist, exactly one is redundant by transitivity

Transitive patterns: characterization

Redundant links

$$
\psi(P) \longleftarrow P \longrightarrow \varphi(P)
$$

If both edges exist, exactly one is redundant by transitivity

Three transitive patterns

1. if $\psi(P)=[\varphi \circ \psi \circ \varphi](P)$ then $\psi(P) \longleftarrow P$ is removed
2. if $\varphi(P)=[\varphi \circ \psi \circ \psi](P)$ then $P \longrightarrow \varphi(P)$ is removed
3. if $\varphi(P)=\left[\varphi^{|\mathbb{V}|-2} \circ \psi\right](P)$ then $P \longrightarrow \varphi(P)$ is removed

Transitive pattern 1

Redundant links

$$
\psi(P) \longleftarrow P \longrightarrow \varphi(P)
$$

If both edges exist, exactly one is redundant by transitivity

Three transitive patterns

1. if $\psi(P)=[\varphi \circ \psi \circ \varphi](P)$ then $\psi(P) \longleftarrow P$ is removed 2.
2.

Transitive pattern 1

Transitive pattern 1

Transitive pattern 2

Redundant links

$$
\psi(P) \longleftarrow P \longrightarrow \varphi(P)
$$

If both edges exist, exactly one is redundant by transitivity

Three transitive patterns

-
- if $\varphi(P)=[\varphi \circ \psi \circ \psi](P)$ then $P \longrightarrow \varphi(P)$ is removed

Transitive pattern 2

Transitive pattern 2

Transitive pattern 3

Redundant links

$$
\psi(P) \longleftarrow P \longrightarrow \varphi(P)
$$

If both edges exist, exactly one is redundant by transitivity

Three transitive patterns

1.
2.
3. if $\varphi(P)=\left[\varphi^{|\mathbb{V}|-2} \circ \psi\right](P)$ then $P \longrightarrow \varphi(P)$ is removed

Transitive pattern 3

Transitive pattern 3

Transitive pattern 3

Transitive reduction

Transitive reduction

Removal from the graph of valued shapes (三, \triangleleft) of all the redundant (transitive) edges related to the transitive patterns:

1. $\psi(P)=[\varphi \circ \psi \circ \varphi](P)$
2. $\varphi(P)=[\varphi \circ \psi \circ \psi](P)$
3. $\varphi(P)=\left[\varphi^{|\mathbb{V}|-2} \circ \psi\right](P)$

Transitive reduction

Transitive reduction

Removal from the graph of valued shapes (三, \triangleleft) of all the redundant (transitive) edges related to the transitive patterns:

1. $\psi(P)=[\varphi \circ \psi \circ \varphi](P)$
2. $\varphi(P)=[\varphi \circ \psi \circ \psi](P)$
3. $\varphi(P)=\left[\varphi^{|\mathbb{V}|-2} \circ \psi\right](P)$

Before transitive reduction

For each node $P \in \equiv$, we may have either:

- $\psi(P) \longleftarrow P \longrightarrow \varphi(P)$
- $\quad P \longrightarrow \varphi(P)$ (infinite "background" nodes)
- $P \quad$ (node(s) ∞)

Transitive reduction

Transitive reduction

Removal from the graph of valued shapes (三, \triangleleft) of all the redundant (transitive) edges related to the transitive patterns:

1. $\psi(P)=[\varphi \circ \psi \circ \varphi](P)$
2. $\varphi(P)=[\varphi \circ \psi \circ \psi](P)$
3. $\varphi(P)=\left[\varphi^{|\mathbb{V}|-2} \circ \psi\right](P)$

After transitive reduction

For each node $P \in$ 三, we have either:

- $\psi(P) \longleftarrow P$
- $\quad P \longrightarrow \varphi(P)$
- $P \quad$ (node(s) ∞)

Transitive reduction: before

Transitive reduction: transitive pattern 1

Transitive reduction: transitive patterns $1 \& 2$

Transitive reduction: transitive patterns 1 \& 2 \& 3

Tree of valued shapes

Before transitive reduction: graph of valued shapes

Before transitive reduction:

- Graph of valued shapes
- (三, \triangleleft ミ)
- The graph of valued shapes is a DAG

Tree of valued shapes

Before transitive reduction：graph of valued shapes

Before transitive reduction：
－Graph of valued shapes
－（三，\triangleleft ミ）
－The graph of valued shapes is a DAG

After transitive reduction：tree of valued shapes

After transitive reduction：
－Tree of valued shapes
－（三，$₫$ ミ）with $₫$ ミ a subset of \triangleleft ミ
－The tree of valued shapes is a tree（rooted in ∞ ）

Step 3 - Compression: New trees of shapes

Spatial compression: Complete tree of shape

Nodes with similar supports

$P=(X, v), Q=(Y, w)$ two nodes of \equiv
If $P \neq Q, 2$ possible cases:

Spatial compression: Complete tree of shape

Nodes with similar supports

$P=(X, v), Q=(Y, w)$ two nodes of \equiv
If $P \neq Q, 2$ possible cases:

- $X \neq Y$

Spatial compression: Complete tree of shape

Nodes with similar supports

$P=(X, v), Q=(Y, w)$ two nodes of \equiv
If $P \neq Q, 2$ possible cases:

- $X \neq Y$
- $X=Y$ but $v \neq w$

Spatial compression: Complete tree of shape

Nodes with similar supports

$P=(X, v), Q=(Y, w)$ two nodes of \equiv
If $P \neq Q, 2$ possible cases:

- $X \neq Y$
- $X=Y$ but $v \neq w$

Equivalence classes of nodes

- Equivalence relation: $P \sim_{\Theta} Q \Longleftrightarrow X=Y$

Spatial compression: Complete tree of shape

Nodes with similar supports

$P=(X, v), Q=(Y, w)$ two nodes of \equiv
If $P \neq Q, 2$ possible cases:

- $X \neq Y$
- $X=Y$ but $v \neq w$

Equivalence classes of nodes

- Equivalence relation: $P \sim_{\Theta} Q \Longleftrightarrow X=Y$
- Bijection $\tilde{\pi}_{\Theta}$ between \equiv / \sim_{Θ} and Θ

Spatial compression: Complete tree of shape

Nodes with similar supports

$P=(X, v), Q=(Y, w)$ two nodes of \equiv
If $P \neq Q, 2$ possible cases:

- $X \neq Y$
- $X=Y$ but $v \neq w$

Equivalence classes of nodes

- Equivalence relation: $P \sim_{\Theta} Q \Longleftrightarrow X=Y$
- Bijection $\tilde{\pi}_{\Theta}$ between \equiv / \sim_{Θ} and Θ
- $\tilde{\pi}_{\Theta}$ induces a homeomorphism between the tree of valued shapes $(\equiv, \llbracket$) and another tree $(\Theta, \triangleleft \Theta)$

Spatial compression: Complete tree of shape

Nodes with similar supports

$P=(X, v), Q=(Y, w)$ two nodes of \equiv
If $P \neq Q, 2$ possible cases:

- $X \neq Y$
- $X=Y$ but $v \neq w$

Equivalence classes of nodes

- Equivalence relation: $P \sim_{\Theta} Q \Longleftrightarrow X=Y$
- Bijection $\tilde{\pi}_{\Theta}$ between \equiv / \sim_{Θ} and Θ
- $\tilde{\pi}_{\Theta}$ induces a homeomorphism between the tree of valued shapes $(\equiv, \triangleleft$) and another tree $(\Theta, \triangleleft \Theta)$
- This new tree $(\Theta, \triangleleft \Theta)$ is called the complete tree of shapes.

Spatial compression: Complete tree of shape

Nodes with similar supports

$P=(X, v), Q=(Y, w)$ two nodes of \equiv
If $P \neq Q, 2$ possible cases:

- $X \neq Y$
- $X=Y$ but $v \neq w$

Equivalence classes of nodes

- Equivalence relation: $P \sim_{\Theta} Q \Longleftrightarrow X=Y$
- Bijection $\tilde{\pi}_{\Theta}$ between \equiv / \sim_{Θ} and Θ
- $\tilde{\pi}_{\Theta}$ induces a homeomorphism between the tree of valued shapes $(\equiv, \triangleleft$) and another tree $(\Theta, \triangleleft \Theta)$
- This new tree $(\Theta, \triangleleft \Theta)$ is called the complete tree of shapes.
- $(\Theta, \triangleleft \Theta)$ is a lossless compression of $(\equiv, \triangleleft$)

From the tree of valued shapes to the complete tree of shapes

From the tree of valued shapes to the complete tree of shapes

Complete tree of shapes

Topological compression: strong deletability

Strong deletability (Ronse 1986)

$X, D \subseteq \mathbb{U} . Y=X \backslash D \subseteq \mathbb{U}$.
D is strongly deletable (from X) if \subseteq induces:

- a bijection between the CCs of Y and the CCs of X
- a bijection between the CCs of $\mathbb{U} \backslash X$ and the CCs if $\mathbb{U} \backslash Y$

Topological compression: strong deletability

Strong deletability (Ronse 1986)

$X, D \subseteq \mathbb{U} . Y=X \backslash D \subseteq \mathbb{U}$.
D is strongly deletable (from X) if \subseteq induces:

- a bijection between the CCs of Y and the CCs of X
- a bijection between the CCs of $\mathbb{U} \backslash X$ and the CCs if $\mathbb{U} \backslash Y$

Strong deletability vs. homotopy

- $\mathbb{U}=\mathbb{Z}^{2}$: strong deletability \Leftrightarrow decreasing homotopy
- $\mathbb{U}=\mathbb{Z}^{3}$: strong deletability \Leftarrow decreasing homotopy

Topological compression: strong deletability

Strong deletability (Ronse 1986)

$X, D \subseteq \mathbb{U} . Y=X \backslash D \subseteq \mathbb{U}$.
D is strongly deletable (from X) if \subseteq induces:

- a bijection between the CCs of Y and the CCs of X
- a bijection between the CCs of $\mathbb{U} \backslash X$ and the CCs if $\mathbb{U} \backslash Y$

Strong deletability vs. homotopy

- $\mathbb{U}=\mathbb{Z}^{2}$: strong deletability \Leftrightarrow decreasing homotopy
- $\mathbb{U}=\mathbb{Z}^{3}$: strong deletability \Leftarrow decreasing homotopy

Remarks on strong deletability

© Good topological invariant (pretty good in 2D)
© Easy to manipulate
(2. Does not deal with tunnels/handles in 3D

Topological compression: Topological equivalent relation

Successive nodes

$P=(X, v), Q=(Y, w)$ two nodes of \equiv such that $P \longrightarrow Q$, i.e.

- $P \longrightarrow Q$ or
- $P \longrightarrow Q$

Topological compression: Topological equivalent relation

Successive nodes

$P=(X, v), Q=(Y, w)$ two nodes of \equiv such that $P \longrightarrow Q$, i.e.

- $P \longrightarrow Q$ or
- $P \longrightarrow Q$

Relation based on strong deletability
$Q \searrow P$ if

- $P \longrightarrow Q$

Topological compression: Topological equivalent relation

Successive nodes

$P=(X, v), Q=(Y, w)$ two nodes of \equiv such that $P \longrightarrow Q$, i.e.

- $P \longrightarrow Q$ or
- $P \longrightarrow Q$

Relation based on strong deletability
$Q \searrow P$ if

- $P \longrightarrow Q$
- P is unique (coded in the graph of valued shapes)

Topological compression: Topological equivalent relation

Successive nodes

$P=(X, v), Q=(Y, w)$ two nodes of \equiv such that $P \longrightarrow Q$, i.e.

- $P \longrightarrow Q$ or
- $P \longrightarrow Q$

Relation based on strong deletability

$Q \searrow P$ if

- $P \longrightarrow Q$
- P is unique (coded in the graph of valued shapes)
- $Q \backslash P$ is strongly deletable (idem)

Topological compression: Topological equivalent relation

Successive nodes

$P=(X, v), Q=(Y, w)$ two nodes of \equiv such that $P \longrightarrow Q$, i.e.

- $P \longrightarrow Q$ or
- $P \longrightarrow Q$

Relation based on strong deletability

$Q \searrow P$ if

- $P \longrightarrow Q$
- P is unique (coded in the graph of valued shapes)
- $Q \backslash P$ is strongly deletable (idem)

Equivalence relation

We define the topological equivalence relation \sim_{H} on \equiv as the reflexive-transitive-symmetric closure of \searrow.

Topological compression: Topological tree of shape

Topological compression: Topological tree of shape

Topological compression: Topological tree of shape

Topological tree of shapes

- $H=\equiv / \sim H$

Topological compression: Topological tree of shape

Topological tree of shapes

- $H=\equiv / \sim H$

Topological compression: Topological tree of shape

Topological tree of shapes

- $H=\equiv / \sim H$
- \hookrightarrow_{H} : the relation on H induced by $₫$ ミ on \equiv wrt \sim_{H}
- $(H, \triangleleft H)$ is a new tree called the topological tree of shapes

Topological compression：Topological tree of shape

Topological tree of shapes

－$H=\equiv / \sim H$
－\hookrightarrow_{H} ：the relation on H induced by $₫$ ミ on \equiv wrt \sim_{H}
－$(H, \triangleleft H)$ is a new tree called the topological tree of shapes
－Decreasing homeomorphism from $($ 三，$₫$ ミ）to $(H, \triangleleft$ H）

Topological compression：Topological tree of shape

Topological tree of shapes

－$H=\equiv / \sim H$
－ι_{H} ：the relation on H induced by $₫$ ミ on \equiv wrt \sim_{H}
－$(H, \triangleleft H)$ is a new tree called the topological tree of shapes

- Decreasing homeomorphism from（三，$₫$ ミ）to $(H, \triangleleft$ H）
- $(H, \triangleleft \Theta)$ is a lossy compression of $($ 三，\triangleleft ミ）

Topological tree of shapes

Links between hierarchical structures

Graph of valued shapes vs. morphological trees

The graph of valued shapes $(\equiv, \triangleleft \equiv)$ includes

- the valued max-tree (homeomorphic to the max-tree)

Graph of valued shapes vs. morphological trees

The graph of valued shapes $(\equiv, \triangleleft \equiv)$ includes

- the valued max-tree (homeomorphic to the max-tree)
- the valued min-tree (homeomorphic to the min-tree)

Graph of valued shapes vs. morphological trees

The graph of valued shapes $(\equiv, \triangleleft \equiv)$ includes

- the valued max-tree (homeomorphic to the max-tree)
- the valued min-tree (homeomorphic to the min-tree)
- all the adjacency trees at each threshold set

Graph of valued shapes vs. morphological trees

The graph of valued shapes $(\equiv, \triangleleft \equiv)$ includes

- the valued max-tree (homeomorphic to the max-tree)
- the valued min-tree (homeomorphic to the min-tree)
- all the adjacency trees at each threshold set

The graph of valued shapes $(\equiv, \triangleleft \equiv)$ includes

- the tree of valued shapes ($\overline{\text {, }} \mathbb{\text { E }}$)
and the transformation between both is reversible

Tree of valued shapes vs. morphological trees

The tree of valued shapes $(\equiv, \triangleleft \equiv)$ is homeomorphic to

- the complete topological tree of shapes

Tree of valued shapes vs. morphological trees

The tree of valued shapes $(\equiv, \llbracket$) is homeomorphic to

- the complete topological tree of shapes

which is homeomorphic to

- the topological tree of shapes

Tree of valued shapes vs. morphological trees

The tree of valued shapes $(\equiv, \llbracket$) is homeomorphic to

- the complete topological tree of shapes

which is homeomorphic to

- the topological tree of shapes
- the tree of shapes (Monasse et al. 2000)

Tree of valued shapes vs. morphological trees

The tree of valued shapes $(\equiv, \llbracket \equiv)$ is homeomorphic to

- the complete topological tree of shapes

which is homeomorphic to

- the topological tree of shapes
- the tree of shapes (Monasse et al. 2000)

which are both homeomorphic to

- the monotonic tree (Song et al. 2002)

Complete, topological and "standard" trees of shapes

Conclusion

Contributions

New hierarchical structures

- (DAG) graph of valued shapes

Contributions

New hierarchical structures

- (DAG) graph of valued shapes
- (Tree) tree of valued shapes

Contributions

New hierarchical structures

- (DAG) graph of valued shapes
- (Tree) tree of valued shapes
- (Tree) Complete tree of shapes

Contributions

New hierarchical structures

- (DAG) graph of valued shapes
- (Tree) tree of valued shapes
- (Tree) Complete tree of shapes
- (Tree) Topological tree of shapes

Contributions

New hierarchical structures

- (DAG) graph of valued shapes
- (Tree) tree of valued shapes
- (Tree) Complete tree of shapes
- (Tree) Topological tree of shapes

Unification of morphological trees

A new vision about the links between:

- component-trees
- trees of shapes

Contributions

New hierarchical structures

- (DAG) graph of valued shapes
- (Tree) tree of valued shapes
- (Tree) Complete tree of shapes
- (Tree) Topological tree of shapes

Unification of morphological trees

A new vision about the links between:

- component-trees
- trees of shapes

Embedding topology in morphological trees

- Adjacency-trees / component-trees
- Strong deletability / trees of shapes

Contributions

Graph of valued shapes
Transitive reduction
Tree of valued shapes
Lossless compression
Complete tree of shapes

Topological monotonic tree

Perspectives

Theory

- Deeper exploration of the links between trees
- Topological handling in higher dimensions

Perspectives

Theory

- Deeper exploration of the links between trees
- Topological handling in higher dimensions

Algorithmics

- Construction of these new trees / DAGs
- Optimal bounds

Perspectives

Theory

- Deeper exploration of the links between trees
- Topological handling in higher dimensions

Algorithmics

- Construction of these new trees / DAGs
- Optimal bounds

Applications

- Grey-scale / fuzzy topology
- Topological data analysis
- Homotopic morphology operators
- Topological image compression

Thank you!

