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Introduction



Foreword

How to visualize/quantify topological differences between

and ?

For example, we can use tools of persistent homology:

Context

● Grey-level imaging

● Morphological hierarchies

● Topological descriptors

Motivations

● Morphological hierarchies as topological descriptors

→ “Beyond persistent homology”

Contributions

● New hierarchical models

● Unification of well-known hierarchical models

● Theoretical study
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Graphical abstract (for those who are too tired. . . )

Grey-level image

Max-treeMin-tree Adjacency tree

+

Graph of valued shapes

Tree of valued shapes

Complete tree of shapes

Tree of shapes Topological tree of shapes

Topological monotonic tree

Transitive reduction

Lossless compression

Lossy compression

Lossy compression
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Overview

Introduction

Component-tree

Component-tree as a topological descriptor

Step 1 – Enrichment: Graph of valued shapes

Step 2 – Simplification: Tree of valued shapes

Step 3 – Compression: New trees of shapes

Links between hierarchical structures

Conclusion

3



Component-tree



Grey-level images

Space, values, image

● Space U = Zn (n ≥ 2) endowed with digital topology

(but other tesselations of Rn would work. . . )

● Values V ≃ Z (i.e. endowed with a total order ⩽V)
● Image = function F ∶ U→ V
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Thresholding(s), binary images

Thresholding(s)

● Λ○v(F) ⊆ U: upper threshold set of F at value v (in white)

● Λ●v(F) ⊆ U: lower threshold set of F at value v (in black)
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Connected components (CCs)

Connected components of a threshold set

● X ∈ 2U: a CC of F at value v

● Θ ⊂ 2U: the set of all the CCs of F at all values v
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Component-tree

Ordering on Θ

Two CCs X ,Y ∈ Θ are either:

● non-intersecting: X ∩Y = ∅; or
● included one in the other: X ⊆ Y

Ô⇒ The partial ordering ⊆ has a specific structure

Ð→ Its Hasse diagram is a tree.

Component-tree

Component-tree = Hasse diagram of (Θ,⊆)
If Θ is induced by:

● upper thresholding → max-tree

● lower thresholding → min-tree
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Component-tree: max-tree
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Component-tree: min-tree
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Component-tree: max-tree and min-tree
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Valued connected components

Connected components of a threshold set

● X ∈ 2U: a CC of F at value v

● Θ ⊂ 2U: the set of all the CCs of F at all values v

We can enrich the CCs with the values at which they are defined.

Valued connected components of a threshold set

● (X , v) ∈ 2U×V: a valued CC of F at value v

● Ξ ⊂ 2U×V: the set of all the valued CCs of F at all values v
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Ordering on valued connected components

Ordering on CCs

● CC: X ∈ 2U
→ Set of CCs: Θ ⊆ 2U
→ Ordering on Θ : X ⊆ Y

Ordering on valued CCs

● Valued CC: (X , v) ∈ 2U×V
→ Set of CCs: Ξ ⊆ 2U×V
→ Ordering on Ξ :

((X , v) ⊑ (Y ,w))⇔ (X ⊆ Y∧w ⩽ v) (max-tree)

((X , v) ⊑ (Y ,w))⇔ (X ⊆ Y∧w ⩾ v) (min-tree)
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Valued component-tree

Component-tree

Component-tree = Hasse diagram of (Θ,⊆)
If Θ is generated by:

● upper thresholding → max-tree

● lower thresholding → min-tree

Valued component-tree

Valued component-tree = Hasse diagram of (Ξ,⊑)
If Ξ is generated by:

● upper thresholding → valued max-tree

● lower thresholding → valued min-tree
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Component-tree: max-tree and min-tree
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Valued component-tree: valued max-tree and valued min-tree
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Component-tree as a topological

descriptor



Topological description of images

Binary images

● Low-level: Euler characteristics, Betti numbers. . .

● High-level: homology groups, homotopy. . .

● Hierarchical: adjacency tree

Grey-level images

● High-level: persistent homology

● Hierarchical: component-tree, tree of shapes
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Persistent homology vs. Component-trees

Both compute binary images by thresholding, ∀v ∈ V (“timeline”).

Then, for each binary image,

● persistent homology computes homology groups

● component-trees compute CCs

Persistent homology Component-trees

Foreground/background CCs + +
3D handles (tunnels) + −
Component creation/deletion + +
Component merging/splitting − +

, max-tree + min tree: richer descriptor for grey-level images.

/ No topological links between min- and max-trees.

Component-trees as topological descriptor: a step forward

Add topological links between valued min- and max-trees thanks to the

notion of adjacency-tree.
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Step 1 – Enrichment: Graph of

valued shapes



Adjacency tree: a topological descriptor for binary images

Adjacency tree

● B ⊆ U is a binary image foreground and B = U ∖B its

complement

● ΘB the CCs of B and of B

● ⊑ψ the order relation “nested” on ΘB

X ⊑ψ Y ⇔ τ(X ) ⊆ τ(Y ) with τ the “hole closing” operator

● Adjacency tree of B = Hasse diagram of (ΘB ,⊑ψ)
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Graph of valued shapes: General idea

Idea: enriching the information of an image F carried by

● the valued min-tree

● the valued max-tree

. . . with additional information

● carried by the adjacency tree

● for each binary image

● at each threshold set of F

In other words

Modeling topological relations between the valued min- and

max-trees by the adjacency trees
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Valued min-tree + valued max-tree

0

1

2

3

4

5

6

7
20



Valued min-tree + valued max-tree + 1 adjacency tree
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Valued min-tree + valued max-tree + 2 adjacency trees
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Valued min-tree + valued max-tree + 3 adjacency trees
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Valued min-tree + valued max-tree + 4 adjacency trees
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Valued min-tree + valued max-tree + 5 adjacency trees
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Valued min-tree + valued max-tree + ∑ adjacency trees
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Graph of valued shapes: structure

The graph of valued shapes is modeled as (Ξ,⊲Ξ) with
● Ξ = all the valued CCs of the valued min- and max-trees

● ⊲φ the edges of the min-tree and max-tree

● ⊲ψ the edges of all the the adjacency trees

● ⊲Ξ the union of ⊲φ and ⊲ψ
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Graph of valued shapes: structure

The graph of valued shapes is modeled as (Ξ,⊲Ξ) with
● Ξ = all the valued CCs of the valued min- and max-trees

● ⊲φ the edges of the min-tree and max-tree

● ⊲ψ the edges of all the the adjacency trees

● ⊲Ξ the union of ⊲φ and ⊲ψ

Bad news

The graph of valued shapes is rather complex!
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Graph of valued shapes: structure

The graph of valued shapes is modeled as (Ξ,⊲Ξ) with
● Ξ = all the valued CCs of the valued min- and max-trees

● ⊲φ the edges of the min-tree and max-tree

● ⊲ψ the edges of all the the adjacency trees

● ⊲Ξ the union of ⊲φ and ⊲ψ

Good news

● The graph of valued shapes is a directed acyclic graph

(DAG)

⇒ It induces an order relation ⊑Ξ
● We can simplify it. . .
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Step 2 – Simplification: Tree of

valued shapes



Structures of the graph of valued shapes

Structure around a node

Let

● (Ξ,⊲Ξ) be a graph of valued shapes,

● P = (X , v) ∈ Ξ be a node of the graph.

There exist:

● at most one Q ∈ Ξ such that P ⊲φ Q

Ð→ “father” Q = φ(P) of P in the valued min- or max-tree

● at most one R ∈ Ξ such that P ⊲ψ R

Ð→ “father” R = ψ(P) of P in the adjacency tree(s)
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Examples: structures of the graph of valued shapes
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Transitive patterns: characterization

Redundant links

ψ(P) ←Ð P Ð→ φ(P)
If both edges exist, exactly one is redundant by transitivity

Three transitive patterns

1. if ψ(P) = [φ ○ ψ ○ φ](P) then ψ(P) ←Ð P is removed

2. if φ(P) = [φ ○ ψ ○ ψ](P) then P Ð→ φ(P) is removed

3. if φ(P) = [φ∣V∣−2 ○ ψ](P) then P Ð→ φ(P) is removed

32



Transitive patterns: characterization

Redundant links

ψ(P) ←Ð P Ð→ φ(P)
If both edges exist, exactly one is redundant by transitivity

Three transitive patterns

1. if ψ(P) = [φ ○ ψ ○ φ](P) then ψ(P) ←Ð P is removed

2. if φ(P) = [φ ○ ψ ○ ψ](P) then P Ð→ φ(P) is removed

3. if φ(P) = [φ∣V∣−2 ○ ψ](P) then P Ð→ φ(P) is removed

32



Transitive pattern 1

Redundant links

ψ(P) ←Ð P Ð→ φ(P)
If both edges exist, exactly one is redundant by transitivity

Three transitive patterns

1. if ψ(P) = [φ ○ ψ ○ φ](P) then ψ(P) ←Ð P is removed

2.

3.
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Transitive pattern 1
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Transitive pattern 1
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Transitive pattern 2

Redundant links

ψ(P) ←Ð P Ð→ φ(P)
If both edges exist, exactly one is redundant by transitivity

Three transitive patterns

●
● if φ(P) = [φ ○ ψ ○ ψ](P) then P Ð→ φ(P) is removed

●
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Transitive pattern 2
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Transitive pattern 2
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Transitive pattern 3

Redundant links

ψ(P) ←Ð P Ð→ φ(P)
If both edges exist, exactly one is redundant by transitivity

Three transitive patterns

1.

2.

3. if φ(P) = [φ∣V∣−2 ○ ψ](P) then P Ð→ φ(P) is removed
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Transitive pattern 3

0

1

2

3

4

5

6

7

40



Transitive pattern 3
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Transitive reduction

Transitive reduction

Removal from the graph of valued shapes (Ξ,⊲Ξ) of all the
redundant (transitive) edges related to the transitive patterns:

1. ψ(P) = [φ ○ ψ ○ φ](P)
2. φ(P) = [φ ○ ψ ○ ψ](P)
3. φ(P) = [φ∣V∣−2 ○ ψ](P)
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Transitive reduction

Removal from the graph of valued shapes (Ξ,⊲Ξ) of all the
redundant (transitive) edges related to the transitive patterns:

1. ψ(P) = [φ ○ ψ ○ φ](P)
2. φ(P) = [φ ○ ψ ○ ψ](P)
3. φ(P) = [φ∣V∣−2 ○ ψ](P)

Before transitive reduction

For each node P ∈ Ξ, we may have either:

● ψ(P) ←Ð P Ð→ φ(P)
● P Ð→ φ(P) (infinite “background” nodes)

● P (node(s) ∞)
43
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Transitive reduction

Removal from the graph of valued shapes (Ξ,⊲Ξ) of all the
redundant (transitive) edges related to the transitive patterns:
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2. φ(P) = [φ ○ ψ ○ ψ](P)
3. φ(P) = [φ∣V∣−2 ○ ψ](P)

After transitive reduction

For each node P ∈ Ξ, we have either:

● ψ(P) ←Ð P

● P Ð→ φ(P)
● P (node(s) ∞)
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Transitive reduction: before
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Transitive reduction: transitive pattern 1
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Transitive reduction: transitive patterns 1 & 2
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Transitive reduction: transitive patterns 1 & 2 & 3
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Tree of valued shapes

Before transitive reduction: graph of valued shapes

Before transitive reduction:

● Graph of valued shapes

● (Ξ,⊲Ξ)
● The graph of valued shapes is a DAG

After transitive reduction: tree of valued shapes

After transitive reduction:

● Tree of valued shapes

● (Ξ,◂Ξ) with ◂Ξ a subset of ⊲Ξ
● The tree of valued shapes is a tree (rooted in ∞)
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Tree of valued shapes
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Step 3 – Compression: New trees of

shapes



Spatial compression: Complete tree of shape

Nodes with similar supports

P = (X , v), Q = (Y ,w) two nodes of Ξ

If P ≠ Q, 2 possible cases:

● X ≠ Y
● X = Y but v ≠ w

Equivalence classes of nodes

● Equivalence relation: P ∼Θ Q ⇐⇒ X = Y
● Bijection π̃Θ between Ξ/∼Θ and Θ

● π̃Θ induces a homeomorphism between the tree of valued

shapes (Ξ,◂Ξ) and another tree (Θ,◂Θ)
● This new tree (Θ,◂Θ) is called the complete tree of shapes.

● (Θ,◂Θ) is a lossless compression of (Ξ,◂Ξ)

49
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From the tree of valued shapes to the complete tree of shapes
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Complete tree of shapes
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Topological compression: strong deletability

Strong deletability (Ronse 1986)

X ,D ⊆ U. Y = X ∖D ⊆ U.
D is strongly deletable (from X ) if ⊆ induces:

● a bijection between the CCs of Y and the CCs of X

● a bijection between the CCs of U ∖X and the CCs if U ∖Y

Strong deletability vs. homotopy

● U = Z2: strong deletability ⇔ decreasing homotopy

● U = Z3: strong deletability ⇐ decreasing homotopy

Remarks on strong deletability

, Good topological invariant (pretty good in 2D)

, Easy to manipulate

/ Does not deal with tunnels/handles in 3D

53



Topological compression: strong deletability

Strong deletability (Ronse 1986)

X ,D ⊆ U. Y = X ∖D ⊆ U.
D is strongly deletable (from X ) if ⊆ induces:

● a bijection between the CCs of Y and the CCs of X

● a bijection between the CCs of U ∖X and the CCs if U ∖Y

Strong deletability vs. homotopy

● U = Z2: strong deletability ⇔ decreasing homotopy

● U = Z3: strong deletability ⇐ decreasing homotopy

Remarks on strong deletability

, Good topological invariant (pretty good in 2D)

, Easy to manipulate

/ Does not deal with tunnels/handles in 3D

53



Topological compression: strong deletability

Strong deletability (Ronse 1986)

X ,D ⊆ U. Y = X ∖D ⊆ U.
D is strongly deletable (from X ) if ⊆ induces:

● a bijection between the CCs of Y and the CCs of X

● a bijection between the CCs of U ∖X and the CCs if U ∖Y

Strong deletability vs. homotopy

● U = Z2: strong deletability ⇔ decreasing homotopy

● U = Z3: strong deletability ⇐ decreasing homotopy

Remarks on strong deletability

, Good topological invariant (pretty good in 2D)

, Easy to manipulate

/ Does not deal with tunnels/handles in 3D 53



Topological compression: Topological equivalent relation

Successive nodes

P = (X , v), Q = (Y ,w) two nodes of Ξ such that P Ð→ Q, i.e.

● PÐ→Q or

● PÐ→Q

Relation based on strong deletability

Q ↘ P if

● PÐ→Q
● P is unique (coded in the graph of valued shapes)

● Q ∖ P is strongly deletable (idem)

Equivalence relation

We define the topological equivalence relation ∼H on Ξ as the

reflexive-transitive-symmetric closure of ↘.
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Topological compression: Topological tree of shape
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Topological compression: Topological tree of shape

Topological tree of shapes

● H = Ξ/∼H

● ◂H : the relation on H induced by ◂Ξ on Ξ wrt ∼H
● (H,◂H) is a new tree called the topological tree of shapes

● Decreasing homeomorphism from (Ξ,◂Ξ) to (H,◂H)
● (H,◂Θ) is a lossy compression of (Ξ,◂Ξ)
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Topological tree of shapes
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Links between hierarchical

structures



Graph of valued shapes vs. morphological trees

The graph of valued shapes (Ξ,⊲Ξ) includes
● the valued max-tree (homeomorphic to the max-tree)

● the valued min-tree (homeomorphic to the min-tree)

● all the adjacency trees at each threshold set

The graph of valued shapes (Ξ,⊲Ξ) includes
● the tree of valued shapes (Ξ,◂Ξ)
and the transformation between both is reversible
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Tree of valued shapes vs. morphological trees

The tree of valued shapes (Ξ,◂Ξ) is homeomorphic to

● the complete topological tree of shapes

which is homeomorphic to

● the topological tree of shapes

● the tree of shapes (Monasse et al. 2000)

which are both homeomorphic to

● the monotonic tree (Song et al. 2002)
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Complete, topological and “standard” trees of shapes
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Conclusion



Contributions

New hierarchical structures

● (DAG) graph of valued shapes

● (Tree) tree of valued shapes

● (Tree) Complete tree of shapes

● (Tree) Topological tree of shapes

Unification of morphological trees

A new vision about the links between:

● component-trees

● trees of shapes

Embedding topology in morphological trees

● Adjacency-trees / component-trees

● Strong deletability / trees of shapes
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Contributions

Grey-level image

Max-treeMin-tree Adjacency tree

+

Graph of valued shapes

Tree of valued shapes

Complete tree of shapes

Tree of shapes Topological tree of shapes

Topological monotonic tree

Transitive reduction

Lossless compression

Lossy compression

Lossy compression
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Perspectives

Theory

● Deeper exploration of the links between trees

● Topological handling in higher dimensions

Algorithmics

● Construction of these new trees / DAGs

● Optimal bounds

Applications

● Grey-scale / fuzzy topology

● Topological data analysis

● Homotopic morphology operators

● Topological image compression
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Thank you!
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