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A Topological Tree of Shapes
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1 Université de Reims Champagne Ardenne, CReSTIC EA 3804, 51100 Reims, France
2 Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, F-14050 Caen, France

Abstract. In this article, we enrich the framework of morphological hierarchies
with new acyclic graphs and trees. These structures lie at the convergence of
hierarchical models and topological descriptors. We define them in the context of
digital grey-level imaging. We discuss their links with component-trees, trees of
shapes and adjacency trees. This analysis leads to new notions, including a notion
of topological tree of shapes.

1 Introduction

Many hierarchical, graph-based structures have been defined in the framework of math-
ematical morphology, especially for designing connected operators [25]. The most pop-
ular are trees (i.e. rooted, connected, acyclic graphs). They model finite sets of partitions
organized with respect to the refinement order relation. These partitions can be partial.
This is the case of the component-tree and its variants [24, 9], the level-line tree (a.k.a.
tree of shapes) and its variants [11, 3]. These partitions can also be total. This is the
case of the binary partition tree and its variants [23, 27, 19] and the hierarchical water-
shed [13, 26]. Other hierarchical structures are directed acyclic graphs (DAGs), e.g. the
component-hypertree [15], the component-graph [17], the braid of partitions [8] and the
directed component hierarchy [18].

The partitions modeled by these hierarchical structures are composed of connected
sets defined with respect to a topology defined on a given space which is generally
discrete (e.g. a part of Zn [22], a complex on / tesselation of Rn). Hierarchical structures
carry intrinsic, topological information. However, these information are often limited
and generally not sufficient to perform high-level topological analysis of the modeled
images / data. In particular, hierarchical structures are generally less informative than
high-level topological invariants / descriptors, e.g. the homology groups / homology
persistence [6] or the homotopy type.

In this article, we introduce a new family of hierarchical structures—DAGs and
trees, including a new notion of topological tree of shapes—dedicated to the modeling
of grey-level images. They aim to gather (i) connectedness / intensity information car-
ried by component- (min- and max-) trees [24] and (ii) topological information carried
by the adjacency tree, a classical topological invariant [21]. Basically, we will first build
a DAG that is composed by the min-tree and max-tree of a grey-level image, and we will
enrich the nodes of these two trees by the adjacency tree structure at each grey-level,
leading to the notion of a graph of valued shapes. Then, we will establish that this graph
of valued shape can be simplified in a lossless fashion as a tree structure by discarding
some transitive, redundant edges. This will lead to a simpler tree structure called tree
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of valued shapes. By factorizing some spatially equivalent nodes, we will then define
a more compact structure, called the complete tree of shapes. We will establish that
this complete tree of shapes can be reduced (in a lossy fashion) in two different ways,
leading on the one hand to the usual notion of a tree of shapes and on the other hand
to the new notion of a topological tree of shapes. (The chosen terminology of topolog-
ical trees of shapes is justified by the way it is defined; however it will be shown to
be different from another homonymous notion previously introduced in the literature.)
We will finally evoke the links between these new structures (graph and tree of valued
shapes, complete tree of shapes, topological tree of shapes) and usual morphological
trees (component-tree, tree of shapes, adjacency tree).

This article is organized as follows. Section 2 provides definitions related to hier-
archies and grey-level images. We introduce the notions of graph of valued shapes and
tree of valued shapes in Sections 3 and 4, respectively. Section 5 derives from the tree
of valued shapes the two essential notions of this work, namely the complete tree of
shapes (that generalizes the tree of shapes) and the topological tree of shapes. In Sec-
tion 6, we discuss on the links that exist between these new notions and well-known
morphological hierarchies. We provide concluding remarks in Section 7.

2 Basics: Hierarchies and Images

Definition 1 (Hierarchical order) Let X be a set and ≤ be an order on X. We say that
≤ is a hierarchical order if ∀x ∈ X the subset x↑ = {y ∈ X | x < y} is totally ordered.

Definition 2 (Hierarchical function) Let X be a set and ≤ a hierarchical order on X.
The hierarchical function ζ≤ : X → X is defined by ζ≤(x) =

∧
≤ x↑. This function is

defined everywhere on X except for the greatest elements of (X,≤).

Remark 3 Let ◁ be the Hasse relation obtained from ≤ by reflexive-transitive reduc-
tion. ∀x ∈ X we have

x ◁ ζ≤(x) (1)

This formula induces an isomorphism between (X,◁) and (X, ζ≤).

Definition 4 (Tree) Let X be a set and ≤ a hierarchical order on X such that (X,≤)
admits a maximum. The Hasse diagram (X,◁) is called a tree.

Let U be a discrete set endowed with a topological structure which provides the
notions of adjacency and connectedness, and where the separation theorem (Jordan-
Brouwer) holds.

Remark 5 In this article we choose U = Zn (n ≥ 2) and we consider the usual frame-
work of digital topology on binary images [22], with the standard couples of (2n, 3n−1)
and (3n − 1, 2n)-adjacencies for the foreground and background.

Let K be a set of values endowed with a total order ⩽K. Let F : U → K be an
application. We assume that there exist a finite, nonempty subset S ⊂ U and two values
⊥ <K ⊤ ∈ K such that for all x ∈ U{

F (x) = ⊥ if x < S
⊥ <K F (x) <K ⊤ if x ∈ S (2)
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We set V = F (S)∪{⊥,⊤}. It is a finite set that we equip with the total order ⩽V induced
by ⩽K.

Remark 6 The application F is isomorphic to a grey-level image taking its values in
an interval of Z of size |V|, e.g. [[0, |V| − 1]]. See Figure 1(a).

3 Graph of Valued Shapes

3.1 (Valued) connected components

We set ⩽◦ = ⩽V and ⩽• = ⩾V. Let v ∈ V. We define the threshold sets of F at value
v ∈ V (see Figure 1(b–i)) as

Λ◦v(F ) = {x ∈ U | v ⩽◦ F (x)}
Λ•v(F ) = {x ∈ U | v <• F (x)} (3)

Let X ⊆ U. When X is nonempty, we note Π[X] ⊂ 2U the partition gathering all the
connected components of X. If X is empty, we set Π[X] = ∅.

Let v ∈ V. We set

Ξ◦v = Θ
◦
v × {v}

Ξ•v = Θ
•
v × {v}

Ξv = Θv × {v}
with

Θ◦v = Π[Λ◦v(F )]
Θ•v = Π[Λ•v(F )]
Θv = Θ

◦
v ∪ Θ

•
v

(4)

Remark 7 We have Ξ◦⊤ = Ξ
•
⊥ = ∅. For any v ∈ V \ {⊥,⊤}, we have Ξ◦v , ∅ and Ξ•v , ∅.

In the sequel, (U,⊥) and (U,⊤) are considered as a unique element noted∞. Then, we
have Ξ◦⊥ = {(U,⊥)} = {∞} = {(U,⊤)} = Ξ•⊤ and Ξ⊥ = Ξ⊤ = {∞}.

We set

Ξ◦ =
⋃

v∈V Ξ
◦
v

Ξ• =
⋃

v∈V Ξ
•
v

Ξ = Ξ◦ ∪ Ξ• =
⋃

v∈V Ξv

and
Θ◦ =

⋃
v∈V Θ

◦
v

Θ• =
⋃

v∈V Θ
•
v

Θ = Θ◦ ∪ Θ• =
⋃

v∈V Θv

(5)

3.2 Orders on valued connected components

We define the partial orders ⊑◦ on Ξ◦ and ⊑• on Ξ• as

((X, v) ⊑◦ (Y,w))⇔ (X ⊆ Y ∧ w ⩽◦ v)
((X, v) ⊑• (Y,w))⇔ (X ⊆ Y ∧ w ⩽• v) (6)

We define the order ⊑φ as the union of ⊑◦ and ⊑•, i.e. P ⊑φ Q iff P ⊑◦ Q or P ⊑• Q.

Remark 8 ⊑φ, ⊑◦ and ⊑• are hierarchical orders. They admit∞ as maximum.

Let v ∈ V. We define the order ⊑v on Ξv as

((X, v) ⊑v (Y, v))⇔ τ(X) ⊆ τ(Y) (7)

where τ : 2U → 2U is the hole closing application defined by τ(X) = X ∪
⋃

Z where
Z ⊆ Π[X] is composed by the finite connected components of X = U \ X.

We define the order ⊑ψ on Ξ as ⊑ψ =
⋃

v∈V ⊑
v, i.e. P ⊑ψ Q iff ∃v ∈ V such that

P ⊑v Q.
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Remark 9 ⊑ψ, and ⊑v (v ∈ V) are hierarchical orders. Each ordered set (Ξv,⊑
v) (v ∈

V) admits a maximum (Uv, v) where Uv ⊆ U is the unique element ofΘv which is infinite.

We note ◁φ (resp. ◁◦, ◁•) and ◁ψ (resp. ◁v) the Hasse relations associated to ⊑φ

(resp. ⊑◦, ⊑•) and ⊑ψ (resp. ⊑v). The graph (Ξ,◁φ) is “similar” to the union of the max-
and min-trees, whereas (Ξ,◁ψ) is “similar” to the union of the adjacency trees of each
threshold set of F . This will be more formally discussed in Section 6.

Remark 10 Let P = (X, v),Q = (Y,w) ∈ Ξ such that P ◁φ Q. We have P,Q ∈ Ξ⋆ with
⋆ = either ◦ or •. In addition, we have X ⊆ Y and v = ζ⩽⋆ (w).

Remark 11 Let P = (X, v),Q = (Y,w) ∈ Ξ such that P ◁ψ Q. We have (P ∈ Ξ• and
Q ∈ Ξ◦) or (P ∈ Ξ◦ and Q ∈ Ξ•). In addition, we have v = w and τ(X) ∈ Π[Y].

We note φ = ζ⊑φ , φ◦ = ζ⊑◦ , φ• = ζ⊑• , ψ = ζ⊑ψ and ψv = ζ⊑v (v ∈ V).

3.3 Definition of the graph of valued shapes

Let ◁Ξ be the relation defined as the union of ◁φ and ◁ψ.

Definition 12 (Graph of valued shapes) The graph of valued shapes (or VS-graph,
for brief) is the couple GVS = (Ξ,◁Ξ).

Remark 13 The intersection between ◁φ and ◁ψ is empty. We can then consider GVS
as (Ξ,◁Ξ) or as (Ξ,◁φ,◁ψ) and equivalently as (Ξ, φ, ψ).

Property 14 GVS = (Ξ,◁Ξ) is a directed acyclic graph.

We define ⊑Ξ as the reflexive-transitive closure of ◁Ξ .

Remark 15 (Ξ,⊑Ξ) is an ordered set that admits∞ as maximum.

4 Tree of Valued Shapes

4.1 Transitive reduction of the graph of valued shapes

Let ◀Ξ be the relation on Ξ defined as the transitive reduction of ◁Ξ .
Let P ∈ Ξ. Let us consider the following three equalities

ψ(P) = [φ ◦ ψ ◦ φ](P) (8)
φ(P) = [φ ◦ ψ ◦ ψ](P) (9)

φ(P) = [φ|V|−2 ◦ ψ](P) (10)

Remark 16 If P satisfies Eq. (8), then we have P ◁Ξ ψ(P) and P ̸◀Ξ ψ(P). If P satisfies
Eq. (9) or (10), then we have P ◁Ξ φ(P) and P ̸◀Ξ φ(P).

Proposition 17 Let P ∈ Ξ be such that φ(P) and ψ(P) exist. One of Eqs. (8–10) is
satisfied.



A Topological Tree of Shapes 5

(a) F : U→ V (b) Λ⋆0 (F ) (c) Λ⋆1 (F ) (d) Λ⋆2 (F ) (e) Λ⋆3 (F )

(f) Λ⋆4 (F ) (g) Λ⋆5 (F ) (h) Λ⋆6 (F ) (i) Λ⋆7 (F )

Fig. 1. (a) A grey-level image F : U → V (U = Z2 and V = [[0, 7]]). (b–i) The threshold sets
Λ⋆v (F ) (Λ◦v(F ) in white; Λ•v(F ) in black), for v = 0 (b) to 7 (i).

0

1

2

3

4

5

6

7

∞

∞

Fig. 2. Tree of valued shapes of the image F (Figure 1(a)). The valued connected components are
depicted by squares (Ξ◦ on the left side; Ξ• on the right side) and are positioned with respect to
the threshold value v (see on left), from 0 (top) to 7 (bottom). Red and green arrows correspond
to the ◀Ξ relation. Green and black dotted arrows correspond to the ◁φ relation. Red arrows are
a subset of the ◁ψ relation, not fully depicted for the sake of readibility.



6 Nicolas Passat and Yukiko Kenmochi

Proof Let P = (X, v) ∈ Ξ be such that φ(P) and ψ(P) exist. Case 1: φ(P) = (U,⊥) = ∞
and ψ(P) = (Uv, v) (the unique element of Π[Λ•v(F )] which is infinite). It is plain that
φ|V|−2((Uv, v)) = (U,⊤) = ∞ = φ(P), and Eq. (10) then holds. Case 2: φ(P) = (U,⊥)
and ψ(P) , (Uv, v). It is plain that ψ2(P) exists and φ(ψ2(P)) = (U,⊥) = φ(P), thus
Eq. (9) holds. Case 3: φ(P) = (U,⊤). Since ψ(P) exists (and is finite), it is plain that
ψ2(P) also exists. But then φ(ψ2(P)) = (U,⊤) = φ(P), thus Eq. (9) holds. Case 4:
φ(P) , ∞. If ψ(P) = (Uv, v), it is plain that ψ(φ(P)) = (Uw,w) with (Uv, v) = φ((Uw,w))
and Eq. (8) then holds. Let us now suppose that ψ(P) , (Uv, v) and that Eq. (8) does not
hold, i.e. [φ ◦ ψ ◦ φ](P) , ψ(P). Then we have P ⊏ψ ψ2(P) ⊏ψ [φ ◦ ψ ◦ φ](P). Now,
let us suppose that φ(ψ2(P)) , φ(P). Then we have φ(P) ⊏ψ φ(ψ2(P)) and it comes
φ(P) ⊏ψ ψ(φ(P)) ⊏ψ φ(ψ2(P)) in contradiction with the Jordan theorem. Thus Eq. (9)
holds. ■

If follows from Proposition 17 that for any P ∈ Ξ such that both ψ(P) and φ(P) exist
we have P ̸◀Ξ ψ(P) or P ̸◀Ξ φ(P). Since (Ξ,⊑Ξ) admits a maximum (namely ∞), for
each P ∈ Ξ, P , ∞, we have either P ◀Ξ ψ(P) or P ◀Ξ φ(P). The following property
derives from these facts.

Property 18 Let P ∈ Ξ.

– If φ(P) is defined and ψ(P) is not, then P ◀Ξ φ(P).
– If ψ(P) is defined and φ(P) is not, then P ◀Ξ ψ(P).
– If φ(P) and ψ(P) are defined, then either P ◀Ξ φ(P) or P ◀Ξ ψ(P).

Remark 19 The transitive reduction from GVS = (Ξ,◁Ξ) to (Ξ,◀Ξ) is a lossless com-
pression. The graph GVS = (Ξ,◁Ξ) can be reconstructed from (Ξ,◀Ξ).

4.2 Definition of the tree of valued shapes

Property 20 (Ξ,◀Ξ) is a tree. Equivalently, ⊑Ξ is a hierarchical order on Ξ.

Definition 21 (Tree of valued shapes) The tree of valued shapes (or VS-tree, for brief)
is the couple TVS = (Ξ,◀Ξ). See Figure 2.

5 Complete Tree of Shapes and Topological Tree of Shapes

5.1 Spatial compression: From the tree of valued shapes to the complete tree of
shapes

Let πΘ : Ξ → Θ be the function defined by πΘ((X, v)) = X. Let ∼Θ be the equivalence
relation on Ξ defined by

P ∼Θ Q⇔ πΘ(P) = πΘ(Q) (11)

Property 22 The function π̃Θ : Ξ/∼Θ → Θ defined by π̃Θ([P]∼Θ ) = πΘ(P) is a bijection.

Remark 23 Based on the above property, we identify Ξ/∼Θ and Θ. More precisely, for
any P = (X, v) ∈ Ξ, we identify [P]∼Θ and X. In particular, we have [∞]∼Θ = {∞} ∈
Ξ/∼Θ and it is identified to U ∈ Θ.
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Property 24 Let K ∈ Ξ/∼Θ. Let ⊑K be the order induced by ⊑Ξ on K. Then (K,⊑K) is
a totally ordered set.

For any K ∈ Ξ/∼Θ, we note ⟨K⟩Θ =
∧
⊑Ξ

K and ⟨⟨K⟩⟩Θ =
∨
⊑Ξ

K. We note ρΞ = ζ⊑Ξ .

Remark 25 From Property 24, it follows that ∀p ∈ [[1, |K| −1]] we have ρp
Ξ(⟨K⟩Θ) ∈ K.

In particular, we have ρ|K|−1
Ξ (⟨K⟩Θ) = ⟨⟨K⟩⟩Θ whereas ρ|K|Ξ (⟨K⟩Θ) < K.

Proposition 26 Let K ∈ Ξ/∼Θ, K , {∞}. Let P = ρ|K|Ξ (⟨K⟩Θ). We have P = ⟨[P]∼Θ⟩Θ.

Proof Let P = ρ|K|Ξ (⟨K⟩Θ) = ρΞ(⟨⟨K⟩⟩Θ), with ⟨⟨K⟩⟩Θ = (X, v) and P = (Y,w). In par-
ticular, we have ⟨⟨K⟩⟩Θ ◀Ξ P and thus ⟨⟨K⟩⟩Θ ◁Ξ P. Let Q = (Y, u) = ⟨[P]∼Θ⟩Θ. Case
1: ⟨⟨K⟩⟩Θ ◁φ P. This implies X ⊆ Y and w ⩽⋆ v (with ⋆ = either ◦ or •). As P < K,
we have X ⊂ Y , and it follows that w <⋆ v. We have w ⩽⋆ u. If u , w, then we have
w <⋆ u and it follows that ⟨⟨K⟩⟩Θ ⊏φ Q ⊏φ P, and thus ⟨⟨K⟩⟩Θ ̸◁φ P: a contradiction.
Then, we have u = w, and it follows that P = ⟨[P]∼Θ⟩Θ. Case 2: ⟨⟨K⟩⟩Θ ◁ψ P. We have
X ∈ either Θ◦v or Θ•v (for instance, Θ◦v ; the same reasoning holds with Θ•v) and φ(⟨⟨K⟩⟩Θ)
exists. Let R = (Z, t) = φ(⟨⟨K⟩⟩Θ). We have X ⊆ Z, and since R < K, it comes X ⊂ Z. Let
us suppose that P , Q. Then, we have S = (Y, t) ∈ [P]∼Θ . It follows that τ(X) = τ(Z).
Consequently, we have R ◁ψ S . But then, we obtain ⟨⟨K⟩⟩Θ ◁φ R ◁ψ S ◁φ P, in
contradiction with ⟨⟨K⟩⟩Θ ◀Ξ P. Then, we have P = ⟨[P]∼Θ⟩Θ. ■

For any K ∈ Ξ/∼Θ, we consider ⟨K⟩Θ ∈ Ξ as canonical element, and we identify
⟨K⟩Θ = (X, v) with X ∈ Θ.

Let ⊑Θ be the order on {⟨K⟩Θ | K ∈ Ξ/∼Θ} ⊆ Ξ—and equivalently on Θ— induced
by ⊑Ξ .

We note κΘ = π̃−1
Θ . Let ρΘ : Θ→ Θ be the function defined by

ρΘ(X) = πΘ(ρ|K|Ξ (⟨K⟩)) (12)

with K = κΘ(X).

Remark 27 From the above property, we have ρΘ = ζ⊑Θ . We note ◀Θ the relation on Θ
associated to ρΘ, namely the Hasse relation of ⊑Θ.

Definition 28 (Complete tree of shapes) The complete tree of shapes (or CS-tree, for
brief) is the couple TCS = (Θ,◀Θ). See Figure 3 (left).

The following proposition directly derives from the above results.

Proposition 29 The equivalence relation ∼Θ induces a decreasing homeomorphism
from TVS = (Ξ,◀Ξ) to TCS = (Θ,◀Θ).

Remark 30 The homeomorphism from TVS = (Ξ,◀Ξ) to TCS = (Θ,◀Θ) is a lossless
compression. The tree TVS = (Ξ,◀Ξ) can be fully reconstructed from TCS = (Θ,◀Θ).
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∞ ∞ ∞

Fig. 3. From left to right: (1) the complete tree of shapes; (2) the topological tree of shapes; (3)
the tree of shapes of the image F of Figure 1. The complete tree of shapes (1) derives from
the reduction of the tree of valued shapes of Figure 2. Green arrows are originated from the ◁φ

relation. Red arrows are originated from the ◁ψ relation.

5.2 Topological compression: From the tree of valued shapes to the topological
tree of shapes

Let X,Y ∈ U, with Y ⊂ X. We aim to characterize the preservation of topological prop-
erties by a decreasing transformation from X to Y . A frequent strategy is to consider the
notion of homotopic transformation. In particular, if there exists a (decreasing) homo-
topic transformation from X to Y , then X and Y have the same homotopy type. How-
ever, this is hardly tractable in 3D [10] and in higher dimensions. Then we consider a
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weaker topological invariant induced by the notion of strongly deletable set [20]. More
precisely, if X \ Y is strongly deletable, then the inclusion relation induces a bijection
between the (foreground and background) connected components of X and those of Y .

Remark 31 If U = Z2, the notion of strongly deletable set is equivalent to the notion
of simple set [14]. This implies that if X \Y is strongly deletable, then X and Y have the
same homotopy type and Y is obtained from X by a decreasing homotopic transforma-
tion defined as the iterative removal of a sequence of simple points [4].

Let P,Q ∈ Ξ be such that ρΞ(P) = Q. If ρ−1
Ξ ({Q}) = {P} and πΘ(Q) \ πΘ(P) is a

strongly deletable set, then we note Q↘ P.

Remark 32 If Q↘ P, then we have ρΞ(P) = φ(P).

Proposition 33 Let P ∈ Ξ. Let A = φ−1({φ(P)}) ∪ ψ−1({φ(P)}). Let B = {φ(P)} ∪
ψ−1({P}). We have φ(P)↘ P iff the restriction φ|A : A→ B is a bijection.

Proof Let X = πΘ(P). By definition, X is connected, i.e. Π[X] = {X}. The set Π[X]
is composed by one infinite set X0 = U \ τ(X) and k ≥ 0 sets Xi (1 ≤ i ≤ k) such
that {Xi}

k
i=1 = τ(πΘ(ψ−1({P}))). Let Y = πΘ(φ(P)). By definition, Y is connected, i.e.

Π[Y] = {Y}. The set Π[Y] is composed by one infinite set Y0 = U \ τ(Y) and l ≥ 0
sets Y j (1 ≤ j ≤ l) such that {Y j}

l
j=1 = τ(πΘ(ψ−1({φ(P)}))). Let D = Y \ X. Let us

suppose that φ(P) ↘ P. Then, we have φ−1({φ(P)}) = {P}, i.e. φ is bijective between
φ−1({φ(P)}) and {P}. Since D is deletable we have k = l and (up to reindexing), for any
i ∈ [[0, k]], Yi ⊆ Xi. For each i ∈ [[0, k]], there exist P̂i = (X̂i, v) ∈ ψ−1({P}) such that
Xi = τ(X̂i) and Q̂i = (Ŷi,w) ∈ ψ−1({φ({P})}) such that Yi = τ(Ŷi). We have Yi ⊆ Xi and
then τ(Ŷi) ⊆ τ(X̂i). We set Di = D∩X̂i. We have τ(X̂i\Di) = τ(X̂i)\Di = τ(Ŷi). It follows
that Ŷi ⊆ X̂i, and φ is then bijective between ψ−1({φ(P)}) and ψ−1({P}). Let us suppose
that φ is bijective between φ−1({φ(P)}) and {φ(P)}. Then both P = φ(P) \ D and φ(P)
are connected and P ⊂ φ(P). Let us suppose that φ is bijective between ψ−1({φ(P)}) and
ψ−1({P}). The function τ ◦ πΘ is a bijection between ψ−1({P}) (resp. ψ−1({φ(P)})) and
{Xi}

k
i=1 (resp. {Y j}

l
j=1). It follows that φ(P)↘ P. ■

Let∼H be the equivalence relation onΞ defined as the reflexive-transitive-symmetric
closure of↘.

Remark 34 We have [∞]∼H = {∞} ∈ Ξ/∼H .

Property 35 Let K ∈ Ξ/∼H . Let ⊑K be the order induced by ⊑Ξ on K. (K,⊑K) is a
totally ordered set.

For any K ∈ Ξ/∼H , we note ⟨K⟩H =
∧
⊑Ξ

K and ⟨⟨K⟩⟩H =
∨
⊑Ξ

K.

Remark 36 From these results, it follows that ∀p ∈ [[1, |K|−1]] we have ρp
Ξ(⟨K⟩H) ∈ K.

In particular, we have ρ|K|−1
Ξ (⟨K⟩H) = ⟨⟨K⟩⟩H whereas ρ|K|Ξ (⟨K⟩H) < K.

Property 37 Let K ∈ Ξ/∼H , K , {∞}. Let P = ρ|K|Ξ (⟨K⟩H). We have P = ⟨[P]∼H ⟩H .
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For any K ∈ Ξ/∼H , we consider ⟨K⟩H ∈ Ξ as canonical element, and we identify
⟨K⟩H = (X, v) with X ∈ Θ. We set H = Ξ/∼H .

Let ⊑H be the order on {⟨K⟩H | K ∈ H} ⊆ Ξ—and equivalently on H— induced by
⊑Ξ .

Let ρH : H → H be the function defined by

ρH(K) = [ρ|K|Ξ (⟨K⟩)]∼H (13)

We define the relation ◀H on H, induced by the relation ◀Ξ on Ξ by K ◀H ρH(K).

Definition 38 (Topological tree of shapes) The topological tree of shapes (or TS-tree,
for brief) is the couple TTS = (H,◀H). See Figure 3 (centre).

The following proposition directly derives from the two above properties.

Proposition 39 The equivalence relation ∼H induces a decreasing homeomorphism
from TVS = (Ξ,◀Ξ) to TTS = (H,◀H).

Remark 40 The homeomorphism from TVS = (Ξ,◀Ξ) to TTS = (H,◀H) is a topolog-
ically lossless but a geometrically lossy compression. The structure of the tree TVS =

(Ξ,◀Ξ) can be fully reconstructed from TTS = (Θ,◀Θ), but not the shapes of its nodes.

6 Links With Other Trees

The graph of valued shapes GVS presents a DAG structure, similarly to other morpho-
logical hierarchies, e.g. the component-graph [17], the directed component hierarchy
[18] or the braid of partitions [8]. GVS is also organized via two kinds of relations,
similarly to the component-hypertree [15] and the directed component hierarchy [18]
(where the initial order can be split into two distinct orders).

But, contrary to these morphological hierarchies, GVS can be modeled as a tree
structure, namely TVS. This should open the way to efficient construction strategies,
compared, e.g. to the component-hypertree [12], the component-graph [16] or the braid
of partitions [29], the construction of which remains complex and/or costly.

Beyond these considerations, the graph of valued shapes and the induced trees (trees
of valued shapes, complete tree of shapes) also allow to unify various morphological
trees.

With the notations introduced in Section 3, the max-tree (resp. min-tree) [24] of F
is defined as Tmax = (Θmax,◀max) (resp. Tmin = (Θmin,◀min)) with Θmax = Θ◦ (resp.
Θmin = Θ

•) and ◀max (resp. ◀min) is the Hasse relation induced by the restriction of ⊆
on Θmax (resp. Θmin).

Proposition 41 There is a decreasing homeomorphism from the subgraph (Ξ◦,◁◦)
(resp. (Ξ•,◁•)) of GVS to the max-tree Tmax = (Θmax,◀max) (resp. the min-tree Tmin =

(Θmin,◀min)).
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Proof The proof is similar to that of Proposition 29 (Properties 22, 24, 26) by consider-
ing Ξ◦ and Θ◦ (resp. Ξ• and Θ•) instead of Ξ and Θ. ■

The adjacency tree [21] of a binary set X ⊂ U is defined as Tadj = (Θadj(X),◀adj)
where Θadj(X) = Π[X]∪Π[X] and ◀adj is the Hasse relation induced by the “surround-
ing” order relation on Θadj(X).

Proposition 42 Let v ∈ V. The subgraph (Θv,◁v) ofGVS is isomorphic to the adjacency-
tree Tadj = (Θadj(Λ◦v(F )),◀adj).

Proof This proposition directly derives from the equivalence of the definitions. ■

The tree of shapes [11] of F is defined as Tshape = (Θshape,◀shape) where Θshape =

τ(Θ) and ◀shape is the Hasse relation induced by ⊆ on Θshape. See Figure 3 (right).

Proposition 43 There is a decreasing homeomorphism from the tree (Θ,◀Θ) to the tree
of shapes Tshape = (Θshape,◀shape).

Proof The proof is similar to that of Proposition 29 (Properties 22, 24 and Proposi-
tion 26) by considering Θ instead of Ξ and the equivalence relation on Θ defined by
X ∼S Y ⇔ τ(X) = τ(Y). ■

Remark 44 In [28], the notion of a topological monotonic tree was introduced, where
“monotonic tree” has the same meaning as “tree of shapes”. However, the topological
monotonic tree of [28] is indeed different from our topological tree of shapes. Unfor-
mally, the difference between both structures lies in the fact that our topological tree of
shapes relies on a topological equivalence relation between the nodes of the complete
tree of shapes, whereas the topological monotonic as defined in [28] relies on a similar
equivalence relation between the external border of the nodes. From [28], there is a
decreasing homeomorphism from the tree of shapes to the topological monotonic tree.
It can be proved that there is also a decreasing homeomorphism from our topological
tree of shapes to the topological monotonic tree. These links are not formalized here by
lack of room; they will be more deeply investigated in our further works.

The following result derives from the above propositions and properties.

Property 45 We have

|H| ≤ |Θ| ≤ |Ξ| ≤ (|S| + 1).|V| (14)
|Θshape| ≤ |Θ| = |Θmax| + |Θmin| − 1 ≤ 2.|S| (15)

7 Concluding Remarks and Perspectives

This article gathers some preliminary results about the notions of graph / tree of valued
shapes and complete / topological tree of shapes. These notions shed a new light on well
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known morphological hierarchies, namely the component-tree and the tree of shapes.
In particular they allow to unifiy and extend these notions and to link them to topolog-
ical invariants related to the adjacency tree, the deletable sets and—under favourable
hypotheses—the homotopy type. We believe that these structures constitute a promis-
ing subject of research in the framework of morphological hierarchies. At this stage,
our introductive study focused only on the structural side of these notions.

Our perspective works will also consider the algorithmic aspects, in particular the
way to build these structures efficiently. Due to their strong links with the component-
tree, it is possible to propose first, naive strategies to build the graph and then the tree
of valued shapes from the min- and max-trees [2], and then to derive the complete and
topological trees of shapes. It is also possible to start from the construction of the tree of
shapes [7] to derive the same structures. However, such approaches, although tractable,
are not optimal, and seeking dedicated construction algorithms makes sense.

We initially designed the graph of valued shapes by “mixing” the min- / max-trees
and adjacency trees with a precise idea in mind. Our purpose was to develop conceptual
tools that would allow one to carry out the topological analysis of objects in non-binary
paradigms (e.g. for grey-level images or fuzzy modeling). In this regard, our next step
will be to investigate the links that exist between these new structures and frameworks
developed in topological analysis, especially with respect to grey-scale topology [5] and
to homology persistence and Morse theory [1].

More generally, we also believe that these new structures could be useful for devel-
oping approaches dedicated e.g. to homotopic morphology, topological compression or
topological comparison.
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