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Tangential cover for 3D irregular noisy digital curves
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Abstract. This paper presents a discrete structure, named adaptive tangential
cover (ATC), for studying 3D noisy digital curves. The structure relies mainly
on the primitive of blurred segment of width ν and on the local noise estimator
of meaningful thickness. More precisely, ATC is composed of maximal blurred
segments of different widths deduced from the local noise values estimated at
each point of the curve. Two applications of ATC for geometric estimators of
3D noisy digital curves are also presented in the paper. The experimental results
demonstrate the efficiency of ATC for analyzing 3D irregular noisy curves.

Keywords: 3D digital curves, noise estimator, tangent and curvature estimators

1 Introduction

3D digital curves are often involved in many applications of 3D image processing and
computer graphics. For instance, in [12], a system has been designed to model surfaces
with collections of 3D curves. In [20], a sketch-based modeling method is proposed to
reconstruct 3D curves and to reveal 3D shape information from typical design sketches.
In applications of medical image processing [17], 3D digital curves are used for the
analysis and can be obtained from a 3D curvilinear skeletonisation [4]. In those appli-
cations, the geometric characteristics of the curves play an important role for numerous
purposes. In real context, the data present generally noise due to the acquisition process.

In digital geometry, new mathematical definitions of basic geometric objects are
introduced to better fit the discrete/digital nature of data to process. In the context of
3D digital curve analysis, the notion of 3D maximal digital straight segment [2] has
been used to describe the geometric properties of the curves. In particular, the sequence
of all maximal segments along a digital curve C, called the tangential cover, has been
shown to be an efficient tool to study digital curves. Indeed, it is involved in numerous
geometric estimators of digital curves: length [2], tangent [18], curvature [3] . . .

However, the tangential covers based on maximal segments are not adapted to noisy
or disconnected curves. For this, the notion of blurred segment of width ν [5, 16] was
proposed to deal with 3D digital curves containing noise or other sources of imperfec-
tions from real data via the parameter ν. The sequence of maximal blurred segments of
width ν along a digital curve is called a ν-tangential cover. This structure has been used
in different contexts to study and to analyze the geometrical characteristics of noisy
curves (e.g. [5, 15, 16]). Nevertheless, in these applications, the width ν needs to be
manually adjusted to take into account the noise present on the curves. Furthermore,
the structure is not well suited for noise which appears irregularly on the 3D curves.
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Based on the works [13, 14], the present paper studies a discrete framework for
3D digital curves containing irregular noise, and proposes improvements for the 3D
approach. More precisely, we present a discrete structure, called adaptive tangential
cover (ATC), which relies on primitive of blurred segment of width ν. The particularity
of ATC is that it contains a sequence of blurred segments with different widths varying
in function of noise present along the digital curve. Such adaptive widths are computed
thanks to the local noise estimator of meaningful thickness [9]. In particular, the ATC
can be computed in quasi-linear time and the method is parameter-free. We then show
two applications of ATC to geometric estimators: tangent based on λ-MST [18] and
curvature based on osculating circle [3] of 3D digital noisy curves. The experimental
results show that the proposed method, based on the structure of ATC, is an efficient
tool for studying noisy digital curves.

2 Background notions

In the following, we define a digital curve C = (Ci ∈ Z
d)i=1..n, for d = {2, 3}, as a se-

quence of discrete points. We then denote Ci, j, with 1 ≤ i ≤ j ≤ n, the set of consecutive
points from Ci to C j of C.

Let us first recall some definitions in 2D and then the extensions to 3D since, in this
work, the definitions in 3D are computed from the 2D projections.

2.1 2D blurred segment of width ν and noise detector

Definition 1 ([19]). A 2D digital line, with direction vector (b, a) ∈ Z2, gcd(a, b) = 1,
shift µ ∈ Z and thickness ω ∈ Z+ is defined as the set of points (x, y) ∈ Z2 verifying

µ ≤ ax − by < µ + ω (1)

Such a line is denoted byD2(a, b, µ, ω).

A 2D digital segment is a finite and bounded subset of a 2D digital line (see Fig.1 (a)).
From the primitive of digital segment, the notion of 2D blurred segment of width ν is
proposed and allows for more flexibility in handling noisy data via the width parameter.

Let us consider S2 a sequence of discrete points of Z2.

Definition 2 ([6]). A digital lineD2(a, b, µ, ω) is said to be bounding forS2 if all points
of S2 belong toD2.

Definition 3 ([6]). A bounding digital line D2(a, b, µ, ω) of S2 is said to be optimal if
the value ω−1

max(|a|,|b|) is minimal, i.e. if its vertical (or horizontal) distance is equal to the
vertical (or horizontal) thickness of the convex hull of S2.

This definition is illustrated in Fig. 1 (b), it leads to the definition of 2D blurred segment.

Definition 4 ([6]). A sequence S2 is a 2D blurred segment of width ν if its optimal
bounding line has vertical/horizontal distance less than or equal to ν, i.e. ω−1

max(|a|,|b|) ≤ ν.
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(a) 2D digital line (b) 2D blurred segment

Fig. 1. Examples of (a) 2D digital lineD2(2, 3,−3, 5) and (b) 2D blurred segment of width ν = 1.5
belongs to the optimal digital lineD2(2, 3,−3, 5).

From this definition, a linear algorithm of blurred segment recognition is proposed in
[16]. The method is based on an incremental growth of convex hull of the points sequen-
tially added to the segment, and the calculation of its vertical and horizontal thickness.

From the primitive of digital straight segment, the noise detector of meaningful scale
(MS) [7, 8] is designed to locally estimate the best scale to analyze a digital curve. This
detector is based on the study of the asymptotic properties of the discrete length L of
maximal segments. In particular, it has been shown in [11] that the lengths of maximal
segments covering a point p located on the boundary of a C3 real object should be
between Ω(1/h1/3) and O(1/h1/2) if p is located on a strictly concave or convex part
and near O(1/h) elsewhere (where h represents the grid size). This theoretical property,
defined on finer and finer grid sizes, was used by taking the opposite approach with
the computation of the maximal segment lengths obtained with coarser and coarser
grid sizes (from a subsampling process). From the graph of the maximal segment mean
lengths L, obtained at different scales, the noise estimator consists of recognizing the
maximal scale for which the lengths follow the previous theoretical behavior.

The method has been extended to the detector of meaningful thickness (MT) [9]
by using the blurred segment primitive with the scale definition given by the width of
the blurred segment. Such a strategy presents the first advantage to be easier to imple-
ment without needing to apply different subsamplings and can be used for non-integer
coordinate curves. In this work, we use the MT estimator since it allows to process dis-
connected curves which is suitable for our framework of studying digital noisy curves.

2.2 3D blurred segment of width ν

Definition 5 ([2]). A 3D digital line, with main vector (a, b, c) ∈ Z3 such that a ≥ b ≥
c > 0 and gcd(a, b, c) = 1, with shifts µ, µ′ ∈ Z, and thicknesses ω,ω′ ∈ Z+ is defined
as the set of points (x, y, z) ∈ Z3 verifying{

µ′ ≤ bx − ay < µ′ + ω′

µ ≤ cx − az < µ + ω
(2)

Such a line is denoted byD3(a, b, c, µ, µ′, ω, ω′).
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Fig. 2. Examples of (a) 3D digital segment of D3(20,−25, 8,−10,−6, 8, 6) and (b) 3D blurred
segment of width ν = 2.5 belongs to the optimal digital lineD3(10,−15, 3,−10,−6, 22, 20).

For the 3D digital lines of coefficients ordered different from a ≥ b ≥ c > 0, they can be
obtained by permuting x, y, z as well as their coefficients. From Def. 5, a 3D digital line
is bijectively projected into two projection planes as two 2D digital lines. A 3D digital
segment is a finite, bounded and connected subset of a 3D digital line (see Fig. 2 (a)).

Definition 6 ([16]). Let S3 be a sequence of points of Z3. S3 is a 3D blurred segment
of width ν, with main vector (a, b, c) ∈ Z3 such that a ≥ b ≥ c > 0, if it has an optimal
digital lineD3(a, b, c, µ, µ′, ω, ω′) such that

– D2(a, b, µ′, ω′) is optimal for the sequence of projections of points S3 in the plane
Oxy and ω′−1

max(|a|,|b|) ≤ ν ;
– D2(a, c, µ, ω) is optimal for the sequence of projections of points S3 in the plane

Oxz and ω−1
max(|a|,|c|) ≤ ν.

An illustration of 3D blurred segment is given in Fig. 2 (b).
Let C ⊂ Z3 be a 3D digital curve. Let BS (i, j, ν) denote the predicate “Ci, j is a

blurred segment of width ν”.

Definition 7 ([16]). Ci, j ⊂ C is called a maximal blurred segment of width ν, noted
MBS (i, j, ν), iff BS (i, j, ν), ¬BS (i, j + 1, ν) and ¬BS (i − 1, j, ν).

In [16], an incremental and linear algorithm is proposed to recognize a 3D maxi-
mal blurred segment (MBS) of width ν for a sequence of points. The main idea of the
algorithm is to add simultaneously the 2D points in the projection planes as far as two
of them are valid i.e., we can add more point to the 2D MBS. Then, the 3D MBS is
computed from the two corresponding 2D MBS of width ν projected onto the two basic
planes. An algorithm for decomposing a digital curve C into 3D MBS of width ν is also
presented in [16] with a complexity of O(n log2 n) for n the number of points in C. The
obtained structure is called (3D) ν-tangential cover. Some examples are given in Fig. 3.

Let MBS ν(C) = {MBS i(Bi, Ei, ν)i=1..m} denote the ν-tangential cover of C. By con-
struction, we obtain the following property.
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Fig. 3. Example of ν-tangential cover on a noisy digital curve: ν = 2 (left) and ν = 4 (right).

Property 1 ([16]) Let MBS ν(C) be the ν-tangential cover ofC. Then, we have MBS ν(C) =

{MBS (B1, E1, ν), MBS (B2, E2, ν),. . . , MBS (Bm, Em, ν)} such that B1 < B2 < . . . < Bm

and E1 < E2 < . . . < Em.

3 Adaptive tangential cover

The notion of ν-tangential cover has been proved to be an efficient tool to study digital
noisy curves [5, 15, 16]. However, the parameter ν needs to be manually adjusted by
the user. In this section, we present a 3D discrete structure, named adaptive tangential
cover (ATC). It is composed of 3D MBS of different widths according to the amount of
noise present in the curve. Before detailing the 3D ATC and its construction, let us first
describe the blurred segment recognition algorithm used for building the 3D ATC.

3.1 Blurred segment recognition

It must be recalled that, by definition, a 3D digital segment is bijectively projected into
two projection planes as two 2D digital segments. From this property, the algorithm
for 3D straight segment recognition [2] is performed by considering the projections in
the basic planes, namely Oxy, Oxz and Oyz. In particular, a 3D digital segment is said
valid if at least two of its projections are 2D digital segments and the points bijectively
projected on the two planes, these planes are called functional planes. An algorithm for
decomposing a digital curve into 3D straight segments is as well proposed. We refer the
readers to [2, 5] for more details of the algorithm.

The recognition algorithm has been extended in [16] for the 3D blurred segment
primitive by using the 2D blurred segment recognition in the projection planes. Simi-
larly, a 3D blurred segment must be valid for at least two of its projections in the three
basic planes together with the condition of two functional planes.

In this work, we are interested in 3D noisy digital curves, and in particular, the
notion of 3D blurred segments of width ν for studying such curves. Although the 3D
blurred segment recognition algorithm proposed in [16] works well for 3D noisy curves
and its decomposition, we remarked various degeneracies that require us to modify
the recognition algorithm. Firstly for the two functional planes, in case the amount of
noise is important, this condition often fails, the algorithm therefore provides the short
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(a) (b) (c)

Fig. 4. Recognition of 3D blurred segment of width ν = 2. (a) Result obtained when considering
the bijectivity of the functional planes. (b) Result obtained when considering the two of the three
projection are 2D blurred segments of width ν = 2. (c) Result obtained when considering the
three projection are 2D blurred segments of width ν = 2 and relaxing the bijective condition.

segment as illustrated in Fig. 4 (a). This can bias the results of the geometric estimators
on the curves. Secondly, a 3D blurred segment must have at least two of its projections
being verified as 2D blurred segments. An example is given in Fig. 4 (b) for 3D blurred
segment of width ν = 2. One can observe that the 3D segment has its two projections on
the planes Oxy and Oxz being two valid 2D blurred segments. However, the obtained
3D blurred segment is far to what we would like to have as a segment. More regular
segments as in Fig. 4 (c) would be more preferable and relevant for analyzing this
sequence of points. It must be mentioned that these issues are generally due to the
nature of noisy data which makes discrete points irregularly distributed along the curve.

To overcome these limitations of the method, we propose some modifications in the
recognition algorithm of 3D blurred segment. In particular, we relax the constraints
of valid and functional planes. More precisely, for a given digital curve C ⊂ Z3, a
sequence Ci, j of C is a 3D blurred segment of width ν iff the three projections of Ci, j

on the basic planes are all 2D blurred segments of width ν. The characteristics of the
optimal 3D digital line D3(a, b, c, µ, µ′, ω, ω′) of Ci, j is then computed from the two
projections of 2D blurred segments having the longest lengths (in term of Euclidean
distance). The rest of the algorithm stays the same as in [16].

3.2 Adaptive tangential cover construction

As previously mentioned, in the ν-tangential cover, the width parameter ν needs to be
manually adjusted. Furthermore, the width ν is globally set for all MBS composing
the ν-tangential cover. This approach works generally well when noise is uniformly
distributed on the curve, but it is less relevant to local and irregular noisy curves.

In 2D, to overcome this issue of appropriate width ν, the structure of adaptive tan-
gential cover (ATC) is introduced in [13, 14]. Such a structure is designed to capture the
local noise on a digital curve by adjusting the width of 2D MBS in accordance with the
amount of irregular noise present along the curve. In other words, the ATC is composed
of MBS with different widths varying in function of detected noise present in the curve.
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(a) 2D ATC (b) 3D ATC

Fig. 5. Examples of ATC on 2D et 3D noisy digital curves.

In particular, the MBS has bigger widths at noisy zones, and smaller widths in zones
with less or no noise (see Fig. 5 (a)).

Definition 8 ([13]). Let C = (Ci)1≤i≤n be a digital curve. Let η = (ηi)1≤i≤n be the vector
of noise level associated to each Ci of C. Let MBS (C) = {MBS νk (C)} be the set of
νk-tangential covers for νk ∈ η. An adaptive tangential cover of C, noted ATC(C), is
the sequence of maximal blurred segments: ATC(C) =

{
MBS j = MBS (B j, E j, ν) ∈

MBS (C) | ν = max{ηt | t ∈ [[B j, E j]]}
}

such that MBS j * MBS i for i , j, where [[a, b]]
is the integer interval between a and b, including both.

Still in [13], an algorithm is proposed to build the ATC of a 2D digital curve C. The
algorithm is composed of two steps: (1) labeling the points with the noise level vector
η and (2) building the ATC(C) with MBS of width from the obtained labels.

It should be mentioned that the definition of ATC is given in 2D, but still valid for
3D. A primary extension in 3D of ATC is also presented in [13]. The method is however
restricted to noisy curves C ⊂ Z3 having two functional planes.

Regarding the noise vector η for each point of C, the method in [13] performs sepa-
rately the noise detection – with MT estimator – on the projected 2D curves in the two
functional planes, and then chooses the maximum noise level to assign to each corre-
sponding 3D point. Although this strategy works well for 3D noisy curves containing
few noise (see Fig. 5 (b)), it becomes less performance for important noisy cases. One
common problem is that the high noise level is quickly propagated along the constructed
ATC. As a consequence, it creates the segments of big widths encompassing the signif-
icant details of the input curve (see Fig. 6 (a)). Furthermore, in general, the 3D curves
do not always have only two functional planes. We refer the reader to [13] for more
details. In this work, we keep the idea of the ATC algorithm in [13]. We will, however,
make some changes in the method for a more efficient construction of 3D ATC, and
allow to handle general curves – without the constraint of two functional planes. More
precisely, the noise estimator is performed on the three projected curves in the basic
planes. For a better local fitting of the input curve C, the median value is used, instead
of the maximum as in [13], for the noise associated to each 3D point of C. Indeed, it
allows to prevent the strong increment of the width of blurred segments when the noise
becomes important. A comparison of the two strategies on a noisy curve is given in
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Fig. 6. Illustration of 3D ATC with the max (left) and median (right) value for combing noise.

Fig. 6. We can observe that the 3D ATC with maximal values contains the segments of
big widths where the noise is important. It causes the lost of the curve characteristic at
certain places and may bias the geometric estimators of the curve. On the other hand,
the 3D ATC with median allows a closer approximation of the curve.

In the following, we use the blurred segment recognition described in Sec. 3.1.
The 3D ATC construction is given in Algo. 1 with modifications explained previously.
Examples of 3D ATC with the method are given in Fig. 7. Note that, by definition
(Def. 8) and construction, the 3D ATC satisfies also Property 1.

In [16], it is shown that the ν-TC of a 3D digital curve C can be computed in
O(n log2 n) for n the number of points in C. The construction of ATC is based on the
ν-TC for different widths ν obtained for the MT estimator. The number ν-TC to be com-
puted is equal to the size of ϑ – the number of noise levels present in C – and |ϑ| � n.
In other words, the complexity of Algo. 1 for computing a 3D ATC is also O(n log2 n).

4 Applications: tangent and curvature estimators

Geometric properties of curves are important characteristics to be exploited in geometry
processing. In particular, tangent and curvature are among the important properties to
describe a curve. In this section, we present two applications of ATC for geometric
estimators at each point of 3D noisy digital curves. The ATC can be used to improve
the precision of existing tangent and curvature estimators for irregular noisy curves.

To evaluate the proposed estimators, we consider two following curves: Flower and
Astroid. The first curve is a smooth curve with nearly the same mean-error along the
curve, while the second is a sharp 4-pointed curve. These two curves are defined, re-
spectively, by the following parametric equations:

x = 2 cos(t) cos(5t)
y = 2 sin(t) cos(5t)

z = cos2(5t)

(3) and


x = cos3(t)

y = sin3(t)
z = t

(4)
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Algorithm 1: Calculation of 3D adaptive tangential cover.
Input : C = (Ci)i=1...n input 3D digital curve,

η = (ηi)i=1...n noise level of each Ci with median MT of the projected planes
ϑ = {νk | νk ∈ η} ordered set of η, and
MBS (C) = {MBS νk (C)}k=1...m sets of MBS of C for each width value νk ∈ ϑ

Output : ATC(C) the 3D adaptive tangential cover of C
Variable : γ = (γ)i=1...n vector of labels to each Ci

1 begin
2 ATC(C) = ∅ ; γi = ηi for i ∈ [[0, n − 1]]

// Step 1: Label each point Ci of C

3 foreach νk ∈ ϑ do
4 foreach MBS (Bi, Ei, νk) ∈ MBS νk (C) do
5 α = max{ηi | i ∈ [[Bi, Ei]]}
6 if α = νk then γi = νk for i ∈ [[Bi, Ei]]

// Step 2: Calculate the ATC of C with MBS of width from γ

7 foreach νk ∈ ϑ do
8 foreach MBS (Bi, Ei, νk) ∈ MBS νk (C) do
9 if ∃γi, for i ∈ [[Bi, Ei]], such that γi = νk then

10 ATC(C) = ATC(C) ∪ {MBS (Bi, Ei, νk)}

These curves are discretized using the class NaiveParametricCurveDigitizer3D
of DGtal [1] to obtain 3D connected curve C. To generate noise for C, a random process
with a uniform distribution is considered to change one coordinate of points of C one
unit, ±1. Thirty curves with random noise are generated for the error measurements
between the theoretical tangent/curvature and the estimated ones on these curves.

4.1 Discrete tangent

In [18], a discrete tangent estimator, called λ-maximal segment tangent (λ-MST), has
been proposed for regular digital curves. It is based on the tangential cover with max-
imal straight segments. The method is an extension of the algorithm presented in [11]
for 2D curves. In particular, the estimator is a simple parameter-free method and has
multi-grid convergent properties [10, 11].

The λ-MST can be easily applied to ATC with blurred segment primitive, and thus
allows to handle noise. More precisely, the tangent at Ck ∈ C is obtained via the defini-
tion of a pencil of maximal blurred segmentsP(Ck) = {MBS i = MBS (Bi, Ei, .),with Bi ≤

k ≤ Ei}. From this, a notion of eccentricity was introduced in order to distribute weights
on all the segments covering Ck. More formally, the eccentricity is defined as

ei(Ck) =

{
||Ck − CEi ||

2
2/Li if MBS i ∈ P(Ck)

0 otherwise , with Li = ||CEi − CBi ||
2
2 (5)



10 P. Ngo and I. Debled-Rennesson

Then, the tangent direction t(Ck) at Ck is computed as a weighted combination of the
direction vectors ti of the maximal blurred segments MBS i ∈ P(Ck) covering Ck by

t(Ck) =

∑
MBS i∈P(Ck) λ(ei(Ck)) ti

||ti ||
2
2∑

MBS i∈P(Ck) λ(ei(Ck))
(6)

where λ is a mapping function defined from [0, 1] to R+ such that λ(0) = λ(1) = 0 and
λ > 0 elsewhere and λ needs to satisfy convexity/concavity property [11]. In this paper,
the C2 function λ(x) = 64(−x6 + 3x5 − 3x4 + x3) is used. Furthemore, thanks to Prop. 1,
the pencil P(Ck), for Ck ∈ C, can be easily computed from ATC(C).

Fig. 7 shows a visual result of the tangent estimator λ-MST with ATC on two noisy
curves. Further results are shown in Tab. 1 in which we compare the λ-MST estimator
using ATC and ν-tangential covers with ν = 1...5 (as there are 5 noise levels detected
in the thirty input curves). Different error measures are considered: mean and maximal
error and standard deviation. The result shows that the combination of λ-MST with
ATC improves globally tangent estimation on digital noisy curves; it has the best mean
error measures, and the other measures are every closed to the best ones as well.

Table 1. Error measures of tangent estimator λ-MST on the digitized curves of Flower (Eq. 3)
and Astroid (Eq. 4) with random noise added.

Curves
Error of estimated tangents

ATCMT 1-TC 2-TC 3-TC 4-TC 5-TC

Flower

Mean Error 0.220012 0.369261 0.222374 0.283572 0.320565 0.343145
Std. Dev. 0.214158 0.250986 0.193687 0.211761 0.225935 0.23631
Max Error 1.26362 1.26657 1.25397 1.29662 1.29617 1.30408

Astroid

Mean error 0.293318 0.379116 0.295132 0.302137 0.309408 0.344594
Std. Dev. 0.216065 0.285028 0.234184 0.222423 0.231388 0.24023
Max error 1.06834 1.22489 1.13035 1.06979 1.04051 1.05925

4.2 Discrete curvature

In the study of geometric characteristics of 3D digital curves, Coeurjolly and Svensson
have proposed in [3] the calculation of discrete curvature based on the osculating circle
with maximal straight segments. Inspired by this idea, Nguyen and Debled-Rennesson
have presented in [15] the discrete curvature estimator using 3D maximal blurred seg-
ments. The proposed method can be naturally applied to the structure of 3D ATC. More
precisely, from the 3D ATC of an input curve C = (Ci)i=1...n, we compute the pencil
P(Ck) for each point Ck ∈ C. Let Cl (resp. Cr) be the left (resp. right) end point of
P(Ck). The discrete curvature at Ck is estimated using the radius Rν(Ck) of the osculat-
ing circle of the triangle formed by three points Cl, Ck and Cr

Rν(Ck) =
s1s2s3

√
(s1 + s2 + s3)(s1 + s2 − s3)(s1 + s2 − s3)(s2 + s3 − s1)

(7)
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(a) Noisy digital Flower curve (Eq. 3)

(b) Noisy digital Astroid curve (Eq. 4)

Fig. 7. Tangent estimator λ-MST with ATC on noisy digital curves. In each figure (a) and (b), the
ATC of the input curve is on the left, the result of estimated tangents is on the right: red segments
are expected theoretical tangents and blue segments are estimated tangents.
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with s1 = ‖
−−−→
CkCr‖, s2 = ‖

−−−→
CkCl‖ et s3 = ‖

−−−→
ClCr‖. The curvature of Ck is then calculated

by
cν(Ck) =

s
Rν(Ck)

(8)

where s = signe(det(
−−−→
CkCr,

−−−→
CkCl)) indicating the concavity or convexity of C at Ck.

Tab. 2 presents the results of the proposed curvature estimator using 3D ATC and
ν-tangential covers with ν = 1...5 on the error measures of mean and maximal error and
standard deviation. The estimator with ATC does not always give the best result but we
obtain fairly accurate curvature estimation comparing to the ν-tangential covers.

Table 2. Error measures of curvature estimator on the digitized curves of Flower (Eq. 3) and
Astroid (Eq. 4) with random noise added.

Curves
Error of estimated curvatures

ATCMT 1-TC 2-TC 3-TC 4-TC 5-TC

Flower

Mean Error 0.042239 0.192657 0.043795 0.041935 0.045646 0.048014
Std. Dev. 0.118326 0.173881 0.108671 0.125055 0.130469 0.131886
Max Error 1.05404 1.906708 0.977172 1.08214 1.11167 1.11805

Astroid

Mean Error 0.026844 0.202735 0.043616 0.024496 0.024548 0.028414
Std. Dev. 0.015149 0.176366 0.058435 0.016437 0.016609 0.017491
Max Error 0.439742 0.828724 0.349773 0.08767 0.078456 0.078618

5 Conclusion

From the studies in [13, 14], this paper presents different improvements of the structure
of adaptive tangential cover (ATC) for 3D noisy digital curves. ATC is a discrete struc-
ture composed of a sequence of maximal blurred segment of width ν adjusted according
to the amount of noise present on the curve. Due to the nature of noisy data, 3D blurred
segment recognition is also modified by considering all three projection planes. From
this, a parameter-free and quasi-linear algorithm is proposed to compute the structure
of ATC.

Two applications of ATC are also presented for tangent and curvature estimators
of noisy curves. The proposed structure opens numerous perspectives for studying and
analyzing 3D noisy curves such as 3D curve segmentation or approximation, convex
and concave detection, dominant point detection in 3D . . . The source code of the
proposed method for constructing 3D ATC, based on DGtal library [1], is available at
the GitHub repository: https://github.com/ngophuc/ATC 3D.

In further works, we also would like to study the aspect of multi-grid convergent
estimators of 3D noisy digital curves using the proposed structure of ATC. Furthermore,
we would like to elaborate a more efficient computation of ATC without calculation of
all ν-tangential covers. Other perspective consists of studying a 3D noise estimator for
ATC instead of using the combination of MT estimators on the three projection planes.
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