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Abstract: Cellular inhibitor of apoptosis 1 (cIAP1) is a cell signaling regulator of IAP family. 9 

Through its E3-ubiquitine ligase activity, it has the ability to activate intracellular signaling path- 10 

ways, modify signal transduction pathway by changing protein-protein interaction networks and 11 

stop signal transduction by promoting degradation of critical components of signaling pathways. 12 

Thus, cIAP1 appears as potent determinant of the response of cells, enabling their rapid adaptation 13 

to changing environmental conditions or to intra- or extracellular stresses. It is expressed in almost 14 

all tissues, found in the cytoplasm, membrane and/or nucleus of cells. cIAP1 regulates innate im- 15 

munity by controlling signaling pathways mediated by tumor necrosis factor receptor superfamily 16 

(TNFRs), some cytokine receptors and pattern recognition-receptors (PRRs). Although less docu- 17 

mented, cIAP1 has also been involved in the regulation of cell migration and in the control of tran- 18 

scriptional program.  19 

Keywords: IAPs; signaling pathways; innate immunity, Ubiquitination, TNFα, NF-κB, cell migra- 20 

tion, E2F1. 21 

 22 

1. Introduction 23 

IAPs (Inhibitors of Apoptosis) form a family of proteins highly conserved during 24 

evolution. The named “IAP” was chosen by Lois Miller’teams who described a new class 25 

of proteins encoded by Cydia pomonella granulosis virus (CpGV) genome and able to pro- 26 

tect infected-insect cells from apoptosis to allow viral spread [1]. Since then, based on se- 27 

quence homologies, IAP homologs have been identified in insects, yeasts, nematodes, 28 

fishes and mammals. However, although they are able to inhibit or delay cell death when 29 

overexpressed, the main cellular function for most of them is not an inhibition of apopto- 30 

sis. Among the eight described mammal homologs, XIAP (X-linked IAP,)[2], cIAP1 (cel- 31 

lular IAP1), cIAP2, ML-IAP (Melanoma IAP) [3] and ILP-2 (IAP-like protein 2) [4] are en- 32 

zymes of the ubiquitination reaction involved in proteostasis and the regulation of the 33 

assembly of intracellular signaling platforms.  34 

 35 

XIAP has the greatest ability to inhibit apoptosis by directly interacting with initiator 36 

and effector caspases and blocking their activity [5-7]. Upon apoptotic stimuli, XIAP is 37 

neutralized by Smac (Second mitochondria derived activator of caspase) which is con- 38 

tained into the mitochondrial intermembrane space and released into the cytosol during 39 

the early phase of apoptotic intrinsic pathway[8-10]. Based on these observations, Smac 40 

mimetics have been developed in order to counteract the anti-apoptotic activity of IAPs 41 

in tumors. However, Smac as well as Smac mimetics are also able to bind and neutralize 42 

other IAPs such as cIAP1, cIAP2 and ML-IAP with high affinities[11]. 43 

 cIAP1 and its paralogous cIAP2 are most studied for their ability to regulate innate 44 

immunity and inflammation [12]. By controlling the scaffolding and kinase activities of 45 
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RIPK1, cIAPs dictate the response of cells to tumor necrosis factor receptor (TNFR) super- 46 

family stimulation [13]. They have also been involved in the control of the inflammatory 47 

response mediated by Pattern recognition (PRRs) and cytokine receptors[14]. In addition, 48 

cIAP1 can control intracellular signaling pathways that drive cell motility and migration, 49 

regulate cell cycle cell proliferation and transcriptional programs[15].  50 

The expression of cIAP1, cIAP2 and XIAP is preferentially induced under stressful 51 

conditions such as hypoxia, endoplasmic reticular stress and DNA damage. Regulation 52 

can occur at a transcriptional level via HIF-1α, NF-κB or E2F1-dependent mecha- 53 

nisms[16,17] or at translational level due to the presence of an internal ribosome entry site 54 

(IRES)-dependent mechanism of translation initiation[18-20]. Moreover, the stability of 55 

cIAPs is regulated by heat shock proteins (HSPs)[21]. Thus, these pleiotropic proteins ap- 56 

peared to act as potent regulators of the adaptive response of cells to a changing environ- 57 

ment or in response to environmental or intracellular stresses such as pathogen attack, 58 

hypoxic-ischemic injury, or DNA damage [22]. Consistant with their role in regulating 59 

homeostasis, dysregulations of cIAPs have been observed in cancer, neurodegenerative 60 

disorders and inflammatory diseases. Moreover, the oncogenic properties of cIAP1 were 61 

clearly demonstrated in mouse models of hepatocarcinoma, osteosarcoma and breast can- 62 

cer [23-25]. This review aims to analyse the role of cIAP1 and by comparison cIAP2 and 63 

XIAP in maintaining cellular homeostasis.   64 

 65 

2. cIAP1 structure and molecular function 66 

Belonging to IAP family is defined by structural feature e.i. the presence of at least 67 

one conserved protein domain named BIR (Baculoviral IAP repeat). cIAP1, cIAP2 and 68 

XIAP own 3 copies of BIRs (Figure 1). These domains have approximatively 70-80 amino- 69 

acid organized into 3 short β-strands and 4-5 α-helices, forming a hydrophobic groove 70 

with protein-protein interacting properties [26]. The BIR1 of cIAP1/2 binds the signaling 71 

adaptor tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2)(Figure 1) 72 

which regulates the stability, localization and activity of the concerned IAPs and which 73 

acts as an intermediate for their recruitment into TNFR-associated signaling complex [27- 74 

29]. The BIR2 and 3 of cIAPs and XIAP have the particularity of having a deep hydropho- 75 

bic pocket which allows the specific anchoring of a conserved tetrapeptide motif called 76 

IBM (IAP binding motif). The best characterized IBM-containing proteins are critical reg- 77 

ulators of apoptosis Smac/diablo and HtrA2. cIAPs can also bind some caspases, the DNA 78 

damage response and cell cycle regulators chk1 and cdc20, eRF3/GSTP releasing factor 79 

and the kinase NIK in an IBM-dependent manner [15].  80 

The second domain shared by cIAP1, cIAP2 and XIAP is the conserved Ring that 81 

gives them their molecular function. It is the widespread active domain found in E3-lig- 82 

ases of the ubiquitination reaction[30]. This is a 3-step enzymatic reaction that catalyzes 83 

the covalent binding of molecules or chains of ubiquitins of different topologies to protein 84 

substrates. This post-translational modification modifies the stability, localization, activity 85 

or the recruitment of intracellular proteins into signaling platforms, depending of the type 86 

of ubiquitin chains conjugated. Ubiquitination uses E1-activating, E2-conjugating and E3- 87 

ligase enzymes sequentially. It is generally admitted that the E3 is responsible for the re- 88 

cruitment of substrate proteins whereas the E2 determines the type of ubiquitination. IAPs 89 

bind, via the Ring, ubiquitin-charged E2-conjugating enzyme and catalyzes the transfer of 90 

ubiquitin moieties from the E2 to protein substrate, specifically recruited thanks to their 91 

BIR domains [15]. Like many Ring-containing E3-ligases, IAPs are active in a dimeric form 92 

[31,32]. The binding of ligand promotes their conformational change leading to activa- 93 

tion[32]. Engagement of Smac mimetic to the BIR3-cIAP1 induces the activating dimeri- 94 

zation and auto-ubiquitination of cIAP1 leading to its rapid degradation (within 15 95 
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minutes)[33]. We observed that cIAP1 and TRAF2 need each other to perform their re- 96 

spective activities. Increasing evidences suggest that they form an E3-ubiquitin ligase 97 

complex (Figure 1) in which cIAP1 functions as the E3-enzyme while TRAF2 serves as 98 

adaptor for bring cIAP1 close proximity to substrates [34,35]. TRAF2 is also potent regu- 99 

lator of cIAP1 stability [36,37]. In some situation, TRAF3 that directly binds TRAF2 takes 100 

part in the complex serving as the substrate binding component [34,35,38,39]. In cytokine 101 

receptor-mediated signaling pathways, TRAF2 which also harbors a Ring domain (Figure 102 

1) can function as an E3-ligase able to promote K63-linked ubiquitination and activation 103 

of cIAP1 [34].   104 

In addition to the BIRs and Ring, cIAPs and XIAP harbor a UBA (ubiquitin- associ- 105 

ated) domain whose function is to bind ubiquitins [40,41] (Figure 1). It has been involved 106 

in regulating cIAPs-mediated ubiquitination. It participates in the specific recruitment of 107 

ubiquitin-charged E2 [42] and therefore in determining the type of ubiquitination [43]. 108 

cIAP’UBA has also been involved in the recruitment of cIAPs into signaling plateforms 109 

and in the binding to TRAF2 [41,43]. Moreover, cIAP1 and cIAP2 have a CARD domain 110 

that regulates their activating dimerization and enzymatic activity [44]. At least, two func- 111 

tional NES sequences located in the BIR2-BIR3 linker region and in the CARD [45,46] were 112 

detected in cIAP1 sequence. 113 

 114 

 115 

Figure 1. cIAP1-TRAF2 E3-Ubiquitin ligase complex, schematic representation. TRAF-N, TRAF- 116 

C, Zing finger (ZF), RING, BIRs (Baculoviral IAP repeat), UBA (ubiquitin-associated), CARD 117 

(caspase recruitment) domains and NES (Nuclear export signal) are represented. cIAP1-TRAF2 in- 118 

teraction involves the cIAP1-BIR1 domain and the N-terminal half of TRAF domain (TRAF-N). Tri- 119 

meric TRAF2 is recruited to receptor thanks to their TRAF-C domain. Oligomerisation of TRAF2 is 120 

also required for the recruitment of downstream signaling molecules. Trimeric TRAF2 can bind one 121 

isolated BIR1.   122 

 123 

3. Tissue expression and subcellular localisation of cIAP1 in healthy and tumor cells 124 

As documented in the human protein atlas (Human Protein Atlas proteinat- 125 

las.org)[47], cIAP1 is expressed in almost all tissues and cell types tested without specific- 126 

ity (Figure 2, Table 1). In comparison, cIAP2 is less abundant in most tissues, except in 127 

small intestine, kidney and lymphoid tissue. cIAP2 is highly expressed in subsets of im- 128 

mune cells including B-cells [47]. cIAP1 has been found in the cytoplasm/membrane 129 

and/or nuclear compartments [48]. In bone marrow hematopoietic cells, ovarian follicle 130 

cells, pancreas glandular cells, squamous epithelial cells of oral mucosa and cervix, hip- 131 

pocampus glial cells, lung alveolar cells and testis Leydig cells [49], it was exclusively 132 

detected in the nucleus (Table 1). In a work published in 2004, we demonstrated that cIAP1 133 

is exclusively expressed in the nucleus of hematopoietic stem cells [50] and that its trans- 134 
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location into the cytoplasm is necessary for their differentiation into macrophages or den- 135 

dritic cells [21,45,50]. Such nuclear export has also been observed during epithelial differ- 136 

entiation [21,50].  137 

 138 

 139 
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 166 

Figure 2. Tissue distribution of cIAP1 and cIAP2 proteins (Human Protein Atlas proteinatlas.org) 167 

 168 

Table 1. Tissue expression and subcellular localization of cIAP1 based on the human protein atlas (Human Protein 169 

Atlas proteinatlas.org)[47,48]. 170 

Organ or System Tissue Cells 
Protein 

Expression 

Subcellular 

localization1 

Adipose tissue  Adipocytes Medium CMN 

     

Central nervous 

system 

Cerebellum Cells in granular and 

molecular layer & purkinje 

cells 

Medium CMN 

 Cerebral Cortex Glial and neuronal cells Medium CM or N 

 Hippocampus Glial cells High N 

  Neuronal cells Medium CM or N 

 Caudate Glial cells & Neuronal cells Medium CM or N 

     

Endocrine system Thyroid gland Glandular  cells High N or CM 
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 Parathyroid 

Gland 

Glandular  cells Medium CM or CMN 

 Adrenal Gland Glandular  cells High CMN 

     

Respiratory  Nasopharynx Respiratory epithelial cells Medium CM 

system Lung Alveolar cells High N 

     

Gastrointestinal 

tract 

Oral mucosa 

Salivary Gland 

Esophagus 

Stomach  

Squamous epithelial cells 

Glandular cells 

Squamous epithelial cells 

Glandular cells 

Medium 

Low 

Medium 

Medium 

N 

CM or CMN 

N or CMN 

CM or CMN 

 Duodenum & 

Small intestine & 

colon 

Glandular cells Medium CM or CMN 

 Rectum Glandular cells Low CM or CMN 

     

Liver &  Liver Cholangiocytes & 

hepatocytes 

Medium CM 

Gallbladder Gallbladder Glandular cells High CMN 

     

Pancreas    Exocrine glandular cells Medium N 

     

Urinary system  Kidney Glomeruli cells Low to Medium CM or N 

  Tubule cells Medium CM or CMN 

 Urinary Bladder Urothelial cells Medium CMN 

     

Female  Vagina Squamous epithelial cells Low CM or N 

reproductive  Faloppian tube Glandular cells Medium CM 

system Endometrium Glandular cells Low CMN 

 Cervix Glandular cells Medium CM or CMN 

  Squamous epithelial cells Low N 

 Ovary Ovarian stromal cells Low CM or N 

  Follicle cells Low N 

 Placenta Trophoblastic cells Medium N or CMN 

 Breast Glandular & Myoepithelial 

cells 

Low CM 

     

Male 

reproductive  

Testis Cells in seminiferous ducts 

Leydig cells 

Low 

High 

CM 

N 

system Epididymis Glandular cells Medium CM or CMN 

 Seminal vesicle Glandular cells Medium CMN 

 Prostate Glandular cells Low CM or N 
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Muscle Heart muscle Cardiomyocytes Medium CM 

tissues Smooth muscle Smooth muscle cells Low CM 

 Skeletal muscle Myocytes Medium CM 

     

Skin  Keratinocytes & 

Melanocytes 

Low CM 

Soft tissue  Fibroblastes Low CM 

     

Bone marrow & 

Lymphoid tissues 

Appendix Glandular cells & 

Lymphoid tissue 

Low CMN 

 Spleen Cells in red pulp Low CM or N 

  Cells in chite pulp  N 

 Lymph node Germinal & non germinal 

center cells 

Low CM or N 

 Tonsil Germinal, non germinal 

center cells & squamous 

epithelial cells  

Medium N 

 Bone marrow Hematopoietic cells  Medium N 

1 CM: cytoplasm/membrane; CMN: cytoplasm/membrane/nucleus; N: nucleus. 171 

 172 

Gene expression profiling interactive analysis (GEPIA)[51] revealed that cIAP1 expression 173 

tends to be overexpressed in 11 out of 31 tumors selected in the cancer genome atlas 174 

(TCGA), which is significant for diffuse large B-cell lymphoma (DLBC), glioblastoma mul- 175 

tiforme (GBM) and thymoma (THYM) (Figure 3). Nevertheless, it appears to be signifi- 176 

cantly correlated with overall survival only in lung adenocarcinoma. Conversely, cIAP1 177 

appeared downregulated in testicular germ cell (TGCT) and uterine cancers (UCEC) 178 

(UCS). cIAP1 and cIAP2-encoding genes (named BIRC2 and BIRC3) are very closely lo- 179 

cated on chromosome locus 11q22.2, a region found amplified (11q21 amplicon) in human 180 

medollublastoma, hepatic, breast, pancreatic, cervical, lung, oral squamous cell and 181 

esophageal carcinoma [52]. Conversely, multiple myeloma is associated with inactivating 182 

mutations in genes involved in non-canonical NF-κB signaling pathway,which include 183 

cIAP1 and/or cIAP2. At the protein level, cIAP1 expression does not emerge as a cancer 184 

prognostic factor in the cancers referenced in the human protein atlas. However, its nu- 185 

clear expression has been correlated with overall survival, tumor stage or poor patient 186 

prognosis in cohorts of 70 cervical cancers [53], 102 bladder cancers [54] and 55 head and 187 

neck squamous cell carcinomas [55]. 188 

 189 
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 190 
Figure 3. Gene expression profile interactive analysis (GEPIA) of birc2 (cIAP1-encoding gene) in 191 

tumors (T, red)) and normal (N, grey) samples from the cancer genome atlas (TCGA) project. Only 192 

results showing a difference in birc2 expression between cancer and normal samples are shown. 193 

CHOL: Cholangio carcinoma, DLBC: Lymphoid Neoplasm Diffuse Large B-cell Lymphoma, ESCA: 194 

Esophageal carcinoma, GBM: Glioblastoma multiforme, LAML: Acute Myeloid Leukemia, LGG: 195 

Brain Lower Grade Glioma, OV: Ovarian serous cystadenocarcinoma, PAAD: Pancreatic adenocar- 196 

cinoma, STAD: Stomach adenocarcinoma, TGCT: THYM: Testicular Germ Cell Tumors, UCEC: 197 

Uterine Corpus Endometrial Carcinoma, UCS: Uterine Carcinosarcoma.  198 

  .  199 

 200 

4. Cytoplasmic functions of cIAP1 201 

4.1. Role for cIAP1 in regulating innate immunity 202 

4.1.1. Regulation of TNFα signaling pathways in immune and non-immune cells.  203 

The tumor necrosis factor alpha (TNFα) is the master regulator of tissue homeosta- 204 

sis by coordinating the inflammatory response and regulating the immune system (for 205 

review, see[56]). Dysregulated TNFR-signaling pathways or sustained production of 206 

TNFα has been involved the pathogenesis of many chronic inflammatory diseases and 207 

anti-TNFα therapy has demonstrated efficiency in the treatment of severe forms of rheu- 208 

matoid arthritis, Crohn’s disease, ulcerative colitis, psoriasis, psoriatic arthritis, ankylos- 209 

ing spondylitis and juvenile idiopathic arthritis. Conversely, neutralizing TNFα can also 210 

result to the onset of autoimmune disease supporting its pleiotropic functions in regulat- 211 

ing immune system [56,57]. It is produced within minutes of injury or stress, mainly by 212 

monocytes and macrophages and it exerts its activity in transmembrane or soluble, se- 213 

creted forms. TNFα is endowed with multiples functions, depending on the cellular and 214 

environmental context. Its predominant activity is to trigger the production of pro-in- 215 

flammatory cytokines and chemokines. It can also stimulate the survival and differentia- 216 

tion of immune cells, promote their recruitment to the site of damage and enhance the 217 

adhesion of endothelial cells. Under specific conditions, survival signals can switch to 218 

cell death signals. For example, TNFα can help in killing infected cells in order to con- 219 

tain the infection and ensure tissue integrity; it takes part to the maintenance of periph- 220 

eral immune tolerance by participating to the deletion of activated T-cells [58]; it can 221 

promote the death of irreversibly damaged cells in order to ensure tissue homeostasis 222 

[56].  223 
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TNFα is recognized by TNFR1 expressed in all human tissues and by TNFR2 224 

whose expression is limited to immune cells, neurons, endothelial cells, cardiomyocytes 225 

and osteoclast precursors. It is generally admitted that TNFR1 can trigger a strong in- 226 

flammatory response and/or cell death while TNFR2 induces cell death protection and a 227 

moderate inflammation. The response to TNFR1 stimulation is orchestrated by the pres- 228 

ence of different checkpoints. The kinase RIP1 is critical in determining the inflamma- 229 

tory response or cell death. It is recruited into the surface receptor-associated intracellu- 230 

lar complex via homotypic interaction thanks to the death-domain (DD) exhibited by 231 

both the receptor (intracellular side) and RIP1[59]. In the receptor-associated signalling 232 

complex so-called complex I, RIP1 acts as a scaffold for the recruitment of kinase com- 233 

plexes including TAK1/TAB2/TAB3 and IκB kinase (IKK) complex that promote MAPK 234 

and NF-kB-mediated transcriptional programs [60] (Figure 4). This scaffolding function 235 

is fully dependent on non-degradative poly-ubiquitination including K11, K63-linked, 236 

linear and hybrid-polyubiquitination[61,62]. On the other hand, thanks to its kinase ac- 237 

tivity, RIP1 can promote the assembly of a secondary cytoplasmic complexes including 238 

complex-II, ripoptosome and necrosome that results in apoptotic or necroptotic cell 239 

death[63] (Figure 4). Necroptosis is associated with a massive release of cytokines, chem- 240 

okines and damage-associated molecular patterns (DAMPs) recognized by pattern 241 

recognition receptors (PRRs) that trigger innate immune response [64,65]. The role of 242 

TNFα in chronic inflammatory diseases has been explained by its capacity of activated 243 

this immunogenic cell death [57].  244 

cIAP1 takes part to this regulation. It constitutes an essential survival factor in in- 245 

testinal epithelial cells, neutrophils, macrophages and activated T cells allowing them to 246 

resist to TNFR1-mediated cell death when exposed to an acute inflammatory environ- 247 

ment[66-70]. Depletion of cIAPs prevents TNFα-mediated NF-κB and MAPK activation 248 

and sensitizes cells to TNFα-mediated cell death [71-74]. In mice, deletion of cIAP1 as 249 

well as cIAP2 or XIAP did not lead to obvious phenotypic abnormalities. A moderate 250 

inflammation in lungs and intestines was observed in cIAP1-/- KO mice [75]. However, 251 

double deletion of cIAP1 and cIAP2 or cIAP1 and XIAP in mice lead to embryonic lethal- 252 

ity in TNFR1 and RIP1-dependent manner [72] and specific depletion of cIAP1, -2 and 253 

XIAP in myeloid lineage or keratinocytes causes a severe local inflammation and TNFR1 254 

or RIPK1-dependent cell death [68,76,77]. By controlling the stability, scaffold function 255 

and kinase activity of RIP1, cIAPs have the ability to control the intensity and duration 256 

of the TNFR1-mediated inflammatory response: (i) they activate the scaffold function of 257 

RIP1 by promoting the conjugation of K11 and K63-linked poly-ubiquitin chains on 258 

components of complex I that includ RIP1 [43,78-80]; they can inactivate the TNFR1-me- 259 

diating signalling pathway by promotion ubiquitin-dependent degradation of RIP1 [43]; 260 

(iii) alternatively, cIAP-mediated ubiquitination of RIP1 represses its kinase activity nec- 261 

essary for the assembly of cell-death-mediated complexes-II [43] and then prevents TNF- 262 

mediated cytotoxicity and necroptosis-associated massive inflammation [81] (Figure 4). 263 

In addition to controlling scaffold function, kinase activity and stability of RIP1, cIAP1 264 

can regulate the TNFα-mediated NF-κB activating signalling pathway by ubiquitination 265 

of NEMO/IKKγ (NF-κB essential modulator/IκB kinase-γ) the regulatory subunit of IKK 266 

complex [82].  267 

 268 

 269 
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 270 

Figure 4. Regulation of signaling pathways by cIAP1. The cIAP1-TRAF2 E3-Ubiquitin ligase 271 

complex regulates the cellular content of NIK by mediating its ubiquitin-proteasome dependent 272 

degration. The recrutment of cIAP1/TRAF2 to TNFR2, CD30, CD40 or BAFF-R releases NIK that in 273 

turn stimulates the non-canonical NF-κB signaling pathway. In the TLR4-associated signaling 274 

complex, cIAP1 induces the ubiquitination and degradation of TRAF3. cIAP1/TRAF2 forms a sec- 275 

ondary cytoplasmic complex leading to NF-kB / MAPK activation. In TNFR1-associated complex, 276 

cIAP1 induces the ubiquitination of RIP1 and other components of the complex, resulting in the 277 

assembly of signaling platform drinving NF-κB and MAPK activation. Ubiquitination of RIP1 by 278 

cIAP1 inhibits its kinase activity required for the assembly of cytoplasmic RIP-containing platform 279 

leading to apoptotic or necrotic cell death. cIAP1 controls the cycle of activation of cdc42. The re- 280 

cruitment of cIAP1/TRAF2 to TNFR-associated signaling complex releases cdc42 for activation. 281 

BAFF-R: B-cell activating factor receptor; CD40-R: cluster of differentiation 40 receptor, IKKα, β or 282 

γ: Inhibitor of κB kinase α, β or γ; LUBAC:linear ubiquitin chain assembly comple; Myd88: Mye- 283 

loid differentiation primary response 88; NIK: NF-κB-inducing kinase; Rho-GDI: Rho-guanine- 284 

nucleotide dissociation inhibitors; TAB1, 2 or 3: transforming growth factor-activated kinase1- 285 

binding protein 1, 2, and 3; TAK1:tumor growth factor-β-activated kinase 1; TLR 4: toll-like recep- 286 

tor 4; TNFR2: tumor necrosis factor Receptor 2, TRADD: TNFR-associated death domain; TRIF: 287 

toll–interleukin 1 receptor domain-containing adaptor inducing IFN-β.  288 

 289 

 290 

TNFR2 plays a role in promoting differentiation and stabilization of regulatory T 291 

cells and mutation in TNFR2 has been involved in the pathogenesis of several autoim- 292 

mune diseases [57]. In endothelial cells, it participates in tissue regeneration. Since the 293 

TNFR2 protein does not harbour DD (death- domain), it cannot recruit RIP1 but it can 294 

directly bind the molecular adaptors TRAF2 and TRAF3. TRAF2 recruits cIAP1 into the 295 

TNFR2-associated signalling complex. As observed in the TNFR1-associated signalling 296 

complex, cIAP1 can promote K63-linked polyubiquitinatin at the TNFR2-signaling com- 297 

plex [83] resulting in the recruitment and activation of kinase complexes that drive 298 

MAPK and canonical NF-κB. However, TNFR2 stimulation likely leads to cIAPs-de- 299 

pendent canonical NF-κB activation [83] (see below).  300 

 301 
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4.1.2. Regulation of the non-canonical NF-κB signalling pathway in immune cells, osteo- 302 

clasts and endothelial cells.  303 

The best characterized substrate of the cIAP1/TRAF2 E3-ubiquitine ligase complex 304 

is NF-κB-inducing kinase (NIK), an essential mediator of the non-canonical NF-κB sig- 305 

nalling pathway[34,84,85].  306 

The non-canonical NF-κB signalling pathway is characterized by inducible pro- 307 

cessing of the p100 subunit in active p52 which, when heterodimerized with RelB, acts as 308 

transcription factor. The processing of  p100 is triggered following its phosphorylation 309 

by the IKKα homodimer, itself activated by NIK [86]. cIAP1 regulates the NF-kB alterna- 310 

tive pathway by controlling the cellular content of NIK. In resting condition, NIK is re- 311 

cruited to cIAP1/TRAF2 complex via TRAF3. The complex is stabilized by direct binding 312 

of NIK with the BIR2 domain of cIAP1 in IBM-dependent manner [34,38,85]. cIAP1 pro- 313 

motes ubiquitin-mediated proteasomal degradation of NIK, turning off the non-canoni- 314 

cal NF-κB signalling pathway [34,84,85] (Figure 4). Stimulation of TNFR2, CD30, CD40, 315 

BAFF-R (B-cell-activating factor) or FN14 leads to the recruitment of 316 

TRAF2/TRAF3/cIAP1 complex to membrane-associated signalling complex [37,87-90]. 317 

TRAF2 induced cIAP1 activation via K63-linked ubiquitination. In turn, cIAP1 catalyses 318 

K43-linked ubiquitination of TRAF2/3 and their degradation by the proteasome system, 319 

resulting in upregulation of NIK and activation of non-canonical NF-κB signalling [34].  320 

Non-canonical NF-κB signalling is essential for the activation, survival and differ- 321 

entiation of immune cells such as B-cells, macrophages and dendritic cells. Deletion of 322 

cIAP1 and cIAP2 in mice maintained B-cells survival and maturation independently of 323 

BAFF-R stimulation [88] and can account for B-cell transformation [91-93]. We demon- 324 

strated that cIAP1-mediated degradation of TRAF2 is essential for the full activity of 325 

macrophages in response to CD40 stimulation [45]. IAP antagonists can also favour oste- 326 

oclasts differentiation in a NIK-dependent manner, supporting the critical role of the 327 

non-canonical NF-κB signalling pathway in osteoclastogenesis [94].  328 

 329 

4.1.3. Regulation of PRR signalling pathways. 330 

The presence of pathogens in organisms is sensed by cell surface and intracellular 331 

receptors able to recognize a wide variety of pathogen-associated molecular patterns 332 

(PAMPs) and danger signal (DAMPs). Among them, the cell surface membrane TLR4 333 

which recognizes bacteria lipopolysaccharides (LPS) can elicit distinct signalling path- 334 

ways leading to either pro-inflammatory or interferon response. TLR4 engagement in- 335 

duces the recruitment of several cytoplasmic adaptor proteins thanks to the presence, in 336 

both the receptors and adaptors, of a homotypic interacting domain. The adaptor 337 

MyD88 (myeloid differentiation factor 88) has been involved in NF-κB and MAPK-de- 338 

pendent production of pro-inflammatory cytokines whereas the adaptor TRIF (TIR-do- 339 

main-containing adaptor-inducing IFN-b) is required for the IFN response. The 340 

cIAP1/TRAF2 E3-ubiquitine ligase complex is a potent determinant of the response to 341 

TLR4 stimulation. MyD-88 can directly recruit the adaptor TRAF3 which can bind 342 

TRAF2/cIAP1 complex. In the MyD88-containing TLR4 complex (so-called MyDosome), 343 

the cIAP1/TRAF2 E3-ubiquitin ligase complex induces the ubiquitination and degrada- 344 

tion of TRAF3 which results in the assembly of a secondary cytoplasmic signalling plat- 345 

form containing TRAF2/cIAP1, TAK1/TAB1-3 and IKK complexes leading to the activa- 346 

tion of MAPK (Mitogen-activated protein kinases) and NF-κB (nuclear factor-kappa B)- 347 

signaling pathways[95-97] (Figure 4). Depletion of TRAF3 can also turn-off the IFN re- 348 

sponse that involved the TRAF6/TRAF3 complex.  349 

In some situations, such as a sustained infection, the presence of pathogens re- 350 

sistant to inflammatory defence or in some pathological conditions, TLR4, just like TLR3 351 

whichsenses virus-derived nucleic acids, can also trigger RIP1-dependent cell death 352 
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through a direct binding of RIP1 to the adaptor TRIF. cIAP1 constitutes a powerfull sur- 353 

vival factor in infected cells by preventing the assembly of ripoptosome and necrosome 354 

as explained above (4.1.1) [65,77].  355 

Supporting the role of IAPs in controlling the strength and duration of the inflam- 356 

matory response, Jin et al. showed that the cIAP1/TRAF2 complex can limit inflamma- 357 

tion by promoting the ubiquitin-proteasome dependent degradation of c-Rel and IRF5 358 

(interferon-responsive factor 5), two critical transcription factors involved in TLR-medi- 359 

ated NF-κB-dependent inflammatory and IFN response respectively. Depletion of 360 

TRAF2 in macrophages promoted colitis characterized by enhanced leukocyte infiltra- 361 

tion in colon, mucosal damage and pro-inflammatory cytokines production in an animal 362 

model [35].    363 

4.2. Role for cIAP1 in cell motility and migration 364 

Cell shape and cell motility are controlled by small GTPases of Rho family. These 365 

proteins are critical regulators of the dynamic reorganization of the actin cytoskeleton 366 

[98-100]. They control cell architecture, focal adhesion complexes and local contraction 367 

by promoting the generation of stress fibers or membrane protrusions such as 368 

lamellopodia or filopodia  [101]. They switch between a cytoplasmic, inactive GDP- 369 

bound state and a membrane-associated, active GTP-bound state, providing energy 370 

required for cytoskeleton rearrangement. RhoGTPase activation is mediated by guanine- 371 

nucleotide exchange factors (GEFs), which catalyze the transfer of GDP-bound to GTP- 372 

bound forms. Once activated, RhoGTPases are either recycled in inactive state by action 373 

of GTPase-activation proteins (GAPs) or subjected to UPS-mediated degradation. The 374 

activation cycle of Rho GTPase is controlled by molecular chaperones such as guanine- 375 

nucleotide dissociation inhibitors (GDIs) which stabilize Rho GTPases in their cytosolic 376 

inactive state[101]. A relationship between IAPs and RhoGTPases was suggested in 2004 377 

in a study showing that drosophila DIAP1 can interact with Rac1 and compensate for 378 

the migration defect triggered by the expression of a dominant negative form of this 379 

GTPase [102]. In mammals, in vitro assays have demonstrated that cIAP1, cIAP2 and 380 

XIAP are able to directly interact with the three most studied RhoGTPases [103-106] 381 

RhoA, Rac1 and cdc42 which promote lamellopodia, stress fibers or filopidia 382 

respectively. In a study analysing the influence of cIAP1 on cell shape and migration, we 383 

demonstrated that cIAP1 can directly bind cdc42. It stabilizes cdc42 in its GDP-, inactive- 384 

state by promoting its association with its molecular chaperone RhoGDI. Deletion of 385 

cIAP1 deregulated the activation cycle of cdc42 by promoting its activation and then 386 

degradation [103]. Accordingly, cIAP1-/- fibroblasts display an enhanced ability to 387 

migrate and exhibit filopodia. TNFα has the ability to induce cdc42 activation and actin 388 

reorganisation [99,100]. Upon TNFα stimulation, cIAP1 is recruited to the membrane 389 

receptor-associated complex, releasing cdc42 and promoting its activation [103](Figure 390 

4). The ubiquitination of cdc42 by cIAP1 has not been demonstrated, however, the 391 

ability of XIAP to ubiquitinate cdc42 and of XIAP and cIAP1 to ubiquitinate Rac1 has 392 

been observed [104,107]. Single or combined deletion of cIAP1, cIAP2 or XIAP 393 

differently affects cell shape, actin distribution and migratory capacity. They appear to 394 

have specific and distinct activity on each of the Rho proteins suggesting that IAPs could 395 

regulate the spatiotemporal and sequential activation of Rho proteins [108]. Additional 396 

analysis will be require to decipher the regulation of the Rho proteins by IAPs.    397 

5. Nuclear functions of cIAP1 398 

cIAP1 is a nuclear shuttling protein. Its nuclear expression has been correlated with 399 

the proliferative capacity of the cells. cIAP1 is excluded from the nucleus in cells under- 400 

going differentiation[50]. Nuclear export is supported by the nuclear transport receptor 401 

Crm1 (chromosome region maintenance 1) which specifically recognizes leucine-rich 402 
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nuclease export sequences (NES). Two NES were detected in the cIAP1 protein se- 403 

quence, the first is located in the linked region between the BIR2 and the BIR3 [46] and 404 

the second in the CARD domain [50]. Since the cIAP1 protein does not contain a NLS, 405 

one important issue is understanding the mechanisms of its nuclear accumulation. In the 406 

nucleus of B-cell, cIAP1 is complexed with TRAF2 and TRAF3, the latter containing a 407 

functional NLS in its TRAF-C domain [39]. We demonstrated that cIAP1 engages with 408 

chromatin. Different transcription factors are ubiquitination substrate of cIAP1. In 2011, 409 

the research of nuclear partners of cIAP1 revealed its binding with the transcription fac- 410 

tor E2F1 [109]. This involves the cIAP1-BIR3 domain [17]. Deletion of cIAP1 completely 411 

abrogated the recruitment of the transcription factor onto DNA [17]. We demonstrated 412 

that cIAP1-E2F1 are recruited together to the promoter of E2F-target genes in S phase of 413 

the cell cycle [109]. Nuclear cIAP1 can promote K11- and K63-linked ubiquitination of 414 

E2F1 [17] and stabilize its protein expression. cIAP1-mediated K63-ubiquitination at Ly- 415 

sine 161/163 residues of E2F1 is required for its accumulation and transcriptional activa- 416 

tion in S phase of cell cycle and in response to DNA damage [110].  417 

As mentioned above, cIAP1/TRAF2 E3-ubiquitine ligase complex is able to promote 418 

ubiquitination and degradation of the transcription factors c-Rel and IRF5 [35] and also  419 

cAMP response element binding protein CREB [39]. The degradation of CREB in B-cells 420 

occurs in the nucleus and involves TRAF3 which bridges CREB to the E3-ubiquitine lig- 421 

ase complex [39]. Interestingly, CD40L stimulation in neurons has been observed to in- 422 

duce the translocation of TRAF2/TRAF3 complex into the nucleus where it can bind NF- 423 

kB promoter element and act as a transcriptional regulator [111]. The presence of cIAP1 424 

in the complex has not been analyzed.   425 

Nuclear cIAP1 can also promote the neddylation and degradation of p21 involved 426 

in the transition into G2/M phase of cell cycle[112] and it can interact with the transcrip- 427 

tional cofactors Vestigial-like 4 (Vgl-4)[113] and C-terminal binding protein 2 (CtBP2) 428 

[114].  429 

6. Conclusions 430 

cIAP1 mainly exerts its activity by controlling cell fate of its protein partners. Thanks 431 

to their ability to promote the conjugation of ubiquitin chains of different types, they can 432 

modulate the stability, localization and/or the activity of intracellular proteins and they 433 

can change the composition of signalling platforms by modifying the intermolecular bind- 434 

ing affinities. Thus, IAPs have the ability to control the implementation of signalling path- 435 

ways and their regulations in time and space. Up to date, more than 30 cIAP substrates 436 

have been identified (recently reviewed in[15]). A database search for proteins containing 437 

IBM-like sequence found many proteins with different cellular functions [115], greatly ex- 438 

panding the number of potential IAP-binding partners. The identified IAP substrates are 439 

involved in various cellular processes essential for maintaining cell homeostasis (innate 440 

immune response, DNA damage response, cell cycle regulation…). For most of them, the 441 

type and site of ubiquitination have not been determined. However, this is an important 442 

issue to address since they determine the cellular fate of the substrate[43]. 443 

The ultimate function of IAPs is to allow cells to adapt to their changing environment, 444 

to help at the implement of an appropriate response to combat endogenous or exogenous 445 

stress or microbial aggression and to restore homeostasis. Although loss of cIAPs in mice 446 

has been associated with locale inflammation in lung, intestines or skin [75,76], deletion 447 

or mutation of BIRC2/3 gene have not been associated with chronic inflammatory disease 448 

but cancer development. A more in-depth studies of the implication of cIAPs in these pa- 449 

thologies deserve to be carried out.   450 

The expression of cIAP1 is ubiquitous and its regulation mechanisms are still poorly 451 

understood. The last observations suggest that cIAP1 and TRAF2 require each other and 452 

form an E3-ubiquitin ligase complex. cIAP1 E3-ligase activity is stimulated by K63-linked 453 
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ubiquitination that can be mediated by TRAF2 or TRAF6 [34,95]. The stability of cIAP1 454 

can be controlled by phosphorylation[116] and its regulation by S-nitrosylation, oxidation 455 

processes have also been reported [117,118]. 456 

Smac mimetics designed to block XIAP anti-apoptotic activity are also potent inhibi- 457 

tors of cIAP1. They have been developed as anticancer agents. However, because of the 458 

ability of cIAP1 to regulate RIP1 activities, numerous preclinical studies are exploring 459 

their potential in the treatment of inflammatory and infectious diseases.     460 
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