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Many natural systems show emergent phenomena at different scales, leading to scaling regimes with signatures of24

deterministic chaos at large scales and an apparently random behavior at small scales. These features are usually25

investigated quantitatively by studying the properties of the underlying attractor, the compact object asymptotically26

hosting the trajectories of the system with their invariant density in the phase-space. This multi-scale nature of natural27

systems makes it practically impossible to get a clear picture of the attracting set. Indeed, it spans over a wide range of28

spatial scales and may even change in time due to non-stationary forcing. Here we combine an adaptive decomposition29

method with extreme value theory to study the properties of the instantaneous scale-dependent dimension, which has30

been recently introduced to characterize such temporal and spatial scale-dependent attractors in turbulence and astro-31

physics. To provide a quantitative analysis of the properties of this metric, we test it on the well-known low-dimensional32

deterministic Lorenz-63 system perturbed with additive or multiplicative noise. We demonstrate that the properties of33

the invariant set depend on the scale we are focusing on and that the scale-dependent dimensions can discriminate be-34

tween additive and multiplicative noise, despite the fact that the two cases have exactly the same stationary invariant35

measure at large scales. The proposed formalism can be generally helpful to investigate the role of multi-scale fluctua-36

tions within complex systems, allowing us to deal with the problem of characterizing the role of stochastic fluctuations37

across a wide range of physical systems.38

The collective dynamics of natural systems is the result39

of the dynamics of their individual components, often40

operating on multiple spatio-temporal scales and some-41

times related to intrinsic and extrinsic factors. These42

multiple components reflect in scaling laws, unpredictable43

vs. deterministic behavior, bifurcations between differ-44

ent regimes, and basin of attractions. Here, we propose45

a novel concept of fractal dimension in deterministic and46

stochastic Lorenz-63 systems to provide a more complete47

characterization of the geometric features of attractors at48

different scales.49

I. INTRODUCTION50

Since their first description by E. N. Lorenz in 19631, the51

existence and properties of strange attractors have been fre-52

quently discussed in the context of such diverse fields as the53

atmosphere2, climate3,4, biology5, and ecology6, to mention54

only a few examples. The concept of strange attractors is55

strictly related to that of dissipative dynamical systems with56

sensitive dependence on the initial conditions. Being revo-57

lutionary at the time of its invention, it has been attracting a58

lot of attention, especially in the context of developing mea-59

sures to quantify the geometric and dynamical properties of60

attractors7 and in revising some earlier concepts on the fore-61

cast horizon of physical systems8. A one-parametric fam-62

ily of measures, the so-called generalized fractal dimensions63

Dq, has been proposed based on a coarse-grained invariant64

measure linking the geometric properties of the phase-space65

trajectories to the statistics of the dynamical scaling proper-66

ties9. These measures provided new insights not only in the67

field of dynamical system theory (where they have been de-68

veloped)10 but also into different more applied fields like fluid69

and magneto-hydrodynamic turbulence11,12 and others13.70
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One of the peculiar aspects of physical systems is their71

variability over a wide range of scales, arising from both in-72

trinsic interactions between characteristic variability compo-73

nents in one or several variables and external forcings, dif-74

ferently affecting the specific properties of the whole sys-75

tem at different scales4. Recently, Alberti et al. 14 proposed76

a method to investigate how scale-dependency affects the77

global phase-space properties and their statistical character-78

istics. This method requires to first identify scale-dependent79

components contributing to the observed dynamics of a given80

system as a whole, which can be achieved by applying time se-81

ries decomposition techniques like empirical mode decompo-82

sition (EMD). Subsequently, quantitative scale-specific mea-83

sures like generalized fractal dimensions are evaluated. The84

formalism resulting from the combination of those two ap-85

proaches allows the introduction of multi-scale measures by86

computing the generalized fractal dimensions for each scale-87

specific component and partial sums thereof14. The suitability88

of this approach has been demonstrated for several dynamical89

systems of different complexity, synthetic noisy signals, and90

real-world time series data14.91

For systems exhibiting heterogeneous phase space struc-92

ture or even non-stationarity, it would however be use-93

ful to track the instantaneous number of degrees of free-94

doms, which are closely related to its associated recur-95

rence characteristics15. Indeed, the spatial distribution of96

the instantaneous (i.e., local in phase-space) dimensions97

across the system’s invariant set, as well as its geometric98

shape, provide us with more detailed information than es-99

tablished global (as in Hentschel and Procaccia 9 ) and/or100

scale-dependent (as in Alberti et al. 14 ) measures of com-101

plexity.102

Accordingly, in this work we thoroughly extend the ex-103

isting formalism of multi-scale measures14 to characterize104

the instantaneous scale-dependent properties of strange105

attractors by combining time series decomposition meth-106

ods with concepts from extreme value theory that are107

related to the instantaneous number of degrees of free-108

dom of the observed dynamics. We then show the util-109

ity of our approach for the case of the well-known low-110

dimensional deterministically-chaotic Lorenz-63 system111

and two stochastic versions thereof16. We indeed show112

that the new formalism, based on instantaneous scale-113

dependent dimensions, allows us to discern two properties114

that are inaccessible by previous global or scale-dependent115

analysis, namely the existence of different scale-dependent116

source processes (as the presence of noise or a dominant117

scale) and the structural stability of fixed points.118

II. METHODS119

In the following section, we start by introducing the decom-120

position procedure and the dynamical system metrics sepa-121

rately, before describing our proposed formalism. For a more122

general purpose, we assume to have a generic N−dimensional123

system, i.e., an N−dimensional phase-space, with N > 1.124

Thus, we describe our decomposition procedure in a general125

multivariate framework. For univariate data (i.e., N = 1), we126

may proceed in a largely analogous way.127

A. Multivariate Empirical Mode Decomposition (MEMD)128

Considering an N−dimensional system described129

via a multivariate time series signal Θµ(t) =130

[Θ1(t),Θ2(t), . . . ,ΘN(t)]† (with † indicating the transposition131

operator), the Multivariate Empirical Mode Decomposition132

(MEMD) decomposes the data into a finite number of multi-133

variate oscillating patterns Cµ,k(t), referred to as Multivariate134

Intrinsic Mode Functions (MIMFs), and a monotonic residue135

Rµ(t) as136

Θµ(t) =
nk

∑
k=1

Cµ,k(t)+Rµ(t). (1)137

The decomposition basis, formed by the set of functions138

Cµ,k(t), is empirically derived via the so-called sifting139

process17 modified for multivariate signals18. This sifting140

process consists of141

1. identifying local extremes of Θµ(t), i.e., where the N-142

variate derivative vanishes;143

2. interpolating these points via cubic splines to derive the144

upper and lower envelopes u(t) and l(t), respectively;145

3. deriving the mean envelope m(t) as m(t) = u(t)+l(t)
2 ;146

4. evaluating the detail h(t) = s(t)−m(t).147

These steps are iterated until the detail h(t) can be identified148

as a MIMF (also called multivariate empirical mode)18, i.e.,149

it must satisfy two properties: it has the same number of150

local extremes and zeros (or both differing at most by one)151

and a zero-average mean envelope m(t)17. The full sifting152

process stops when no more MIMFs Cµ,k(t) can be filtered out153

from the data. Each Cµ,k(t) represents a peculiar dynamical154

component intrinsic to the system that typically evolves on an155

average scale156

τk =
1
T

∫ T

0
t ′ 〈Cµ,k(t ′)〉dt ′, (2)157

where T is the length of data and 〈•〉 denotes an ensemble av-158

erage over the N−dimensional space19. The MEMD allows us159

to interpret Θµ(t) as a collection of scale-dependent multivari-160

ate fluctuations contributing to the collective properties of the161

whole system. Indeed, each MIMF can be seen as representa-162

tive of fluctuations at a typical scale that is the average of the163

instantaneous scales (i.e., the inverse instantaneous frequen-164

cies) derived from a given mode via the Hilbert transform19.165

The MEMD, due to its adaptive methodology, relieves some166

a priori mathematical constraints of fixed-basis decomposi-167

tion methods and extracts a limited number of intrinsic com-168

ponents that can be visually inspected. Other widely used169

decomposition methods, like Fourier or continuous wavelet170

analysis, commonly return a large number of components171
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and/or need to project our data on a pre-defined decomposi-172

tion basis. Moreover, at least classical Fourier transform based173

methods also require that our data satisfy a stationarity condi-174

tion. In this regard, we do not question the appropriateness175

of the aforementioned more traditional conventional analysis176

techniques, but rather acknowledge that they (as well as any177

other approaches) have intrinsic limitations in what we can178

learn from their application.179

B. Instantaneous dimension180

Given the N−dimensional system described via the multi-181

variate trajectory Θµ(t), its dynamical properties can be in-182

vestigated by combining the concept of recurrences in phase-183

space and extreme value theory20. For some (arbitrary) state184

of interest ζ in the associated phase-space, we first introduce185

the logarithmic return associated with each state on the trajec-186

tory (except for ζ itself) as187

G(Θµ(t),ζ ) =− log
[
dist(Θµ(t),ζ )

]
(3)188

where dist(•) is a distance between two state vectors in phase-189

space, commonly the Euclidean one. By shortening the no-190

tation, we obtain a time series of logarithmic returns g(t) =191

G(Θµ(t),ζ ) that takes larger values whenever Θµ(t) is close192

to ζ . If we now define a threshold s(q) as the q-th em-193

pirical quantile of g(t), we can introduce the exceedances194

u(ζ ) .
= {t |g(t)> s(q)}, i.e., the recurrences to the neighbor-195

hood of the reference state in the context first introduced by196

Poincaré by exploiting a peaks-over-threshold like concept197

as widely used in extreme value theory. According to the198

Freitas-Freitas-Todd theorem the cumulative probability dis-199

tribution F(u,ζ ) then converges to the exponential member200

of the Generalised Pareto Distribution (GPD), i.e.,201

F(u,ζ )' exp
[
−u(ζ )

ς(ζ )

]
. (4)202

The GPD parameter ς depends on the dynamical state ζ and203

can be used to introduce the concept of an instantaneous di-204

mension d at the point in time where ζ is attained, which is205

simply defined as d(ζ ) = ς(ζ )−1. Although it could merely206

be associated to a fitting parameter, it has a clear physical207

meaning: d is a proxy of the active number of degrees of free-208

dom around each state ζ in the phase-space. Note, however,209

that from a practical perspective, this instantaneous di-210

mension needs to be considered relative to the set of time211

series values available, and the interpretation of its values212

may be affected by nonstationarity or non-representative213

sampling of the presumed attractor at finer spatial scales.214

C. Instantaneous scale-dependent dimension215

The instantaneous dimension d introduced above provides216

a local (in terms of phase-space) picture of the properties217

of phase-space trajectories, i.e., allows us to obtain informa-218

tion for each sampled point contributing to the global struc-219

ture of the attractor under study. Nevertheless, multi-scale220

systems could have a scale-dependent phase-space structure14
221

such that we can distinguish between features that emerge at222

different scales. To provide a scale-dependent instantaneous223

view of a given system we have to combine a decomposition224

method, like the MEMD, and the extreme value theory ap-225

plied to inter-state distances in phase space.226

Given again an N−dimensional system described via Θµ(t)227

with a multi-scale nature, i.e., being characterized by pro-228

cesses occurring over a wide range of scales, we can write229

Θµ(t) = 〈Θµ(t)〉+∑
τ

δΘ
(τ)
µ (t) (5)230

where 〈Θµ(t)〉 is a steady-state time-average value and231

δΘ
(τ)
µ (t) is a component of the system operating at a mean232

scale τ . It is easy to note the analogy between Eq. (5)233

and Eq. (1) via the correspondence Cµ,k(t)↔ δΘ
(τ)
µ (t) and234

Rµ(t)↔ 〈Θµ(t)〉. This means that for each scale τ we can235

identify the corresponding invariant set Mτ as the manifold236

obtained via the partial sums of MIMFs with scales τ? < τ ,237

i.e.,238

Θ
τ
µ(t) =

k

∑
k?=1

Cµ,k?(t). (6)239

Then, for each scale τ ∈ [τ1,τnk ], i.e., for each k∈ [1,nk], given240

a trajectory Θτ
µ(t) and a state of interest ζτ , the cumulative241

probability of logarithmic returns in the neighborhood of ζτ242

follows a GPD as243

F(uτ ,ζτ)' exp
[
−uτ(ζτ)

ςτ(ζτ)

]
. (7)244

Thus, we can introduce a quantity D(t,τ) = ςτ(ζτ)
−1, rep-245

resenting the number of active degrees of freedom of fluctu-246

ations up to a maximum scale of τ around each state ζτ .247

In this way, we exploit the properties of MEMD in deriving248

scale-dependent components embedded into a given system249

and the instantaneous (in terms of time) properties of the ex-250

treme value theory based metric to derive the instantaneous251

scale-dependent metric D(t,τ).252

Summarizing, our procedure consists of the following253

steps:254

1. extract intrinsic components Cµ,k(t) and their mean255

scales τk from Θµ(t) by using the MEMD;256

2. evaluate partial sums of Eq. (1) at different scales257

Θ
τ
µ(t) =

k

∑
k?=1

Cµ,k?(t) (8)258

with k∗ = 1, . . . ,nk (by construction, MIMFs are or-259

dered with increasing scales, i.e., τk′ < τk′′ if k′ < k′′);260

3. for each scale τk (i.e., for each k) evaluate D(t,τk).261

Our procedure is, by construction, complete, since when k→262

nk then D(t,τk) = d(t), with d(t) being the instantaneous frac-263

tal dimension of the full system2,15,20.264
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In the remainder of this work, we will discuss some exam-265

ples to highlight the potential of our framework to disentangle266

distinct dynamical components of different origin in a multi-267

scale complex system.268

III. THE LORENZ-63 MODEL AND ITS STOCHASTIC269

VERSIONS270

The Lorenz-63 system1, originally developed as a simpli-271

fied model for atmospheric convection, is one of the most fa-272

mous and widely studied paradigmatic dissipative-chaotic dy-273

namical systems21, which can be written as274

dx = s(−x+ y)dt (9)275

dy = (rx− y− xz)dt (10)276

dz = (xy−bz)dt (11)277

with the parameters (s,r,b) related to the Prandtl number, the278

Rayleigh number, and the geometry of the atmospheric con-279

vective layer. With the canonical set of parameters (s,r,b) =280

(10,28,8/3) the system admits chaotic behavior with all ini-281

tial points (except for a set of measure zero) tending towards282

an invariant set with fractal structure, usually termed the283

Lorenz attractor. It is a strange attractor whose Hausdorff284

dimension (and all its generalizations Dq
9) take a value of285

2.05±0.027,9,22.286

A simple way to investigate the role of hidden fast dy-287

namical components is to couple deterministic equations to a288

"noise" mimicking the action of unknown fast variables. This289

can be also easily done for the Lorenz-63 system by rewrit-290

ing the original system in terms of a set of coupled stochastic291

differential equations as292

dx = s(−x+ y)dt +σ dWt (12)293

dy = (rx− y− xz)dt +σ dWt (13)294

dz = (xy−bz)dt +σ dWt (14)295

In nonlinear deterministic systems, such additive noise can296

lead to non-trivial effects23, including transitions between co-297

existing states or attractors, shifting bifurcations, or acting298

as an external forcing to the intrinsic variability of the sys-299

tem11,24, also observed for the Lorenz-63 system16.300

More recently, another stochastic version of the Lorenz-301

63 system has been proposed by Chekroun, Simonnet, and302

Ghil 16 , considering a linearly multiplicative noise term to the303

original system as304

dx = s(−x+ y)dt +σ xdWt (15)305

dy = (rx− y− xz)dt +σ ydWt (16)306

dz = (xy−bz)dt +σ zdWt (17)307

This system provided a first example for the existence of ran-308

dom attractors, extending the concept of a strange attractor,309

still supporting nontrivial sample measures from determinis-310

tic to stochastic dynamics1,16 that have been shown to be ran-311

dom Sinaï–Ruelle–Bowen measures25. Note that in the weak-312

noise limit, response theory allows one to compute explicitly313

the change in the expectation value of the measurable observ-314

ables when perturbing an underlying chaotic dynamics with315

stochastic terms of rather general nature26.316

In the following, we apply our formalism to the three differ-317

ent versions of the Lorenz-63 system described above. In the318

case of the stochastic models featuring multiplicative noise,319

we use the Itô convention for the stochastic integration, dWt is320

a Wiener process obtained by sampling at each time step a ran-321

dom variable with the same Gaussian density (Wt ∼N (0, t))322

and intensity σ . The numerical simulation of Eqs. (9)-(17) is323

obtained by using the Euler-Maruyama method with a time324

resolution dt = 5× 10−3 over N = 107 time steps, using the325

classical set of parameters (s,r,b) = (10,28,8/3) and σ = 0.4326

as in Chekroun, Simonnet, and Ghil 16 .327

IV. RESULTS328

A. Full system attractor329

Figures 1-3 report the trajectories (left panels) of the three330

different Lorenz-63 systems (deterministic, Fig. 1; additive331

noise, Fig. 2; multiplicative noise, Fig. 3) and their corre-332

sponding attractors in the 3-D phase-space (right panels). As333

expected, a breakdown of the symmetric shape of the Lorenz334

attractor is observed when the classical Lorenz-63 system is335

subject to either additive or multiplicative noise. Further-336

more, intermittency appears to be reduced, thus moving from337

a deterministic strange attractor towards a random stochastic338

attractor16. Nevertheless, by only looking at the full system339

attractor we are not able to identify any significant dif-340

ference in the geometric shape between the additive and341

the multiplicative model. Furthermore, both random at-342

tractors are characterized by the same dimension, equal343

to the full dimension of the phase-space, due to the corre-344

sponding property of the invariant measure of an elliptic345

diffusion process.346347348349

B. Average dimensions of scale-dependent attractors350

To further inspect and characterize the role of the noise351

versus the deterministic dynamics of the Lorenz system,352

we apply our formalism to derive D(t,τ) for the three dif-353

ferent systems. We first decompose every multivariate354

trajectory Θµ(t) via the MEMD through which we ob-355

tained a set of 15, 20, and 24 MIMFs, respectively, whose356

ranges of timescales are τ ∈ [1.64,2.5× 105], τ ∈ [9.7×357

10−2,2.5×105], and τ ∈ [8.9×10−2,2.5×105], respectively.358

Then, using Eqs. (6)-(7) we derive the instantaneous scale-359

dependent metric D(τ, t) for the three systems.360

As a first step, we inspect the behavior of the aver-361

age instantaneous scale-dependent dimension 〈D(τ, t)〉t as362

a function of the scale τ as reported in Figure 4. This363

is equivalent to the method proposed by Alberti et al. 14
364

where local (in terms of time-scale) and time-independent365

(i.e., averaged) multi-scale measures have been intro-366

duced.367368
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FIG. 1. (Left) Zoom of the trajectory components of the deterministic Lorenz-63 system as in Eqs. (9)-(11) (L63). (Right) Corresponding
attractor in the 3-D phase-space (black points) and its projection in the x− z plane (gray points).

FIG. 2. (Left) Zoom of the trajectory components of the additive noise model as in Eqs. (12)-(14) (L63 Additive). (Right) Corresponding
attractor in the 3-D phase-space (black points) and its projection in the x− z plane (gray points). The stochastic noise term has an amplitude
σ = 0.416.

Our corresponding analysis evidences the absence of369

time scales τ < 1.64 for the deterministic Lorenz-63 sys-370

tem as opposed to its stochastic versions. This is clearly a371

reflection of the absence of stochastic terms in the classical372

deterministic system, which are responsible for the very373

fast fluctuations in the stochastic cases.374

Furthermore, we generally observe larger average scale-375

dependent dimensions for the multiplicative noise case than376

for the deterministic Lorenz-63 system and the additive noise377

model. This reflects the effect of the stochastic term on the378

dynamical features of the Lorenz-63 system: it does not only379

act at short scales, exciting variability at additional scales with380

respect to the classical Lorenz-63 system, but also affects the381

attractor geometry and, hence, the time-averaged num-382

ber of active degrees of freedom as reflected by the scale-383

dependent fractal dimension metric at larger timescales.384

The latter property can be linked to the fact that the Lorenz-385

63 system with non-degenerate noise has an invariant mea-386
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FIG. 3. (Left) Zoom of the trajectory components of the multiplicative noise model as in Eqs. (15)-(17) (L63 Multiplicative). (Right) Corre-
sponding attractor in the 3-D phase-space (black points) and its projection in the x− z plane (gray points). The stochastic noise term has an
amplitude σ = 0.416.
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sure that is absolutely continuous with respect to Lebesgue,387

such that when introducing a stochastic term the dimension388

must converge to 3, as observed at large timescales for both389

stochastic models.390

The most interesting feature emerging for the average di-391

mensions is that the largest value D(t,τ) for both the additive392

and the multiplicative case is obtained for τ of the order of the393

fundamental period (i.e., the Lyapunov time scale τL ≈ 1.12394

time units) of the dominating unstable periodic orbit of the de-395

terministic system27,28; see ref.29 for a discussion of how un-396

stable periodic orbits are responsible for resonant behaviour397

in forced systems, and ref.30 for evidence of the resonant re-398

sponse of the Lorenz-63 system.399

Another interesting feature is the quantitative differ-400

ence of 〈D(τ, t)〉 in the range of scales dominated by the401

stochastic contribution (below τL). While for the additive402

model the average dimensions converge, as expected, to 3,403

the dimensions are larger than 3 for the multiplicative case404

at the same timescales, thus suggesting that the dynamics405

at these scales behave as a forcing-like contribution. Con-406

versely, by looking at the full system attractor, i.e., when407

considering the whole timescales, we are not able to iden-408

tify any difference in the dimensions between the additive409

and the multiplicative model. Indeed, as expected, the aver-410

age dimensions tend to saturate to those expected for the full411

dynamics when τ→ τNk , being 〈D(τ, t)〉= 2.05±0.02 for the412

deterministic Lorenz-63 system and 〈D(τ, t)〉 = 2.98± 0.04413

for its stochastic versions, because the invariant measure of a414

elliptic diffusion process has full dimension. The results ob-415

tained for the deterministic Lorenz-63 system are in agree-416

ment with previous findings by Alberti et al. 14 , while our417

corresponding findings on the stochastic models have been418

reported here for the first time.419

C. Instantaneous scale-dependent dimensions420

As a second step of our analysis, which is also the main421

novelty introduced in this work, we investigate the behav-422

ior of the instantaneous scale-dependent dimension D(t,τ)423

for the three different systems as reported in Fig. 5.424425

The deterministic Lorenz-63 system is characterized426

by instantaneous dimension values close to DF ' 2.05427

at timescales larger than 102, as expected due to the428

monofractal nature of the system with all generalized frac-429

tal dimensions Dq taking the same value for the full sys-430

tem. Conversely, larger values are found for the range431

τ ∈ [100,102], the reason for which will be discussed below.432

When a stochastic term is considered, we observe values of433

D(t,τ)& 3 at short timescales, extending towards larger scales434

when localized (in time) intermittent bursts in the trajec-435

tory take place. Typically, dimensions larger than 3 imply436

the presence of external forcing components, increasing the437

number of active degrees of freedom. By further inspecting438

the behavior of the trajectory in the phase-space at large439

scales (see Fig. 6) this excess over the topological dimension440

of the phase-space appears to be related to situations asso-441

ciated with approaches of the unstable fixed points in the442

centers of each of the two lobes and subsequent fast es-443

capes from the neighborhoods of those points along their444

unstable manifolds. This indicates that the increase in the445

number of active degrees of freedom at short timescales,446

not observed for the deterministic model, is related to the447

stochastic component. Indeed, the imposed noise term acts448

as an additional forcing to the autonomous dynamics. This449

means that the noise introduces additional degrees of freedom450

in the dynamics because it adds energy to the system: the451

attractor can deform through scales by increasing/decreasing452

its dimensions depending on the instantaneous concurrent ef-453

fect between the noise forcing term and the intrinsic dynamics454

of the Lorenz-63 system. The main differences between the455

two stochastic versions emerge at short timescales (τ < 100),456

where larger dimensions are found for the multiplicative noise457

case as compared to the additive one. This could be explained458

by invoking the fact that in the multiplicative case, the ampli-459

tude of the stochastic term depends on the state variables of460

the system.461

D. A scale-dependent instantaneous view of the attractor462

As a final step and to better highlight the scale-dependent463

instantaneous properties of the attractor, Fig. 6 reports three464

views of the attractor at different timescales color-coded with465

respect the instantaneous dimensions. The shapes of the466

different scale-dependent attractors are obtained by sum-467

ming up empirical modes in a certain range of scales as in468

Eq. (8). Due to the associated properties of MIMFs they469

have a zero-average envelope, thus they fluctuate around470

zero such that the attractors occupy only a small region471

(especially, at short scales) of the phase-space of scale-472

dependent fluctuations.473

At large timescales (right panels in Fig. 6), roughly corre-474

sponding to 100 times the Lyapunov time of the deterministic475

Lorenz-63 system at the considered parameter values, the ge-476

ometric shapes and the spatial distribution of dimensions477

across both stochastic attractors are qualitatively similar478

and clearly distinct from the chaotic attractor of the de-479

terministic model. This means that we can visually distin-480

guish between the chaotic and the two stochastic attrac-481

tors, while a clear distinction cannot be made qualitatively482

and quantitatively between the two random invariant sets.483

By further inspecting the spatial distributions of instan-484

taneous dimensions of all three attractors, we clearly ob-485

serve that larger dimensions are found at the edges of the486

attractors and close to the origin as compared to lower di-487

mensions observed within the two lobes. While this feature488

has been also previously highlighted for the deterministic489

chaotic attractor (see, e.g., Faranda, Messori, and Yiou 31 ),490

it is the first time that the spatial distribution of dimen-491

sions is inspected for both random attractors. In particu-492

lar, our analysis reveals that forcing-like mechanisms lead-493

ing to D(τ, t)> 3 are operating at the edges of the attractor494

and close to the unstable fixed point at the origin, reflect-495

ing the repelling nature of the fixed points of the Lorenz-63496

system. However, the observation of D(τ, t) > 3 suggests497
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FIG. 5. Behavior of the instantaneous scale-dependent dimension D(t,τ) for the deterministic Lorenz-63 system (top), its version with
additive noise (middle), and the multiplicative noise case (bottom). The colormap for D(t,τ) has been saturated between 2 and 4 for a better
visualization. In all three cases, an excerpt comprising 40,000 time units is shown.

that the number of active degrees of freedom near the ori-498

gin is increased with respect to the deterministic model,499

likely related to the action of the noise term.500

To further investigate the last point on the role of the501

stochastic fluctuations in increasing the number of de-502

grees of freedom near the origin, we investigate the spatial503

distribution of dimensions across the trajectory at short504

timescales, below the Lyapunov time (left panels in Fig. 6).505

Clearly, we do not have any dynamical component below506

the Lyapunov time for the deterministic Lorenz-63 system,507

indicating that in both noisy systems, variability at those508

fast timescales is intimately related to the stochastic forcings.509

However, a completely different spatial distributions of di-510

mensions across the trajectory is observed between the ad-511

ditive and the multiplicative case. While the former has a512

more homogeneous spatial distribution of dimensions with513

the most probable value close to 3 and small fluctuations514

around it, the latter is characterized by a saddle point-like515

dynamics D(τ, t) > 3 in a ring-like configuration lying in516

the x− y plane and D(τ, t)< 3 elongated in the z direction.517

This is due to the different structure of the noise terms,518

being a "pure" noise term in the additive case, reflecting519

into D(τ, t) = 3+ε , with ε� 1, while acting as a "forcing"520

for the multiplicative one, providing D(τ, t) values larger521

than the system’s dimension15,20.522

When approaching the Lyapunov scale τL (middle pan-523

els in Fig. 6), a different spatial distribution of the dimen-524

sions is again observed, together with a different coverage525

of the available phase-space when comparing the chaotic526

attractor with the two stochastic ones. The latter are char-527

acterized by regions with low dimension surrounded by528

higher-dimensional ones, markedly differing from the de-529

terministic Lorenz-63 system. We hypothesize that the530

regions with low instantaneous dimensions could indicate531

the location of weakly repulsive low-period unstable peri-532

odic orbits32,33.533

Overall, our results indicate, for both the determinis-534

tic and the two stochastic models, a clear different spatial535

distribution of the dimensions across the phase-space at536

large timescales. In particular, the two stochastic attrac-537

tors are characterized by a region with dimensions larger538

than the topological dimension of the system close to the539

origin O = (0,0,0), suggesting the existence of forcing-like540

mechanisms altering the structure of this fixed point of the541

deterministic model. Since the stochastic term mainly op-542

erates at short timescales (below the Lyapunov scale τL)543
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FIG. 6. Three views of the Lorenz attractor at different timescales color-coded with respect the instantaneous dimensions: (top) deterministic
system, (middle) additive noise and (bottom) multiplicative noise.

the source of this difference must be searched in this range544

of scales whose corresponding attractors for the additive545

and the multiplicative models are structurally different,546

both in terms of the geometric shape and in the spatial547

distribution of the dimension values. In this regard, the548

stochastic term is able to change the stability of the ori-549

gin, revealing a new structure of attractors whose prop-550

erties (i.e., fractal dimensions) evolve in time and across551

scales. This difference disappears when reaching larger552

and larger timescales due to the existence of an invariant553

measure for the Lorenz-63 system that is absolutely con-554

tinuous with respect to Lebesgue, such that when intro-555

ducing a stochastic term the dimension must converge to556

3, as observed at large timescales.557

Finally, it is important to underline that in the deter-558

ministic Lorenz-63 system with standard parameters (i.e.,559

(s,r,b) = (10,28,8/3)), the origin O is an unstable sad-560

dle point whose structure is preserved when considering561

a multiplicative stochastic term. Conversely, this nature562

seems to be modified when considering an additive noise,563

altering the structural stability of the unstable point to-564

wards a different nature. However, a linear stability anal-565

ysis of the stochastic models is beyond the scope of the566

present work and is left for a future devoted study.567

V. CONCLUSIONS568

We have presented a formalism to study the behavior of569

chaotic or stochastic attractors as a function of the timescale,570

indicating that when considering different timescales the con-571

cept of a single universal attractor should be revised. Specif-572

ically, using the famous Lorenz-63 system in its standard de-573

terministic as well as two stochastically forced versions, we574

have demonstrated that the attractor of this system is scale de-575

pendent.576

To reach this conclusion, we have extended an approach577

recently introduced by Alberti et al. 14 to investigate the in-578

stantaneous scale-dependent properties of attractors by com-579

bining concepts from time series decomposition methods and580

extreme value theory applied to recurrences in phase space.581

More specifically, we have used the Multivariate Empirical582

Mode Decomposition (MEMD) to derive intrinsic compo-583

nents of a given system at different timescales. Based on this584

decomposition, we have estimated the instantaneous scale-585

dependent dimensions of the system’s attractor at different586

scales. We have shown that a new structure of attractors,587

whose properties evolve in time, space and scale, is discov-588

ered by looking for fixed points and following their evolution589

from small to large scale and vice versa. Thus, the geometric590

structure of the attractor is gradually deformed and depends591

on the scale at which we are investigating the respective sys-592

tem.593

The main novelty introduced in this study is a powerful594

method to identify the existence of processes of different595

origin by looking at the spatial distribution of fractal di-596

mensions across the full phase-space trajectories at differ-597

ent timescales. Concerning the systems considered in this598

work our formalism allowed us to clearly distinguish be-599

tween a purely noise-like contribution at short timescales600

for the additive noise model, being characterized by an er-601

godic coverage of the available phase-space with dimen-602
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sions fluctuating around 3 (as expected), as compared to a603

more forcing-like contribution for the multiplicative noise604

model at the same timescales, where the dimensions are605

larger than 3 and differently distributed across the at-606

tractor. Conversely, by looking at the full system attrac-607

tor, i.e., when considering the whole range of contributing608

timescales, we are not able to identify any clear difference,609

both in the attractor shape and in the spatial pattern of the610

instantaneous (i.e., local in time and phase-space) dimen-611

sions, between the additive and the multiplicative model612

since the invariant measure of an elliptic diffusion pro-613

cess has full dimension. Thus, our method allows us to614

evidence where the difference between the two stochastic615

models resides only by looking at the spatial distribution616

(see Fig. 6) of instantaneous fractal dimensions at different617

timescales.618

Our formalism can be easily modified by using any alterna-619

tive time series decomposition technique (like wavelet decom-620

position, singular spectrum analysis, or others). Our choice of621

the MEMD has been motivated by its empirical and adaptive622

nature, reducing a priori constraints and possible artifacts of623

fixed-frequency/fixed-basis decomposition methods. Further-624

more, the instantaneous nature (i.e., time-dependency) of the625

intrinsic components derived via the MEMD allows us to per-626

form a more detailed investigation of the dynamical evolution627

(in time) of a system variable, better suited for evaluating in-628

stantaneous dynamical system metrics (as the dimension) than629

fixed-basis methods as Fourier transforms.630

We are confident that the proposed formalism provides a631

novel way to investigate the underlying geometric (fractal)632

properties of physical systems at different scales during their633

time evolution. The concept of a scale-dependent attractor634

could tackle the problem of defining a more useful concept for635

the analysis of multiscale systems like in the case of the cli-636

mate or for turbulence, which has largely remained unsolved637

despite numerous efforts reported in the last four decades.638

In a companion paper34, where our formalism has been639

applied to laboratory experiments on fluids, we observe640

the emergence of an intrinsic timescale, solely determined641

by nonlinear interactions, controlling the geometric and642

topological properties of phase-space trajectories.643

In this first study, we focused only on the geometric644

properties of attractors, in order to show that the universal645

concept of attractor can be insufficient for fully describ-646

ing multiscale systems, in presence or in absence of noise.647

The counterpart of our geometric view of each point in648

phase-space is the instantaneous, i.e., time behavior, of the649

scale-dependent dimension. Indeed, this interesting aspect650

can be used for further studying some crucial aspects of651

physical systems, e.g., bifurcations, tipping points, small-652

vs. large-scale forcing and/or driving mechanisms19. The653

corresponding prospects call for further studies to investigate654

these aspects in more detail, which is beyond the scope of the655

present paper and will be the subject of future work.656
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