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Lorenz-63 systems

T. Alberti,! D. Faranda,? 34 V. Lucarini,®® R. V. Donner,”-8 B. Dubrulle,® and F. Daviaud®
D INAF-Istituto di Astrofisica e Planetologia Spaziali, via del Fosso del Cavaliere 100, 00133 Roma,
Italy

2 Laboratoire des Sciences du Climat et de | "Environnement, CEA Saclay I’Orme des Merisiers,

UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191, Gif-sur-Yvette,

France

3 London Mathematical Laboratory, 8 Margravine Gardens, London, W6 SRH, UK

4)LMD/IPSL, Ecole Normale Superieure, PSL research University, 75005, Paris, France

S Department of Mathematics and Statistics, University of Reading, RG6 6AH, Reading,

UK

6 Centre for the Mathematics of Planet Earth, University of Reading, RG6 6AX, Reading,

UK

D Department of Water, Environment, Construction and Safety, Magdeburg—Stendal University of Applied Sciences,
Breitscheidstrafie 2, 39114 Magdeburg, Germany

8 Research Department I — Earth System Analysis, Potsdam Institute for Climate Impact

Research (PIK) -— Member of the Leibniz Association, Telegrafenberg A31, 14473 Potsdam,

Germany

NSPEC, CEA, CNRS, Université Paris-Saclay, F-91191 CEA Saclay, Gif-sur-Yvette, France

10 CEA, IRAMIS, SPEC, CNRS URA 2464, SPHYNX, 91191 Gif-sur-Yvette, France

(*Electronic mail: tommaso.alberti @inaf.it)
(Dated: 13 February 2023)

Many natural systems show emergent phenomena at different scales, leading to scaling regimes with signatures of
deterministic chaos at large scales and an apparently random behavior at small scales. These features are usually
investigated quantitatively by studying the properties of the underlying attractor, the compact object asymptotically
hosting the trajectories of the system with their invariant density in the phase-space. This multi-scale nature of natural
systems makes it practically impossible to get a clear picture of the attracting set. Indeed, it spans over a wide range of
spatial scales and may even change in time due to non-stationary forcing. Here we combine an adaptive decomposition
method with extreme value theory to study the properties of the instantaneous scale-dependent dimension, which has
been recently introduced to characterize such temporal and spatial scale-dependent attractors in turbulence and astro-
physics. To provide a quantitative analysis of the properties of this metric, we test it on the well-known low-dimensional
deterministic Lorenz-63 system perturbed with additive or multiplicative noise. We demonstrate that the properties of
the invariant set depend on the scale we are focusing on and that the scale-dependent dimensions can discriminate be-
tween additive and multiplicative noise, despite the fact that the two cases have exactly the same stationary invariant
measure at large scales. The proposed formalism can be generally helpful to investigate the role of multi-scale fluctua-
tions within complex systems, allowing us to deal with the problem of characterizing the role of stochastic fluctuations
across a wide range of physical systems.

The collective dynamics of natural systems is the resultss
of the dynamics of their individual components, oftens.
operating on multiple spatio-temporal scales and some- ss
times related to intrinsic and extrinsic factors. Thesess
multiple components reflect in scaling laws, unpredictable s-
vs. deterministic behavior, bifurcations between differ- ss
ent regimes, and basin of attractions. Here, we propose so
a novel concept of fractal dimension in deterministic and eo
stochastic Lorenz-63 systems to provide a more complete s:
characterization of the geometric features of attractors ate:
different scales. 63

64

65
66
I. INTRODUCTION o7
68

69

Since their first description by E. N. Lorenz in 1963, the
existence and properties of strange attractors have been fre- "

quently discussed in the context of such diverse fields as the
atmosphere?, climate®*, biology>, and ecology®, to mention
only a few examples. The concept of strange attractors is
strictly related to that of dissipative dynamical systems with
sensitive dependence on the initial conditions. Being revo-
lutionary at the time of its invention, it has been attracting a
lot of attention, especially in the context of developing mea-
sures to quantify the geometric and dynamical properties of
attractors’ and in revising some earlier concepts on the fore-
cast horizon of physical systems®. A one-parametric fam-
ily of measures, the so-called generalized fractal dimensions
Dy, has been proposed based on a coarse-grained invariant
measure linking the geometric properties of the phase-space
trajectories to the statistics of the dynamical scaling proper-
ties’. These measures provided new insights not only in the
field of dynamical system theory (where they have been de-
veloped)!? but also into different more applied fields like fluid
and magneto-hydrodynamic turbulence!!*'? and others!3.
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One of the peculiar aspects of physical systems is theinie
variability over a wide range of scales, arising from both in=2-
trinsic interactions between characteristic variability compo-
nents in one or several variables and external forcings, dif-
ferently affecting the specific properties of the whole sys-zs
tem at different scales*. Recently, Alberti ef al. '* proposed
a method to investigate how scale-dependency affects the,,
global phase-space properties and their statistical character,
istics. This method requires to first identify scale-dependent,,
components contributing to the observed dynamics of a given,,,
system as a whole, which can be achieved by applying time se-, ,,
ries decomposition techniques like empirical mode decompo-,

134
sition (EMD). Subsequently, quantitative scale-specific mea-,,
sures like generalized fractal dimensions are evaluated. The,,,
formalism resulting from the combination of those two ap-
proaches allows the introduction of multi-scale measures by
computing the generalized fractal dimensions for each scale+37
specific component and partial sums thereof'*. The suitability
of this approach has been demonstrated for several dynamical
systems of different complexity, synthetic noisy signals, and

real-world time series data'?. ::

For systems exhibiting heterogeneous phase space struc-
ture or even non-stationarity, it would however be use-
ful to track the instantaneous number of degrees of free-a:
doms, which are closely related to its associated recur-as
rence characteristics'>. Indeed, the spatial distribution of
the instantaneous (i.e., local in phase-space) dimensions**
across the system’s invariant set, as well as its geometric“®
shape, provide us with more detailed information than es-
tablished global (as in Hentschel and Procaccia®) and/o@*
scale-dependent (as in Alberti et al. '*) measures of com-, .
plexity.

Accordingly, in this work we thoroughly extend the ex-s
isting formalism of multi-scale measures'* to characterizess
the instantaneous scale-dependent properties of strangese
attractors by combining time series decomposition meth-s:
ods with concepts from extreme value theory that ares:
related to the instantaneous number of degrees of free=ss
dom of the observed dynamics. We then show the util<s+
ity of our approach for the case of the well-known low-ss
dimensional deterministically-chaotic Lorenz-63 systenmse
and two stochastic versions thereof'. We indeed show
that the new formalism, based on instantaneous scale-,
dependent dimensions, allows us to discern two properties
that are inaccessible by previous global or scale-dependent
analysis, namely the existence of different scale-dependent1 *
source processes (as the presence of noise or a dominant "’
scale) and the structural stability of fixed points. 10

161

162

163

II. METHODS 164
165

In the following section, we start by introducing the decom-ses
position procedure and the dynamical system metrics sepa-er
rately, before describing our proposed formalism. For a moreee
general purpose, we assume to have a generic N—dimensionakes
system, i.e., an N—dimensional phase-space, with N > laizo
Thus, we describe our decomposition procedure in a generakz:

multivariate framework. For univariate data (i.e., N = 1), we
may proceed in a largely analogous way.

A. Multivariate Empirical Mode Decomposition (MEMD)

Considering an N—dimensional system described
via a multivariate time series signal ©(f) =
[©1(1),0,(¢),...,0x(t)]" (with  indicating the transposition
operator), the Multivariate Empirical Mode Decomposition
(MEMD) decomposes the data into a finite number of multi-
variate oscillating patterns Cy, 4 (), referred to as Multivariate
Intrinsic Mode Functions (MIMFs), and a monotonic residue
R, (1) as

Ou(t) = %Cu)k(l)-i-R#(t). (1)
k=1

The decomposition basis, formed by the set of functions
Cux(t), is empirically derived via the so-called sifting
process!” modified for multivariate signals'®. This sifting

process consists of

1. identifying local extremes of @ (¢), i.e., where the N-
variate derivative vanishes;

2. interpolating these points via cubic splines to derive the
upper and lower envelopes u(z) and 1(z), respectively;

3. deriving the mean envelope m(7) as m(¢) = w;

4. evaluating the detail h(r) = s(r) —m(r).

These steps are iterated until the detail h(z) can be identified
as a MIMF (also called multivariate empirical mode)'?, i.e.,
it must satisfy two properties: it has the same number of
local extremes and zeros (or both differing at most by one)
and a zero-average mean envelope m(¢)!7. The full sifting
process stops when no more MIMFs C, 4 (t) can be filtered out
from the data. Each Cy () represents a peculiar dynamical
component intrinsic to the system that typically evolves on an
average scale

T
%= % /O 1 (Cp(t) @)
where T is the length of data and (e) denotes an ensemble av-
erage over the N —dimensional space!®. The MEMD allows us
to interpret @, (¢) as a collection of scale-dependent multivari-
ate fluctuations contributing to the collective properties of the
whole system. Indeed, each MIMF can be seen as representa-
tive of fluctuations at a typical scale that is the average of the
instantaneous scales (i.e., the inverse instantaneous frequen-
cies) derived from a given mode via the Hilbert transform'®.
The MEMD, due to its adaptive methodology, relieves some
a priori mathematical constraints of fixed-basis decomposi-
tion methods and extracts a limited number of intrinsic com-
ponents that can be visually inspected. Other widely used
decomposition methods, like Fourier or continuous wavelet
analysis, commonly return a large number of components
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and/or need to project our data on a pre-defined decomposi=z21
tion basis. Moreover, at least classical Fourier transform based22
methods also require that our data satisfy a stationarity condi=zs
tion. In this regard, we do not question the appropriateness:za
of the aforementioned more traditional conventional analysises
techniques, but rather acknowledge that they (as well as anyzze
other approaches) have intrinsic limitations in what we carez7
learn from their application. 228

229

B. Instantaneous dimension 230

Given the N—dimensional system described via the multl-
variate trajectory @u( ), its dynamical properties can be i in™>
vestigated by combining the concept of recurrences in phase-?3?
space and extreme value theory?. For some (arbitrary) state3?
of interest { in the associated phase-space, we first introduce:sa
the logarithmic return associated with each state on the trajec-ess
tory (except for { itself) as 236

G(Ou(1),) = — log [dist(@ (1), )] O
where dist(e) is a distance between two state vectors in phase-
space, commonly the Euclidean one. By shortening the no-,_,
tation, we obtain a time series of logarithmic returns g(¢) =
G(©y(t), ) that takes larger values whenever @ (t) is close
to . If we now define a threshold s(g) as the g-th em=40
pirical quantile of g(¢), we can introduce the exceedancess:
u(€) ={r|g(t) > s(q)}, i.e., the recurrences to the neighbor-s=
hood of the reference state in the context first introduced byzss
Poincaré by exploiting a peaks-over-threshold like concept
as widely used in extreme value theory. According to the,,
Freitas-Freitas-Todd theorem the cumulative probability dis-
tribution F(u,{) then converges to the exponential member
of the Generalised Pareto Distribution (GPD), i.e., 248

246

N u<c>]

P )= |42 i

The GPD parameter ¢ depends on the dynamical state { and249

can be used to introduce the concept of an instantaneous dis .

mension d at the point in time where { is attained, which i is
simply defined as d({) = ¢(£)~!. Although it could merely

be associated to a fitting parameter it has a clear physmalm
meaning: d is a proxy of the active number of degrees of free-

dom around each state { in the phase-space. Note, howeversss

that from a practical perspective, this instantaneous di-se
mension needs to be considered relative to the set of time

series values available, and the interpretation of its values®’
may be affected by nonstationarity or non-representative

sampling of the presumed attractor at finer spatial scales.,_,

C. Instantaneous scale-dependent dimension 259

260

The instantaneous dimension d introduced above provides,
a local (in terms of phase-space) picture of the properties
of phase-space trajectories, i.e., allows us to obtain informa-s:
tion for each sampled point contributing to the global struc-zes
ture of the attractor under study. Nevertheless, multi-scalezsa

systems could have a scale-dependent phase-space structure!#
such that we can distinguish between features that emerge at
different scales. To provide a scale-dependent instantaneous
view of a given system we have to combine a decomposition
method, like the MEMD, and the extreme value theory ap-
plied to inter-state distances in phase space.

Given again an N —dimensional system described via © (7)
with a multi-scale nature, i.e., being characterized by pro-
cesses occurring over a wide range of scales, we can write

(1) = (©

) +Y. 804 (1) (5)

where (@, (r)) is a steady-state time-average value and

5@&7) (¢) is a component of the system operating at a mean
scale 7. It is easy to note the analogy between Eq. (5)

and Eq. (1) via the correspondence Cy () <> 5@&1) () and
R, (1) <+ (®y(r)). This means that for each scale T we can
identify the corresponding invariant set M; as the manifold
obtained via the partial sums of MIMFs with scales 7, < 7,
ie.,

(6)

k
=) Cup()

k*=1

Then, for each scale 7 € [, 7, ], i.e., foreach k € [1,n], given
a trajectory ®f(#) and a state of interest {7, the cumulative
probability of logarithmic returns in the neighborhood of {;
follows a GPD as

”T(Cr)]

F(ug, ~exp|— . 7)
( T gf) p l: gr(c'r) (
Thus, we can introduce a quantity D(7,7) = ¢;({;) ', rep-

resenting the number of active degrees of freedom of fluctu-
ations up to a maximum scale of 7 around each state {;.
In this way, we exploit the properties of MEMD in deriving
scale-dependent components embedded into a given system
and the instantaneous (in terms of time) properties of the ex-
treme value theory based metric to derive the instantaneous
scale-dependent metric D(t, 7).

Summarizing, our procedure consists of the following
steps:

1. extract intrinsic components Cy ;(¢) and their mean
scales 7, from @ (¢) by using the MEMD;

2. evaluate partial sums of Eq. (1) at different scales

Z Cpupe (1)

k=1

3
with £* = 1,...,n; (by construction, MIMFs are or-
dered with increasing scales, i.e., Ty < T if k' < k'");

3. for each scale Ty (i.e., for each k) evaluate D(¢, 7).

Our procedure is, by construction, complete, since when k —
ng then D(¢, ;) = d(t), with d(¢) being the instantaneous frac-
tal dimension of the full system?> 1329,
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In the remainder of this work, we will discuss some exam-sia
ples to highlight the potential of our framework to disentangless
distinct dynamical components of different origin in a multi=sie
scale complex system. 317

318

319
Ill. THE LORENZ-63 MODEL AND ITS STOCHASTIC 320
VERSIONS 321

322

The Lorenz-63 system', originally developed as a simpli=323
fied model for atmospheric convection, is one of the most fa=324
mous and widely studied paradigmatic dissipative-chaotic dy-2s

namical systemsZI, which can be written as 326
327

dx=s(—x+y)dt ©)

dy = (rx—y—xz)dt (10)
dz = (xy—bz)dt (11y*

with the parameters (s, r,b) related to the Prandtl number, thes2
Rayleigh number, and the geometry of the atmospheric con-
vective layer. With the canonical set of parameters (s,7,0) =30
(10,28,8/3) the system admits chaotic behavior with all inis,
tial points (except for a set of measure zero) tending towardss.
an invariant set with fractal structure, usually termed thesss
Lorenz attractor. It is a strange attractor whose Hausdorffs,
dimension (and all its generalizations Dqg) take a value ofiss
2.05+£0.027922,
A simple way to investigate the role of hidden fast dy-=ss7
namical components is to couple deterministic equations to ass
"noise" mimicking the action of unknown fast variables. Thisse
can be also easily done for the Lorenz-63 system by rewrit-sso
ing the original system in terms of a set of coupled stochasticss:

differential equations as 342
dx =s(—x+y)dt+cdW, (12),,,
dy=(rx—y—xz)dt+ o dW, (13)as
dz = (xy—bz)dt + o dW, (14y4®

In nonlinear deterministic systems, such additive noise can
lead to non-trivial effects?3, including transitions between co-=se
existing states or attractors, shifting bifurcations, or acting
as an external forcing to the intrinsic variability of the syS=s:
tem!"-?*, also observed for the Lorenz-63 system'©. 352
More recently, another stochastic version of the Lorenzsss
63 system has been proposed by Chekroun, Simonnet, andsa
Ghil ', considering a linearly multiplicative noise term to thess

original system as 356
dx = s(—x+y)dt + o xdW, asy..
dy=(rx—y—xz)dt + cydWw, (16)s0
dz = (xy—bz)dt + o zdW, (17ype0

361
This system provided a first example for the existence of ran-=se:
dom attractors, extending the concept of a strange attractorses
still supporting nontrivial sample measures from determinis-=sea
tic to stochastic dynamics'-'® that have been shown to be ran=es
dom Sinai-Ruelle-Bowen measures>>. Note that in the weak-sss
noise limit, response theory allows one to compute explicitlyses

the change in the expectation value of the measurable observ-
ables when perturbing an underlying chaotic dynamics with
stochastic terms of rather general nature?®.

In the following, we apply our formalism to the three differ-
ent versions of the Lorenz-63 system described above. In the
case of the stochastic models featuring multiplicative noise,
we use the It6 convention for the stochastic integration, dW; is
a Wiener process obtained by sampling at each time step a ran-
dom variable with the same Gaussian density (W, ~ .47(0,7))
and intensity . The numerical simulation of Eqgs. (9)-(17) is
obtained by using the Euler-Maruyama method with a time
resolution df = 5 x 1073 over N = 107 time steps, using the
classical set of parameters (s,r,b) = (10,28,8/3) and c = 0.4
as in Chekroun, Simonnet, and Ghil !°.

IV. RESULTS
A. Full system attractor

Figures 1-3 report the trajectories (left panels) of the three
different Lorenz-63 systems (deterministic, Fig. 1; additive
noise, Fig. 2; multiplicative noise, Fig. 3) and their corre-
sponding attractors in the 3-D phase-space (right panels). As
expected, a breakdown of the symmetric shape of the Lorenz
attractor is observed when the classical Lorenz-63 system is
subject to either additive or multiplicative noise. Further-
more, intermittency appears to be reduced, thus moving from
a deterministic strange attractor towards a random stochastic
attractor'®. Nevertheless, by only looking at the full system
attractor we are not able to identify any significant dif-
ference in the geometric shape between the additive and
the multiplicative model. Furthermore, both random at-
tractors are characterized by the same dimension, equal
to the full dimension of the phase-space, due to the corre-
sponding property of the invariant measure of an elliptic
diffusion process.

B. Average dimensions of scale-dependent attractors

To further inspect and characterize the role of the noise
versus the deterministic dynamics of the Lorenz system,
we apply our formalism to derive D(¢,7) for the three dif-
ferent systems. We first decompose every multivariate
trajectory ©(r) via the MEMD through which we ob-
tained a set of 15, 20, and 24 MIMFs, respectively, whose
ranges of timescales are T € [1.64,2.5 x 10], T € [9.7 x
1072,2.5x 10°],and 7 € [8.9 x 1072,2.5 x 10°], respectively.
Then, using Eqs. (6)-(7) we derive the instantaneous scale-
dependent metric D(7,¢) for the three systems.

As a first step, we inspect the behavior of the aver-
age instantaneous scale-dependent dimension (D(7,t)), as
a function of the scale 7 as reported in Figure 4. This
is equivalent to the method proposed by Alberti et al. 14
where local (in terms of time-scale) and time-independent
(i.e., averaged) multi-scale measures have been intro-
duced.
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Our corresponding analysis evidences the absence ofs
time scales T < 1.64 for the deterministic Lorenz-63 sys-ze
tem as opposed to its stochastic versions. This is clearly aso
reflection of the absence of stochastic terms in the classicaks:
deterministic system, which are responsible for the verys:

fast fluctuations in the stochastic cases. 383

Furthermore, we generally observe larger average scale**
dependent dimensions for the multiplicative noise case thar?®®
for the deterministic Lorenz-63 system and the additive noise**®

model. This reflects the effect of the stochastic term on the
dynamical features of the Lorenz-63 system: it does not only
act at short scales, exciting variability at additional scales with
respect to the classical Lorenz-63 system, but also affects the
attractor geometry and, hence, the time-averaged num-
ber of active degrees of freedom as reflected by the scale-
dependent fractal dimension metric at larger timescales.
The latter property can be linked to the fact that the Lorenz-
63 system with non-degenerate noise has an invariant mea-
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sure that is absolutely continuous with respect to Lebesguesas
such that when introducing a stochastic term the dimensionaa
must converge to 3, as observed at large timescales for bothus
stochastic models. a6
The most interesting feature emerging for the average di-asz
mensions is that the largest value D(z, T) for both the additivesss
and the multiplicative case is obtained for 7 of the order of thesas
fundamental period (i.e., the Lyapunov time scale 7, ~ 1.12so0
time units) of the dominating unstable periodic orbit of the de-s:
terministic system27’28; see ref.?? for a discussion of how un-sz
stable periodic orbits are responsible for resonant behavioumss
in forced systems, and ref.30 for evidence of the resonant re-sa
sponse of the Lorenz-63 system. 455
Another interesting feature is the quantitative differ+ss
ence of (D(7,t)) in the range of scales dominated by thes-
stochastic contribution (below 7;). While for the additivesss
model the average dimensions converge, as expected, to 34so
the dimensions are larger than 3 for the multiplicative casesso
at the same timescales, thus suggesting that the dynamics:
at these scales behave as a forcing-like contribution. Con-
versely, by looking at the full system attractor, i.e., when
considering the whole timescales, we are not able to iden-e.
tify any difference in the dimensions between the additive
and the multiplicative model. Indeed, as expected, the aver-,
age dimensions tend to saturate to those expected for the fullm
dynamics when 7 — Ty, , being (D(,1)) =2.05+0.02 for the __
deterministic Lorenz-63 system and (D(7,7)) =2.98 £0.04
for its stochastic versions, because the invariant measure of a_
elliptic diffusion process has full dimension. The results ob-
tained for the deterministic Lorenz-63 system are in agree-
ment with previous findings by Alberti e al. 14, while OUIi :
corresponding findings on the stochastic models have been
reported here for the first time.

C. Instantaneous scale-dependent dimensions

As a second step of our analysis, which is also the main.--
novelty introduced in this work, we investigate the behav-s
ior of the instantaneous scale-dependent dimension D(z, T s
for the three different systems as reported in Fig. 5. 480

The deterministic Lorenz-63 system is characterizecs:
by instantaneous dimension values close to Dp ~ 2.05s:
at timescales larger than 10?, as expected due to thess
monofractal nature of the system with all generalized frac-sa
tal dimensions D, taking the same value for the full Sys-ss
tem. Conversely, larger values are found for the ranges.
7 € [10°,10?], the reason for which will be discussed below.s-

When a stochastic term is considered, we observe values ofiss
D(t, ) 2 3 at short timescales, extending towards larger scalesiso
when localized (in time) intermittent bursts in the trajec=oo
tory take place. Typically, dimensions larger than 3 implyao:
the presence of external forcing components, increasing thes:
number of active degrees of freedom. By further inspecting.s
the behavior of the trajectory in the phase-space at large..
scales (see Fig. 6) this excess over the topological dimensiommes
of the phase-space appears to be related to situations asso=oes
ciated with approaches of the unstable fixed points in the:.-

centers of each of the two lobes and subsequent fast es-
capes from the neighborhoods of those points along their
unstable manifolds. This indicates that the increase in the
number of active degrees of freedom at short timescales,
not observed for the deterministic model, is related to the
stochastic component. Indeed, the imposed noise term acts
as an additional forcing to the autonomous dynamics. This
means that the noise introduces additional degrees of freedom
in the dynamics because it adds energy to the system: the
attractor can deform through scales by increasing/decreasing
its dimensions depending on the instantaneous concurrent ef-
fect between the noise forcing term and the intrinsic dynamics
of the Lorenz-63 system. The main differences between the
two stochastic versions emerge at short timescales (7 < 10°),
where larger dimensions are found for the multiplicative noise
case as compared to the additive one. This could be explained
by invoking the fact that in the multiplicative case, the ampli-
tude of the stochastic term depends on the state variables of
the system.

D. A scale-dependent instantaneous view of the attractor

As a final step and to better highlight the scale-dependent
instantaneous properties of the attractor, Fig. 6 reports three
views of the attractor at different timescales color-coded with
respect the instantaneous dimensions. The shapes of the
different scale-dependent attractors are obtained by sum-
ming up empirical modes in a certain range of scales as in
Eq. (8). Due to the associated properties of MIMFs they
have a zero-average envelope, thus they fluctuate around
zero such that the attractors occupy only a small region
(especially, at short scales) of the phase-space of scale-
dependent fluctuations.

At large timescales (right panels in Fig. 6), roughly corre-
sponding to 100 times the Lyapunov time of the deterministic
Lorenz-63 system at the considered parameter values, the ge-
ometric shapes and the spatial distribution of dimensions
across both stochastic attractors are qualitatively similar
and clearly distinct from the chaotic attractor of the de-
terministic model. This means that we can visually distin-
guish between the chaotic and the two stochastic attrac-
tors, while a clear distinction cannot be made qualitatively
and quantitatively between the two random invariant sets.

By further inspecting the spatial distributions of instan-
taneous dimensions of all three attractors, we clearly ob-
serve that larger dimensions are found at the edges of the
attractors and close to the origin as compared to lower di-
mensions observed within the two lobes. While this feature
has been also previously highlighted for the deterministic
chaotic attractor (see, e.g., Faranda, Messori, and Yiou3!),
it is the first time that the spatial distribution of dimen-
sions is inspected for both random attractors. In particu-
lar, our analysis reveals that forcing-like mechanisms lead-
ing to D(7,7) > 3 are operating at the edges of the attractor
and close to the unstable fixed point at the origin, reflect-
ing the repelling nature of the fixed points of the Lorenz-63
system. However, the observation of D(7,7) > 3 suggests
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visualization. In all three cases, an excerpt comprising 40,000 time units is shown.

that the number of active degrees of freedom near the orisz:
gin is increased with respect to the deterministic models::
likely related to the action of the noise term. 523

To further investigate the last point on the role of the:zs
stochastic fluctuations in increasing the number of de=2s
grees of freedom near the origin, we investigate the spatiakzs
distribution of dimensions across the trajectory at short:-
timescales, below the Lyapunov time (left panels in Fig. 6)szs
Clearly, we do not have any dynamical component belowsze
the Lyapunov time for the deterministic Lorenz-63 systemgso
indicating that in both noisy systems, variability at thoses:
fast timescales is intimately related to the stochastic forcingsssz
However, a completely different spatial distributions of di-3s
mensions across the trajectory is observed between the ad-s:.
ditive and the multiplicative case. While the former has a:s
more homogeneous spatial distribution of dimensions withss
the most probable value close to 3 and small fluctuations:s-
around it, the latter is characterized by a saddle point-likes:s
dynamics D(7,7) > 3 in a ring-like configuration lying ims.
the x — y plane and D(7,7) < 3 elongated in the 7 directionsao
This is due to the different structure of the noise termssa:
being a ''pure'' noise term in the additive case, reflecting.:
into D(t,7) =3+ ¢, with € < 1, while acting as a "forcing'%.s

for the multiplicative one, providing D(7,7) values larger
than the system’s dimension'>-2°,

When approaching the Lyapunov scale 7; (middle pan-
els in Fig. 6), a different spatial distribution of the dimen-
sions is again observed, together with a different coverage
of the available phase-space when comparing the chaotic
attractor with the two stochastic ones. The latter are char-
acterized by regions with low dimension surrounded by
higher-dimensional ones, markedly differing from the de-
terministic Lorenz-63 system. We hypothesize that the
regions with low instantaneous dimensions could indicate
the location of weakly repulsive low-period unstable peri-
odic orbits®>33

Overall, our results indicate, for both the determinis-
tic and the two stochastic models, a clear different spatial
distribution of the dimensions across the phase-space at
large timescales. In particular, the two stochastic attrac-
tors are characterized by a region with dimensions larger
than the topological dimension of the system close to the
origin O = (0,0,0), suggesting the existence of forcing-like
mechanisms altering the structure of this fixed point of the
deterministic model. Since the stochastic term mainly op-
erates at short timescales (below the Lyapunov scale ;)
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the source of this difference must be searched in this range:--
of scales whose corresponding attractors for the additives
and the multiplicative models are structurally differentsza
both in terms of the geometric shape and in the spatiaks
distribution of the dimension values. In this regard, the-s
stochastic term is able to change the stability of the ori-_,
gin, revealing a new structure of attractors whose prop-_.
erties (i.e., fractal dimensions) evolve in time and across,,,
scales. This difference disappears when reaching larger,
and larger timescales due to the existence of an invariant,
measure for the Lorenz-63 system that is absolutely con-,
tinuous with respect to Lebesgue, such that when intro-,
ducing a stochastic term the dimension must converge to,,,
3, as observed at large timescales. ses

Finally, it is important to underline that in the deter-,,
ministic Lorenz-63 system with standard parameters (i.e.,,
(s,r,b) = (10,28,8/3)), the origin O is an unstable sad,,
dle point whose structure is preserved when considering,,
a multiplicative stochastic term. Conversely, this nature,,
seems to be modified when considering an additive noise,,,,
altering the structural stability of the unstable point to-,
wards a different nature. However, a linear stability anal-,

ysis of the stochastic models is beyond the scope of them
present work and is left for a future devoted study.

V. CONCLUSIONS

We have presented a formalism to study the behavior ofseo
chaotic or stochastic attractors as a function of the timescalegos
indicating that when considering different timescales the con-se:

cept of a single universal attractor should be revised. Specif-
ically, using the famous Lorenz-63 system in its standard de-
terministic as well as two stochastically forced versions, we
have demonstrated that the attractor of this system is scale de-
pendent.

To reach this conclusion, we have extended an approach
recently introduced by Alberti ef al.'* to investigate the in-
stantaneous scale-dependent properties of attractors by com-
bining concepts from time series decomposition methods and
extreme value theory applied to recurrences in phase space.
More specifically, we have used the Multivariate Empirical
Mode Decomposition (MEMD) to derive intrinsic compo-
nents of a given system at different timescales. Based on this
decomposition, we have estimated the instantaneous scale-
dependent dimensions of the system’s attractor at different
scales. We have shown that a new structure of attractors,
whose properties evolve in time, space and scale, is discov-
ered by looking for fixed points and following their evolution
from small to large scale and vice versa. Thus, the geometric
structure of the attractor is gradually deformed and depends
on the scale at which we are investigating the respective sys-
tem.

The main novelty introduced in this study is a powerful
method to identify the existence of processes of different
origin by looking at the spatial distribution of fractal di-
mensions across the full phase-space trajectories at differ-
ent timescales. Concerning the systems considered in this
work our formalism allowed us to clearly distinguish be-
tween a purely noise-like contribution at short timescales
for the additive noise model, being characterized by an er-
godic coverage of the available phase-space with dimen-
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sions fluctuating around 3 (as expected), as compared to as-
more forcing-like contribution for the multiplicative noise

model at the same timescales, where the dimensions are
larger than 3 and differently distributed across the at-
tractor. Conversely, by looking at the full system attrac-
tor, i.e., when considering the whole range of contributing
timescales, we are not able to identify any clear difference, ,
both in the attractor shape and in the spatial pattern of the
instantaneous (i.e., local in time and phase-space) dimen-,,
sions, between the additive and the multiplicative model _
since the invariant measure of an elliptic diffusion pro-

cess has full dimension. Thus, our method allows us to,
evidence where the difference between the two stochastic,,
models resides only by looking at the spatial distributiomnses
(see Fig. 6) of instantaneous fractal dimensions at differente°

timescales. ero
671

672

Our formalism can be easily modified by using any alterna-">

tive time series decomposition technique (like wavelet decom-,,,
position, singular spectrum analysis, or others). Our choice 0Ofeze
the MEMD has been motivated by its empirical and adaptives
nature, reducing a priori constraints and possible artifacts of*”®
fixed-frequency/fixed-basis decomposition methods. Further-:w
more, the instantaneous nature (i.e., time-dependency) of the,,
intrinsic components derived via the MEMD allows us to per-ssz
form a more detailed investigation of the dynamical evolutioress
(in time) of a system variable, better suited for evaluating in>**
stantaneous dynamical system metrics (as the dimension) than::6
fixed-basis methods as Fourier transforms. 687

688

5

We are confident that the proposed formalism provides aZZ
novel way to investigate the underlying geometric (fractal)pe:
properties of physical systems at different scales during thei®®?
time evolution. The concept of a scale-dependent attractor’”
could tackle the problem of defining a more useful concept for,,
the analysis of multiscale systems like in the case of the clisee
mate or for turbulence, which has largely remained unsolvedse?
despite numerous efforts reported in the last four decades®®
In a companion paper>*, where our formalism has beenjzz
applied to laboratory experiments on fluids, we observe,,
the emergence of an intrinsic timescale, solely determined-o:
by nonlinear interactions, controlling the geometric ando3

topological properties of phase-space trajectories. 704
705

706

In this first study, we focused only on the geometric®’
properties of attractors, in order to show that the universaizz
concept of attractor can be insufficient for fully describ-..
ing multiscale systems, in presence or in absence of noisez1:
The counterpart of our geometric view of each point in*?
phase-space is the instantaneous, i.e., time behavior, of the:j
scale-dependent dimension. Indeed, this interesting aspect,,,
can be used for further studying some crucial aspects ofs
physical systems, e.g., bifurcations, tipping points, small+17
vs. large-scale forcing and/or driving mechanisms'®. Th&*®
corresponding prospects call for further studies to investigate:::
these aspects in more detail, which is beyond the scope of the,.,
present paper and will be the subject of future work. 722
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