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Many natural systems show emergent phenomena at different scales, leading to scaling regimes with signatures of chaos
at large scales and an apparently random behavior at small scales. These features are usually investigated quantitatively
by studying the properties of the underlying attractor, the compact object asymptotically hosting the trajectories of the
system with their invariant density in the phase-space. This multi-scale nature of natural systems makes it practically
impossible to get a clear picture of the attracting set as it spans over a wide range of spatial scales and may even change
in time due to non-stationary forcing. Here we combine an adaptive decomposition method with extreme value theory to
study the properties of the instantaneous scale-dependent dimension, which has been recently introduced to characterize
such temporal and spatial scale-dependent attractors in turbulence and astrophysics. To provide a quantitative analysis
of the properties of this metric, we test it on the well-known low-dimensional deterministic Lorenz-63 system perturbed
with additive or multiplicative noise. We demonstrate that the properties of the invariant set depend on the scale we
are focusing on and that the scale-dependent dimensions can discriminate between additive and multiplicative noise,
despite the fact that the two cases exhibit very similar stochastic attractors at large scales. The proposed formalism can
be generally helpful to investigate the role of multi-scale fluctuations within complex systems, allowing us to deal with
the problem of characterizing the role of stochastic fluctuations across a wide range of physical systems.

The collective dynamics of natural systems is the result of
the dynamics of their single components, often operating
on multiple spatio-temporal scales and sometimes related
to intrinsic and extrinsic factors. These multiple compo-
nents reflect in scaling laws, unpredictable vs. determin-
istic behavior, bifurcations between different regimes, and
strange attractors. Here, we propose a novel concept of
fractal dimension in deterministic and stochastic Lorenz-
63 systems to provide a better characterization of the geo-
metrical features of attractors at different scales.

I. INTRODUCTION

Since their first description by E. N. Lorenz in 19631, the
existence and properties of strange attractors have been fre-
quently discussed in the context of such diverse fields as the
atmosphere2, climate3,4, biology5, and ecology6, to mention
only a few examples. The concept of strange attractors is

strictly related to that of dissipative dynamical systems with
sensitive dependence on the initial conditions. Being revo-
lutionary at the time of its invention, it has been attracting a
lot of attention, especially in the context of developing mea-
sures to quantify the geometric and dynamical properties of
attractors7 and in revising some earlier concepts on the fore-
cast horizon of physical systems8. A one-parametric fam-
ily of measures, the so-called generalized fractal dimensions
Dq, has been proposed based on a coarse-grained invariant
measure linking the geometric properties of the phase-space
trajectories to the statistics of the dynamical scaling proper-
ties9. These measures provided new insights not only in the
field of dynamical system theory (where they have been de-
veloped)10 but also into different more applied fields like fluid
and magneto-hydrodynamic turbulence11,12 and others13.

One of the peculiar aspects of physical systems is their vari-
ability over a wide range of scales, arising from both intrin-
sic interactions between characteristic variability components
in one or several variables and external forcings, differently
affecting the specific properties of the whole system at dif-
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ferent scales4. Recently, Alberti et al. 14 proposed a method
to investigate how scale-dependency affects the phase-space
properties and their statistical measures. This method re-
quires to first identify scale-dependent components contribut-
ing to the observed dynamics of a given system as a whole,
which can be achieved by applying time series decomposi-
tiion techniques like empirical mode decomposition (EMD).
Subsequently, quantitative scale-specific measures like gener-
alized fractal dimensions are evaluated. The formalism result-
ing from the combination of those two approaches allows the
introduction of multi-scale measures by computing the gen-
eralized fractal dimensions for each scale-specific component
and partial sums thereof14. The suitability of this approach has
been demonstrated for several dynamical systems of different
complexity, synthetic noisy signals, and real-world time se-
ries data14. For systems exhibiting heterogeneous phase space
structure or even nonstationarity, it would however be useful
to obtain a more detailed characterization of the time (and,
hence, state) dependent multi-scale dynamical characteristics.
Specifically, we are interested in measuring the instantaneous
number of degrees of freedom of a dynamical system, which
is closely related to its associated recurrence characteristics15.

Accordingly, in this work we thoroughly extend the exist-
ing formalism of multi-scale measures14 to characterize the
instantaneous scale-dependent properties of strange attractors
by combining time series decomposition methods with con-
cepts from extreme value theory that are related to the in-
stantaneous number of degrees of freedom of the observed
dynamics. We introduce and demonstrate the usefulness of
the resulting concept of instantaneous scale-dependent di-
mension, computed on the intrinsic components of a physi-
cal signal at different scales. Notably, this approach can be
used as a source of local (in terms of scales) information
about the properties of the phase-space geometry of the sys-
tem under study. Specifically, we demonstrate the utility of
our approach for the case of the well-known low-dimensional
deterministically-chaotic Lorenz-63 system and two stochas-
tic versions thereof16. We focus our attention on this perturbed
system because it features different large and small scale dy-
namical features that can be modified by changing especially
the noise level and the type of noise (additive versus multi-
plicative). By applying the proposed formalism, we illustrate
that the properties of the system’s invariant set crucially de-
pend on the scale we are focusing on and that a global anal-
ysis will essentially reveal the large scale properties, hiding
much information on the interesting dynamics triggered by
additional noise at small and intermediate scales, which are
associated with nontrivial resonant features.

II. METHODS

In the following section, we start by introducing the decom-
position procedure and the dynamical system metrics sepa-
rately, before describing our proposed formalism. For a more
general purpose, we assume to have a generic N−dimensional
system, i.e., an N−dimensional phase-space, with N > 1.
Thus, we describe our decomposition procedure in a general

multivariate framework. For univariate data (i.e., N = 1), we
may proceed in a largely analogous way.

A. Multivariate Empirical Mode Decomposition (MEMD)

Considering an N−dimensional system described
via a multivariate time series signal Θµ(t) =

[Θ1(t),Θ2(t), . . . ,ΘN(t)]† (with † indicating the transposition
operator), the Multivariate Empirical Mode Decomposition
(MEMD) decomposes the data into a finite number of multi-
variate oscillating patterns Cµ,k(t), referred to as Multivariate
Intrinsic Mode Functions (MIMFs), and a monotonic residue
Rµ(t) as

Θµ(t) =
nk

∑
k=1

Cµ,k(t)+Rµ(t). (1)

The decomposition basis, formed by the set of Cµ,k(t), is de-
rived via the so-called sifting process17 modified for multi-
variate signals18. The sifting process consists of

1. identifying local extremes of Θµ(t), i.e., where the N-
variate derivative is zero;

2. interpolating these points via cubic splines to derive the
upper and lower envelopes u(t) and l(t), respectively;

3. deriving the mean envelope m(t) as m(t) = u(t)+l(t)
2 ;

4. evaluating the detail h(t) = s(t)−m(t).

These steps are iterated until the detail h(t) can be identified
as a MIMF (also called multivariate empirical mode)17,18, i.e.,
it must have the same number of local extremes and zeros
(or having both differing at most by one) and a zero-average
mean envelope m(t). The full sifting process stops when no
more MIMFs Cµ,k(t) can be filtered out from the data. Each
Cµ,k(t) represents a peculiar dynamical component intrinsic
to the system that typically evolves on an average scale

τk =
1
T

∫ T

0
t ′ 〈Cµ,k(t ′)〉dt ′, (2)

where T is the length of data and 〈· · · 〉 denotes an ensemble
average over the N−dimensional space19. The MEMD allows
to interpret Θµ(t) as a collection of scale-dependent multivari-
ate fluctuations contributing to the collective properties of the
whole system. Indeed, each MIMF can be seen as representa-
tive of fluctuations at a typical scale that is the average of the
instantaneous scales (i.e., the inverse instantaneous frequen-
cies) derived from a given mode via the Hilbert transform19.
The MEMD, due to its adaptive methodology, relieves some
a priori mathematical constraints of fixed-basis decomposi-
tion methods and extracts a limited number of intrinsic com-
ponents that can be visually inspected. Usual decomposition
methods, like Fourier or wavelet analysis, commonly return a
large number of components and/or need to project our data
on a pre-defined decomposition basis. Moreover, at least clas-
sical Fourier transform based methods also require that our
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data satisfy a stationarity condition. In this regard, we do not
question the appropriateness of the aforementioned more tra-
ditional conventional analysis techniques, but rather acknowl-
edge that they (as well as any other approaches) have intrinsic
limitations in what we can learn from their application.

B. Instantaneous dimension

Given the N−dimensional system described via the multi-
variate trajectory Θµ(t), its dynamical properties can be in-
vestigated by combining the concept of recurrences in phase-
space and extreme value theory20. For some (arbitrary) state
of interest ζ in the associated phase-space, we first introduce
the logarithmic return associated with each state on the trajec-
tory (except for ζ itself) as

G(Θµ(t),ζ ) =− log
[
dist(Θµ(t),ζ )

]
(3)

where dist(•) is a distance between two state vectors in phase-
space, commonly the Euclidean one. By shortening the no-
tation, we obtain a time series of logarithmic returns g(t) =
G(Θµ(t),ζ ) that takes larger values whenever Θµ(t) is close
to ζ . If we now define a threshold s(q) as the q-th em-
pirical quantile of g(t), we can introduce the exceedances
u(ζ ) .

= {t |g(t) > s(q)}, i.e., the recurrences to the reference
state in the context first introduced by Poincaré. According
to the Freitas-Freitas-Todd theorem the cumulative probabil-
ity distribution F(u,ζ ) converges to the exponential member
of the Generalised Pareto Distribution (GPD), i.e.,

F(u,ζ )' exp
[
−u(ζ )

ς(ζ )

]
. (4)

The GPD parameter ς depends on the dynamical state ζ and
can be used to introduce the concept of an instantaneous di-
mension d simply defined as d(ζ ) = ς(ζ )−1. Although it
could merely be associated to a fitting parameter, it has a clear
physical meaning: d is a proxy of the active number of degrees
of freedom around each state ζ in the phase-space.

III. INSTANTANEOUS SCALE-DEPENDENT DIMENSION

The instantaneous dimension d introduced above provides a
local view of the properties of phase-space trajectories, i.e., al-
lows obtaining information for each point of the global struc-
ture of attractors. Nevertheless, multi-scale systems could
have a scale-dependent phase-space structure14 such that we
can distinguish between features that emerge at different
scales. To provide a scale-dependent instantaneous view of
a given system we have to combine a decomposition method,
as the MEMD, and the extreme value theory applied to inter-
state distances in phase space.

Given again an N−dimensional system described via Θµ(t)
with a multi-scale nature, i.e., being characterized by pro-
cesses occurring over a wide range of scales, we can write

Θµ(t) = 〈Θµ(t)〉+∑
τ

δΘ
(τ)
µ (t) (5)

where 〈Θµ(t)〉 is a steady-state time-average value and
δΘ

(τ)
µ (t) is a component of the system operating at a mean

scale τ . It is easy to note the analogy between Eq. (5)
and Eq. (1) via the correspondence Cµ,k(t)↔ δΘ

(τ)
µ (t) and

Rµ(t)↔ 〈Θµ(t)〉. This means that for each scale τ we can
identify the corresponding invariant set Mτ as the manifold
obtained via the reconstruction of MIMFs with scales τ? < τ ,
i.e.,

Θ
τ
µ(t) =

k

∑
k?=1

Cµ,k?(t). (6)

Then, for each scale τ ∈ [τ1,τnk ], i.e., for each k∈ [1,nk], given
a trajectory Θτ

µ(t) and a state of interest ζτ , the cumulative
probability of logarithmic returns in the neighborhood of ζτ

follows a GPD as

F(uτ ,ζτ)' exp
[
−uτ(ζτ)

ςτ(ζτ)

]
. (7)

Thus, we can introduce D(t,τ) = ςτ(ζτ)
−1, representing the

number of active degrees of freedom around each state ζτ . In
this way, we exploit the properties of MEMD in deriving local
(in terms of scale) components embedded into a given system
and the instantaneous (in terms of time) properties of the ex-
treme value theory based metric to derive the instantaneous
scale-dependent metric D(t,τ).

Summarizing, our procedure consists of the following
steps:

1. extract intrinsic components Cµ,k(t) and their mean
scales τk from Θµ(t) by using the MEMD;

2. evaluate partial sums of Eq. (1) at different scales

Θ
τ
µ(t) =

k

∑
k?=1

Cµ,k?(t) (8)

with k∗ = 1, . . . ,nk (by construction, MIMFs are or-
dered with increasing scales, i.e., τk′ < τk′′ if k′ < k′′);

3. for each scale τk (i.e., for each k) evaluate D(t,τk).

Our procedure is, by construction, complete, since when k→
nk then D(t,τ) = d(t), with d(t) being the instantaneous frac-
tal dimension of the full system2,15,20.

In the remainder of this work, we will discuss some exam-
ples to highlight the potential of our framework to disentangle
distinct dynamical components of different origin in a multi-
scale complex system.

IV. THE LORENZ-63 MODEL AND ITS STOCHASTIC
VERSIONS

The Lorenz-63 system1, originally developed as a simpli-
fied model for atmospheric convection, is one of the most fa-
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mous and widely studied paradigmatic dissipative-chaotic dy-
namical systems21, which can be written as

dx = s(−x+ y)dt (9)
dy = (rx− y− xz)dt (10)
dz = (xy−bz)dt (11)

with the parameters (s,r,b) related to the Prandtl number, the
Rayleigh number, and the geometry of the atmospheric con-
vective layer. With the classical set of parameters (s,r,b) =
(10,28,8/3) the system admits chaotic solutions with all ini-
tial points tending towards an invariant set, usually termed the
Lorenz attractor. It is a strange attractor whose Hausdorff
dimension (and all its generalizations Dq

9) take a value of
2.05±0.027,9,22.

A simple way to investigate the role of hidden fast dy-
namical components is to couple deterministic equations to
a "noise" mimicking the action of unknown variables. This
can be also easily done for the Lorenz-63 system by rewrit-
ing the original system in terms of a set of coupled stochastic
differential equations as

dx = s(−x+ y)dt +σ dWt (12)
dy = (rx− y− xz)dt +σ dWt (13)
dz = (xy−bz)dt +σ dWt (14)

In nonlinear deterministic systems, such additive noise can
lead to non-trivial effects23, including transitions between co-
existing states or attractors, shifting bifurcations, or acting
as an external forcing to the intrinsic variability of the sys-
tem11,24.

More recently, another stochastic version of the Lorenz-
63 system has been proposed by Chekroun, Simonnet, and
Ghil 16 , considering a linearly multiplicative noise term to the
original system as

dx = s(−x+ y)dt +σ xdWt (15)
dy = (rx− y− xz)dt +σ ydWt (16)
dz = (xy−bz)dt +σ zdWt (17)

This system provided a first example for the existence of ran-
dom attractors, extending the concept of a strange attractor,
still supporting nontrivial sample measures from determinis-
tic to stochastic dynamics1,16 that have been shown to be ran-
dom Sinaï–Ruelle–Bowen measures25. Note that in the weak-
noise limit, response theory allows one to compute explicitly
the change in the expectation value of the measurable observ-
ables when perturbing an underlying chaotic dynamics with
stochastic terms of rather general nature26.

In the following, we apply our formalism to the three dif-
ferent versions of the Lorenz-63 system. In the case of the
stochastic models featuring multiplicative noise, we use the
Itô convention for the stochastic integration, dWt is a Wiener
process obtained by sampling at each time step a random
variable with uniform density (Wt ∼ N (0, t)) and intensity
σ . The numerical simulation of Eqs. (9)-(17) is obtained
by using the Euler-Maruyama method with a time resolution
dt = 5× 10−3 over N = 107 time steps, using the classical
set of parameters (s,r,b) = (10,28,8/3) and σ = 0.4 as in
Chekroun, Simonnet, and Ghil 16 .

V. RESULTS

Figures 1-3 report the trajectories (left panels) of the three
different Lorenz-63 systems (fully deterministic, Fig. 1; addi-
tive noise, Fig. 2; multiplicative noise, Fig. 3) and their cor-
responding attractors in the 3-D phase-space (right panels).
As expected, a breakdown of the quasi-symmetric shape of
the Lorenz attractor is observed when the classical Lorenz-
63 system is subject to either additive or multiplicative noise.
Furthermore, intermittency appears to be reduced, thus mov-
ing from a deterministic strange attractor towards a random
stochastic attractor16.

To further highlight these differences, we applied our for-
malism to derive D(t,τ) for the three different systems as re-
ported in Fig. 4. First of all, we evidence the absence of time
scales in the range τ ∈ (3,102) for the deterministic Lorenz-
63 system as opposed to its stochastic versions. This is clearly
a reflection of the absence of stochastic terms in the classical
deterministic system. Most notably, the traditional Lorenz-
63 system is characterized by instantaneous dimension val-
ues close to 2 at timescales larger than 102, almost constant
along the trajectory. Conversely, values fluctuating around 3
are found for the range τ ∈ [100,102].

When a stochastic term is considered, we observe values of
D(t,τ)& 3 at short timescales, extending towards larger scales
when sudden transitions in the trajectory take place. This ex-
cess over the topological dimension of the phase-space is re-
lated to exiting from the region near one of the two unstable
fixed points, i.e., around the lobe of the attractor, reflecting the
unstable nature of the two fixed points. Typically, dimensions
larger than 3 imply the existence of external forcing compo-
nents, increasing the active number of degrees of freedom.
Here, we can interpret this increase in terms of some extra
energy provided to the system by the stochastic term, acting
as an additional forcing to the autonomous dynamics. This
means that the noise introduces additional degrees of freedom
because it adds energy to the system: the attractor can de-
form through scales by increasing/decreasing its dimensions
depending on the instantaneous balance between the noise
forcing term and the intrinsic dynamics of the Lorenz-63 sys-
tem.

The main differences between the two stochastic versions
mainly emerge at short timescales, where larger dimensions
are found for the multiplicative noise case as compared to the
additive one. This could be explained by invoking the fact that
in the multiplicative case, the stochastic term depends on the
state variables of the system. However, in both the additive
and the multiplicative case, within the range of scales that can
be related to the stochastic term (i.e., τ . 100), D(t,τ) fluctu-
ates around 3, with some excursions to larger values.

We further evaluate the average value of our metric for
the two stochastic models as compared with the determinis-
tic Lorenz-63 system (see Fig. 5). It is evident that larger av-
erage dimensions are found for the multiplicative noise case
than for the deterministic Lorenz-63 system and the additive
noise model. This reflects the effect of the stochastic term
on the dynamical features of the Lorenz-63 system: it does
not only act at short scales, exciting variability at additional
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FIG. 1. (Left) Zoom of the trajectory components of the deterministic Lorenz-63 system as in Eqs. (9)-(11) (L63). (Right) Corresponding
attractor in the 3-D phase-space (black points) and its projection in the x− z plane (gray points).

FIG. 2. (Left) Zoom of the trajectory components of the additive noise model as in Eqs. (12)-(14) (L63 Additive). (Right) Corresponding
attractor in the 3-D phase-space. The stochastic noise term has an amplitude σ = 0.416.

scales with respect to the classical Lorenz-63 system, but also
affects the metric at larger timescales. This can be linked to
the fact that the Lorenz-63 system with non-degenerate noise
has an invariant measure that is absolutely continuous with
respect to Lebesgue, such that when introducing a stochastic
term the dimension must converge to 3, as observed at large
timescales for both stochastic models. The most interesting
feature emerging for the average dimensions is that the largest
value D(t,τ) for both the additive and the multiplicative case
is obtained for τ of the order of the fundamental period (≈ 1.5

time units) of the dominating unstable periodic orbit of the
deterministic system27,28; see29 for a discussion of how unsta-
ble periodic orbits are responsible for resonant behaviour in
forced systems, and30 for evidence of the resonant response
of the Lorenz-63 system. This is likely related, as discussed
before, to both the stochastic term and the intrinsic variabil-
ity of the system. As expected, the average dimensions tend to
saturate to those expected for the full dynamics when τ→ τNk ,
being 〈D(τ, t)〉= 2.05 for the deterministic Lorenz-63 system
and 〈D(τ, t)〉 = 3 for its stochastic versions, because the in-
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FIG. 3. (Left) Zoom of the trajectory components of the multiplicative noise model as in Eqs. (15)-(17) (L63 Multiplicative). (Right) Corre-
sponding attractor in the 3-D phase-space (black points. The stochastic noise term has an amplitude σ = 0.416.

FIG. 4. Behavior of the instantaneous scale-dependent dimension D(t,τ) for the deterministic Lorenz-63 system (top), its version with
additive noise (middle), and the multiplicative noise case (bottom). The colormap for D(t,τ) has been saturated between 2 and 4 for a better
visualization. In all three cases, an excerpt comprising 40,000 time units is shown.
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variant measure of a elliptic diffusion process has full dimen-
sion.

To better highlight the scale-dependent instantaneous view
of the attractor, Fig. 6 reports three views of the attractor
at different timescales color-coded with respect the instanta-
neous dimensions. At large timescales (left panels in Fig. 6),
roughly corresponding to 100 times the Lyapunov scale of
the deterministic Lorenz-63 system at the considered param-
eter values (τL ∼ 1.12), the shape of the stochastic attrac-
tors seems to be preserved, with a qualitatively similar dis-
tribution of the values of the instantaneous fractal dimensions
across the trajectory. Moreover, larger dimensions are found
for the stochastic attractors than for the chaotic attractor. Av-
eraging over time, we recover the expected values of 3 for
the stochastic attractors and 2.05 for the deterministic-chaotic
one. By looking at the instantaneous dimensions, we ob-
serve that D(τL, t) > 3 at the edges of the attractor, while
D(τL, t) < 3 within the lobes. This highlights the exiting
mechanisms from the region near one of the two unstable fixed
points, i.e., around the lobe of the attractor, reflecting the un-
stable nature of the two fixed points.

A clearly different picture can be drawn at short timescales,
below the Lyapunov time (right panels in Fig. 6). Clearly, we
do not have any dynamical component below the Lyapunov
time for the deterministic Lorenz-63 system, indicating that
variability at those fast timescales is intimately related to the
stochastic forcings. While the additive case resembles a torus-
like structure, the multiplicative one seems to be characterized

by a saddle point-like dynamics. This seems to point towards
the existence of a different fixed point structure of the origin
O = (0,0,0) for the two different stochastic forcings when
looking at the phase-space structure at different timescales.
This is due to the fact that the noise structure is different, act-
ing as a "pure" noise term in the additive case, while playing
a "forcing" role for the multiplicative one.

Our results suggest that the stochastic term, mainly operat-
ing at short timescales, is able to change the stability of the ori-
gin, thus revealing a new structure of attractors, whose prop-
erties (i.e., its dimension) evolve in time and across scales.
Thus, the attractor geometry is deformed and becomes de-
pendent on the scale we are looking at in our system. By
approaching the Lyapunov time (middle panels in Fig. 6), a
restored symmetry in terms of the phase-space distribution
of values of the instantaneous dimensions is observed for
the stochastic attractors. Indeed, regions with low dimen-
sion are now surrounded by high-dimensional ones for both
the additive and the multiplicative noise. This differs from
the classical Lorenz-63 system where lower dimensions are
observed with a different geometrical distribution across the
phase-space, likely indicating the location of weakly repulsive
low-period unstable periodic orbits31,32.

Overall, our results suggest that at those timescales where
the noise terms are mainly operating, the distribution of in-
stantaneous (local) dimensions is different from the deter-
ministic case. Conversely, when reaching larger and larger
timescales, at which the intrinsic dynamics of the Lorenz-63
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FIG. 6. Three views of the Lorenz attractor at different timescales color-coded with respect the instantaneous dimensions: (top) deterministic
system, (middle) additive noise and (bottom) multiplicative noise.

system becomes significant, we observe the expected distribu-
tion of dimensions across the trajectory2. This can be related
to the existence of an invariant measure that is absolutely con-
tinuous with respect to Lebesgue, such that when introducing
a stochastic term the dimension must converge to 3, as ob-
served at large timescales.

VI. CONCLUSIONS

We have presented a formalism to study the behavior of
chaotic or stochastic attractors as a function of the timescale,
indicating that when considering different timescales the con-
cept of a single universal attractor should be revised. Specif-
ically, using the famous Lorenz-63 system in its standard de-
terministic as well as two stochastically forced versions, we
have demonstrated that the attractor of this system is scale de-
pendent.

To reach this conclusion, we have extended an approach
recently introduced by Alberti et al. 14 to investigate the in-
stantaneous scale-dependent properties of attractors by com-
bining concepts from time series decomposition methods and
extreme value theory applied to recurrences in phase space.
More specifically, we have used the Multivariate Empirical
Mode Decomposition (MEMD) to derive intrinsic compo-
nents of a given system at different timescales. Based on this
decomposition, we have estimated the instantaneous scale-
dependent dimensions of the system’s attractor at different
scales. We have show that a new structure of attractors, whose
properties evolve in time, space and scale, is discovered by
looking for fixed points and following their evolution from

small to large scale and vice versa. Thus, the geometric struc-
ture of the attractor is gradually deformed and depends on the
scale at which we are investigating the respective system.

Our formalism can be easily modified by using any alterna-
tive time series decomposition technique (like wavelet decom-
position, singular spectrum analysis, or others). Our choice of
the MEMD has been motivated by its empirical and adaptive
nature, reducing a priori constraints and possible artifacts of
fixed-frequency/fixed-basis decomposition methods. Further-
more, the instantaneous nature (i.e., time-dependency) of the
intrinsic components derived via the MEMD allows us to per-
form a more detailed investigation of the dynamical evolution
(in time) of a system variable, better suited for evaluating in-
stantaneous dynamical system metrics (as the dimension) than
fixed-basis methods as Fourier transforms.

We are confident that the proposed formalism provides a
novel way to investigate the underlying geometric (fractal)
properties of physical systems at different scales during their
time evolution. The concept of a scale-dependent attractor
could tackle the problem of defining a more useful concept for
the analysis of multiscale systems like in the case of the cli-
mate or for turbulence, which has largely remained unsolved
despite numerous efforts reported in the last four decades. The
corresponding prospects call for further studies to investigate
these aspects in more detail, which is beyond the scope of the
present paper and will be the subject of future work.
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