

Scale dependence of fractal dimension in deterministic and stochastic Lorenz-63 systems

T Alberti, Davide Faranda, V Lucarini, R V Donner, Berengere Dubrulle, F Daviaud

▶ To cite this version:

T Alberti, Davide Faranda, V Lucarini, R V Donner, Berengere Dubrulle, et al.. Scale dependence of fractal dimension in deterministic and stochastic Lorenz-63 systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2023, 10.1063/5.0106053. hal-03707052v2

HAL Id: hal-03707052 https://hal.science/hal-03707052v2

Submitted on 13 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Scale dependence of fractal dimension in deterministic and stochastic Lorenz-63 systems

```
T. Alberti, D. Faranda, 2,3,4 V. Lucarini, 5,6 R. V. Donner, 7,8 B. Dubrulle, 9 and F. Daviaud 10
3
              <sup>1)</sup>INAF-Istituto di Astrofisica e Planetologia Spaziali, via del Fosso del Cavaliere 100, 00133 Roma,
 5
              Italy
              <sup>2)</sup>Laboratoire des Sciences du Climat et de l'Environnement, CEA Saclay l'Orme des Merisiers,
              UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191, Gif-sur-Yvette,
              <sup>3)</sup>London Mathematical Laboratory, 8 Margravine Gardens, London, W6 8RH, UK
              <sup>4)</sup>LMD/IPSL, Ecole Normale Superieure, PSL research University, 75005, Paris, France
10
              <sup>5)</sup>Department of Mathematics and Statistics, University of Reading, RG6 6AH, Reading,
11
12
              <sup>6)</sup>Centre for the Mathematics of Planet Earth, University of Reading, RG6 6AX, Reading,
13
              UK
14
              <sup>7)</sup>Department of Water, Environment, Construction and Safety, Magdeburg–Stendal University of Applied Sciences,
15
              Breitscheidstraße 2, 39114 Magdeburg, Germany
16
              ^{8)}Research Department I — Earth System Analysis, Potsdam Institute for Climate Impact
17
              Research (PIK) — Member of the Leibniz Association, Telegrafenberg A31, 14473 Potsdam,
18
              Germany
19
              <sup>9)</sup>SPEC, CEA, CNRS, Université Paris-Saclay, F-91191 CEA Saclay, Gif-sur-Yvette, France
20
              <sup>10)</sup>CEA, IRAMIS, SPEC, CNRS URA 2464, SPHYNX, 91191 Gif-sur-Yvette, France
21
```

(*Electronic mail: tommaso.alberti@inaf.it)

(Dated: 13 February 2023)

22

23

24

25

26

27

29

30

32

33

35

37

38

42

43

45

Many natural systems show emergent phenomena at different scales, leading to scaling regimes with signatures of **deterministic** chaos at large scales and an apparently random behavior at small scales. These features are usually investigated quantitatively by studying the properties of the underlying attractor, the compact object asymptotically hosting the trajectories of the system with their invariant density in the phase-space. This multi-scale nature of natural systems makes it practically impossible to get a clear picture of the attracting set. Indeed, it spans over a wide range of spatial scales and may even change in time due to non-stationary forcing. Here we combine an adaptive decomposition method with extreme value theory to study the properties of the instantaneous scale-dependent dimension, which has been recently introduced to characterize such temporal and spatial scale-dependent attractors in turbulence and astrophysics. To provide a quantitative analysis of the properties of this metric, we test it on the well-known low-dimensional deterministic Lorenz-63 system perturbed with additive or multiplicative noise. We demonstrate that the properties of the invariant set depend on the scale we are focusing on and that the scale-dependent dimensions can discriminate between additive and multiplicative noise, despite the fact that the two cases **have exactly the same stationary invariant measure** at large scales. The proposed formalism can be generally helpful to investigate the role of multi-scale fluctuations within complex systems, allowing us to deal with the problem of characterizing the role of stochastic fluctuations across a wide range of physical systems.

The collective dynamics of natural systems is the result 53 of the dynamics of their individual components, often 54 operating on multiple spatio-temporal scales and some-55 times related to intrinsic and extrinsic factors. These 56 multiple components reflect in scaling laws, unpredictable 57 vs. deterministic behavior, bifurcations between differ-58 ent regimes, and basin of attractions. Here, we propose 59 a novel concept of fractal dimension in deterministic and 60 stochastic Lorenz-63 systems to provide a more complete 61 characterization of the geometric features of attractors at 62 different scales.

I. INTRODUCTION

Since their first description by E. N. Lorenz in 1963¹, the existence and properties of strange attractors have been fre-

quently discussed in the context of such diverse fields as the atmosphere², climate^{3,4}, biology⁵, and ecology⁶, to mention only a few examples. The concept of strange attractors is strictly related to that of dissipative dynamical systems with sensitive dependence on the initial conditions. Being revolutionary at the time of its invention, it has been attracting a lot of attention, especially in the context of developing measures to quantify the geometric and dynamical properties of attractors⁷ and in revising some earlier concepts on the forecast horizon of physical systems⁸. A one-parametric family of measures, the so-called generalized fractal dimensions D_a , has been proposed based on a coarse-grained invariant measure linking the geometric properties of the phase-space trajectories to the statistics of the dynamical scaling properties⁹. These measures provided new insights not only in the field of dynamical system theory (where they have been developed)¹⁰ but also into different more applied fields like fluid and magneto-hydrodynamic turbulence 11,12 and others 13.

One of the peculiar aspects of physical systems is theiri26 variability over a wide range of scales, arising from both in-127 trinsic interactions between characteristic variability components in one or several variables and external forcings, differently affecting the specific properties of the whole sys-128 tem at different scales⁴. Recently, Alberti et al. 14 proposed a method to investigate how scale-dependency affects the 129 global phase-space properties and their statistical character₁₃₀ istics. This method requires to first identify scale-dependent, components contributing to the observed dynamics of a given, 32 system as a whole, which can be achieved by applying time series decomposition techniques like empirical mode decompo-134 sition (EMD). Subsequently, quantitative scale-specific mea-135 sures like generalized fractal dimensions are evaluated. The,136 formalism resulting from the combination of those two approaches allows the introduction of multi-scale measures by computing the generalized fractal dimensions for each scale 137 specific component and partial sums thereof 14. The suitability of this approach has been demonstrated for several dynamical systems of different complexity, synthetic noisy signals, and real-world time series data¹⁴.

For systems exhibiting heterogeneous phase space structure or even non-stationarity, it would however be useful to track the instantaneous number of degrees of freezedoms, which are closely related to its associated recurzarence characteristics. Indeed, the spatial distribution of the instantaneous (i.e., local in phase-space) dimensions across the system's invariant set, as well as its geometric shape, provide us with more detailed information than established global (as in Hentschel and Procaccia) and/or scale-dependent (as in Alberti et al. 14) measures of complexity.

Accordingly, in this work we thoroughly extend the ex-148 isting formalism of multi-scale measures¹⁴ to characterize⁴⁹ the instantaneous scale-dependent properties of strange50 attractors by combining time series decomposition meth-151 ods with concepts from extreme value theory that are 52 related to the instantaneous number of degrees of free-153 dom of the observed dynamics. We then show the util-154 ity of our approach for the case of the well-known low-155 dimensional deterministically-chaotic Lorenz-63 system¹⁵⁶ and two stochastic versions thereof¹⁶. We indeed show that the new formalism, based on instantaneous scale-157 dependent dimensions, allows us to discern two properties that are inaccessible by previous global or scale-dependent analysis, namely the existence of different scale-dependent source processes (as the presence of noise or a dominant scale) and the structural stability of fixed points. 161

II. METHODS

71

72

90

101 102

104

106

107

109

110

112

115

116

118

121

124

125

In the following section, we start by introducing the decom₁₆₆ position procedure and the dynamical system metrics sepa₁₆₇ rately, before describing our proposed formalism. For a moreos general purpose, we assume to have a generic N-dimensionalos system, i.e., an N-dimensional phase-space, with N > 1₁₇₀ Thus, we describe our decomposition procedure in a generalor

162

164

multivariate framework. For univariate data (i.e., N = 1), we may proceed in a largely analogous way.

A. Multivariate Empirical Mode Decomposition (MEMD)

Considering an N-dimensional system described via a multivariate time series signal $\Theta_{\mu}(t) = [\Theta_1(t),\Theta_2(t),\dots,\Theta_N(t)]^{\dagger}$ (with \dagger indicating the transposition operator), the Multivariate Empirical Mode Decomposition (MEMD) decomposes the data into a finite number of multivariate oscillating patterns $\mathbf{C}_{\mu,k}(t)$, referred to as Multivariate Intrinsic Mode Functions (MIMFs), and a monotonic residue $\mathbf{R}_{\mu}(t)$ as

$$\Theta_{\mu}(t) = \sum_{k=1}^{n_k} \mathbf{C}_{\mu,k}(t) + \mathbf{R}_{\mu}(t).$$
 (1)

The decomposition basis, formed by the set of **functions** $C_{\mu,k}(t)$, is **empirically** derived via the so-called sifting process¹⁷ modified for multivariate signals¹⁸. **This** sifting process consists of

- 1. identifying local extremes of $\Theta_{\mu}(t)$, i.e., where the *N*-variate derivative **vanishes**;
- 2. interpolating these points via cubic splines to derive the upper and lower envelopes $\mathbf{u}(t)$ and $\mathbf{l}(t)$, respectively;
- 3. deriving the mean envelope $\mathbf{m}(t)$ as $\mathbf{m}(t) = \frac{\mathbf{u}(t) + \mathbf{l}(t)}{2}$;
- 4. evaluating the detail $\mathbf{h}(t) = \mathbf{s}(t) \mathbf{m}(t)$.

These steps are iterated until the detail $\mathbf{h}(t)$ can be identified as a MIMF (also called multivariate empirical mode)¹⁸, i.e., it must **satisfy two properties: it has** the same number of local extremes and zeros (or both differing at most by one) and a zero-average mean envelope $\mathbf{m}(t)^{17}$. The full sifting process stops when no more MIMFs $\mathbf{C}_{\mu,k}(t)$ can be filtered out from the data. Each $\mathbf{C}_{\mu,k}(t)$ represents a peculiar dynamical component intrinsic to the system that typically evolves on an average scale

$$\tau_k = \frac{1}{T} \int_0^T t' \langle \mathbf{C}_{\mu,k}(t') \rangle dt', \tag{2}$$

where T is the length of data and $\langle \bullet \rangle$ denotes an ensemble average over the N-dimensional space 19 . The MEMD allows us to interpret $\Theta_{\mu}(t)$ as a collection of scale-dependent multivariate fluctuations contributing to the collective properties of the whole system. Indeed, each MIMF can be seen as representative of fluctuations at a typical scale that is the average of the instantaneous scales (i.e., the inverse instantaneous frequencies) derived from a given mode via the Hilbert transform 19 . The MEMD, due to its adaptive methodology, relieves some a priori mathematical constraints of fixed-basis decomposition methods and extracts a limited number of intrinsic components that can be visually inspected. **Other widely used** decomposition methods, like Fourier or **continuous** wavelet analysis, commonly return a large number of components

and/or need to project our data on a pre-defined decomposi²²¹ tion basis. Moreover, at least classical Fourier transform based²²² methods also require that our data satisfy a stationarity condi²²³ tion. In this regard, we do not question the appropriateness²⁴ of the aforementioned more traditional conventional analysis²⁵ techniques, but rather acknowledge that they (as well as any²⁶ other approaches) have intrinsic limitations in what we care²⁷ learn from their application.

B. Instantaneous dimension

Given the N-dimensional system described via the multivariate trajectory $\Theta_{\mu}(t)$, its dynamical properties can be investigated by combining the concept of recurrences in phase ²³² space and extreme value theory ²⁰. For some (arbitrary) state ²³³ of interest ζ in the associated phase-space, we first introduce the logarithmic return associated with each state on the trajec ²³⁵ tory (except for ζ itself) as

$$G(\Theta_{\mu}(t),\zeta) = -\log\left[\mathrm{dist}(\Theta_{\mu}(t),\zeta)\right] \tag{3}_{_{\mathbf{238}}}^{^{\mathbf{237}}}$$

where $\operatorname{dist}(\bullet)$ is a distance between two state vectors in phase-space, commonly the Euclidean one. By shortening the no_{239} tation, we obtain a time series of logarithmic returns $g(t) = G(\Theta_{\mu}(t), \zeta)$ that takes larger values whenever $\Theta_{\mu}(t)$ is close to ζ . If we now define a threshold s(q) as the q-th em^{240} pirical quantile of g(t), we can introduce the exceedances⁴¹ $u(\zeta) \doteq \{t \mid g(t) > s(q)\}$, i.e., the recurrences to the $\operatorname{neighbor}_{242}$ hood of the reference state in the context first introduced by₂₄₃ Poincaré by exploiting a peaks-over-threshold like concept as widely used in extreme value theory. According to the₂₄₄ Freitas-Freitas-Todd theorem the cumulative probability distribution $F(u,\zeta)$ then converges to the exponential member of the Generalised Pareto Distribution (GPD), i.e.,

$$F(u,\zeta) \simeq \exp\left[-\frac{u(\zeta)}{\zeta(\zeta)}\right].$$
 (4)²⁴⁷

The GPD parameter ζ depends on the dynamical state ζ and can be used to introduce the concept of an instantaneous dimension d at the point in time where ζ is attained, which is simply defined as $d(\zeta) = \zeta(\zeta)^{-1}$. Although it could merely be associated to a fitting parameter, it has a clear physical meaning: d is a proxy of the active number of degrees of freedom around each state ζ in the phase-space. Note, however, that from a practical perspective, this instantaneous dimension needs to be considered relative to the set of time series values available, and the interpretation of its values may be affected by nonstationarity or non-representative sampling of the presumed attractor at finer spatial scales.

C. Instantaneous scale-dependent dimension

The instantaneous dimension d introduced above provides a local (in terms of phase-space) picture of the properties of phase-space trajectories, i.e., allows us to obtain informa-262 tion for each sampled point contributing to the global struc-263 ture of the attractor under study. Nevertheless, multi-scale-64

systems could have a scale-dependent phase-space structure¹⁴ such that we can distinguish between features that emerge at different scales. To provide a scale-dependent instantaneous view of a given system we have to combine a decomposition method, **like** the MEMD, and the extreme value theory applied to inter-state distances in phase space.

Given again an N-dimensional system described via $\Theta_{\mu}(t)$ with a multi-scale nature, i.e., being characterized by processes occurring over a wide range of scales, we can write

$$\Theta_{\mu}(t) = \langle \Theta_{\mu}(t) \rangle + \sum_{\tau} \delta \Theta_{\mu}^{(\tau)}(t)$$
 (5)

where $\langle \Theta_{\mu}(t) \rangle$ is a steady-state time-average value and $\delta \Theta_{\mu}^{(\tau)}(t)$ is a component of the system operating at a mean scale τ . It is easy to note the analogy between Eq. (5) and Eq. (1) via the correspondence $\mathbf{C}_{\mu,k}(t) \leftrightarrow \delta \Theta_{\mu}^{(\tau)}(t)$ and $\mathbf{R}_{\mu}(t) \leftrightarrow \langle \Theta_{\mu}(t) \rangle$. This means that for each scale τ we can identify the corresponding invariant set \mathbb{M}_{τ} as the manifold obtained via the **partial sums** of MIMFs with scales $\tau_{\star} < \tau$, i.e.,

$$\Theta_{\mu}^{\tau}(t) = \sum_{k^{\star}=1}^{k} \mathbf{C}_{\mu,k^{\star}}(t). \tag{6}$$

Then, for each scale $\tau \in [\tau_1, \tau_{n_k}]$, i.e., for each $k \in [1, n_k]$, given a trajectory $\Theta^{\tau}_{\mu}(t)$ and a state of interest ζ_{τ} , the cumulative probability of logarithmic returns in the neighborhood of ζ_{τ} follows a GPD as

$$F(u_{\tau}, \zeta_{\tau}) \simeq \exp\left[-\frac{u_{\tau}(\zeta_{\tau})}{\zeta_{\tau}(\zeta_{\tau})}\right].$$
 (7)

Thus, we can introduce a quantity $D(t,\tau) = \zeta_{\tau}(\zeta_{\tau})^{-1}$, representing the number of active degrees of freedom of fluctuations up to a maximum scale of τ around each state ζ_{τ} . In this way, we exploit the properties of MEMD in deriving scale-dependent components embedded into a given system and the instantaneous (in terms of time) properties of the extreme value theory based metric to derive the instantaneous scale-dependent metric $D(t,\tau)$.

Summarizing, our procedure consists of the following steps:

- 1. extract intrinsic components $C_{\mu,k}(t)$ and their mean scales τ_k from $\Theta_{\mu}(t)$ by using the MEMD;
- 2. evaluate partial sums of Eq. (1) at different scales

$$\Theta_{\mu}^{\tau}(t) = \sum_{k^{\star}=1}^{k} \mathbf{C}_{\mu,k^{\star}}(t)$$
 (8)

with $k^* = 1,...,n_k$ (by construction, MIMFs are ordered with increasing scales, i.e., $\tau_{k'} < \tau_{k''}$ if k' < k'');

3. for each scale τ_k (i.e., for each k) evaluate $D(t, \tau_k)$.

Our procedure is, by construction, complete, since when $k \rightarrow n_k$ then $D(t, \tau_k) = d(t)$, with d(t) being the instantaneous fractal dimension of the full system^{2,15,20}.

In the remainder of this work, we will discuss some exam-314 ples to highlight the potential of our framework to disentangle315 distinct dynamical components of different origin in a multi-316 scale complex system.

265

266

267

271

272

273

275

277

278

279

281

282

285

286

289

290

291

292

293

294

295

298

300

301

303

304

305

307

309

310

312

III. THE LORENZ-63 MODEL AND ITS STOCHASTIC VERSIONS

The Lorenz-63 system¹, originally developed as a simpli³²³ fied model for atmospheric convection, is one of the most fa³²⁴ mous and widely studied paradigmatic dissipative-chaotic dy³²⁵ namical systems²¹, which can be written as

$$dx = s(-x+y)dt (9)$$

$$dy = (rx - y - xz) dt (10)$$

$$dz = (xy - bz) dt (11)^{328}$$

with the parameters (s,r,b) related to the Prandtl number, the Rayleigh number, and the geometry of the atmospheric convective layer. With the **canonical** set of parameters $(s,r,b) =_{330} (10,28,8/3)$ the system admits chaotic **behavior** with all ini $_{331}$ tial points (**except for a set of measure zero**) tending towards an invariant set **with fractal structure**, usually termed the 331 Lorenz attractor. It is a strange attractor whose Hausdorfs dimension (and all its generalizations D_q^9) take a value of 335 $2.05 \pm 0.02^{7,9,22}$.

A simple way to investigate the role of hidden fast dy-337 namical components is to couple deterministic equations to &338 "noise" mimicking the action of unknown **fast** variables. This 339 can be also easily done for the Lorenz-63 system by rewrit-340 ing the original system in terms of a set of coupled stochastic 41 differential equations as

$$dx = s(-x+y)dt + \sigma dW_t \tag{12}_{344}$$

$$dy = (rx - y - xz) dt + \sigma dW_t$$
 (13) 345

$$dz = (xy - bz) dt + \sigma dW_t \qquad (14)^{348}$$

In nonlinear deterministic systems, such additive noise can lead to non-trivial effects²³, including transitions between co-³⁵⁰ existing states or attractors, shifting bifurcations, or acting as an external forcing to the intrinsic variability of the sys³⁵¹ tem^{11,24}, also observed for the Lorenz-63 system¹⁶.

More recently, another stochastic version of the Lorenz₃₅₃ 63 system has been proposed by Chekroun, Simonnet, and₈₅₄ Ghil ¹⁶, considering a linearly multiplicative noise term to the₈₅₅ original system as

$$dx = s(-x+y)dt + \sigma x dW_t$$
 (15)₃₅₈

$$dy = (rx - y - xz)dt + \sigma y dW_t \tag{16}$$

$$dz = (xy - bz) dt + \sigma z dW_t \tag{17}$$

This system provided a first example for the existence of ran-362 dom attractors, extending the concept of a strange attractor, still supporting nontrivial sample measures from determinis-364 tic to stochastic dynamics^{1,16} that have been shown to be ran-365 dom Sinaï–Ruelle–Bowen measures²⁵. Note that in the weak-366 noise limit, response theory allows one to compute explicitly368

the change in the expectation value of the measurable observables when perturbing an underlying chaotic dynamics with stochastic terms of rather general nature²⁶.

In the following, we apply our formalism to the three different versions of the Lorenz-63 system **described above**. In the case of the stochastic models featuring multiplicative noise, we use the Itô convention for the stochastic integration, dW_t is a Wiener process obtained by sampling at each time step a random variable with **the same Gaussian** density $(W_t \sim \mathcal{N}(0,t))$ and intensity σ . The numerical simulation of Eqs. (9)-(17) is obtained by using the Euler-Maruyama method with a time resolution $dt = 5 \times 10^{-3}$ over $N = 10^7$ time steps, using the classical set of parameters (s, r, b) = (10, 28, 8/3) and $\sigma = 0.4$ as in Chekroun, Simonnet, and Ghil ¹⁶.

IV. RESULTS

319

320

321

322

327

343

A. Full system attractor

Figures 1-3 report the trajectories (left panels) of the three different Lorenz-63 systems (deterministic, Fig. 1; additive noise, Fig. 2; multiplicative noise, Fig. 3) and their corresponding attractors in the 3-D phase-space (right panels). As expected, a breakdown of the symmetric shape of the Lorenz attractor is observed when the classical Lorenz-63 system is subject to either additive or multiplicative noise. Furthermore, intermittency appears to be reduced, thus moving from a deterministic strange attractor towards a random stochastic attractor¹⁶. Nevertheless, by only looking at the full system attractor we are not able to identify any significant difference in the geometric shape between the additive and the multiplicative model. Furthermore, both random attractors are characterized by the same dimension, equal to the full dimension of the phase-space, due to the corresponding property of the invariant measure of an elliptic diffusion process.

B. Average dimensions of scale-dependent attractors

To further inspect and characterize the role of the noise versus the deterministic dynamics of the Lorenz system, we apply our formalism to derive $D(t,\tau)$ for the three different systems. We first decompose every multivariate trajectory $\Theta_{\mu}(t)$ via the MEMD through which we obtained a set of 15, 20, and 24 MIMFs, respectively, whose ranges of timescales are $\tau \in [1.64, 2.5 \times 10^5]$, $\tau \in [9.7 \times 10^{-2}, 2.5 \times 10^5]$, and $\tau \in [8.9 \times 10^{-2}, 2.5 \times 10^5]$, respectively. Then, using Eqs. (6)-(7) we derive the instantaneous scale-dependent metric $D(\tau,t)$ for the three systems.

As a first step, we inspect the behavior of the average instantaneous scale-dependent dimension $\langle D(\tau,t)\rangle_t$ as a function of the scale τ as reported in Figure 4. This is equivalent to the method proposed by Alberti $et~al.~^{14}$ where local (in terms of time-scale) and time-independent (i.e., averaged) multi-scale measures have been introduced.

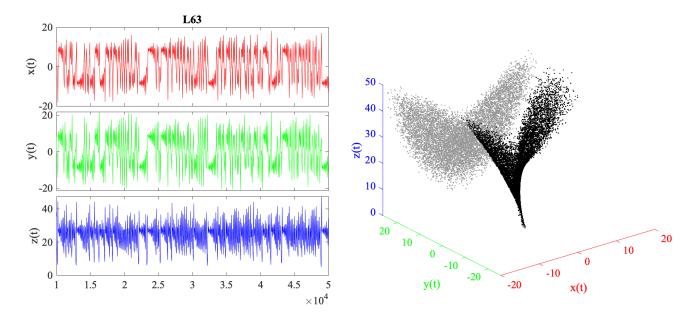


FIG. 1. (Left) Zoom of the trajectory components of the deterministic Lorenz-63 system as in Eqs. (9)-(11) (L63). (Right) Corresponding attractor in the 3-D phase-space (black points) and its projection in the x-z plane (gray points).

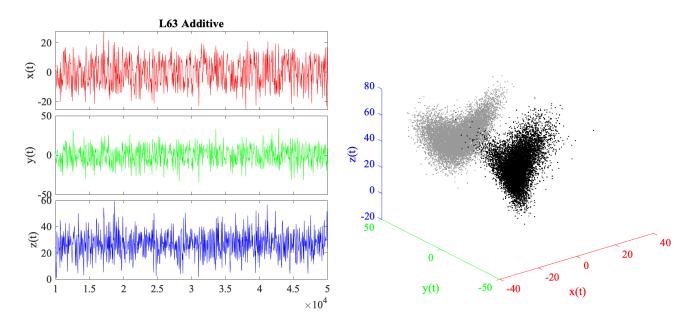


FIG. 2. (Left) Zoom of the trajectory components of the additive noise model as in Eqs. (12)-(14) (L63 Additive). (Right) Corresponding attractor in the 3-D phase-space (black points) and its projection in the x-z plane (gray points). The stochastic noise term has an amplitude $\sigma = 0.4^{16}$.

Our corresponding analysis evidences the absence of $_{78}$ time scales $\tau < 1.64$ for the deterministic Lorenz-63 sys $_{379}$ tem as opposed to its stochastic versions. This is clearly aboreflection of the absence of stochastic terms in the classical beterministic system, which are responsible for the very sat fast fluctuations in the stochastic cases.

371

374

376

377

Furthermore, we generally observe larger average scale-³⁸⁴ dependent dimensions for the multiplicative noise case than³⁸⁵ for the deterministic Lorenz-63 system and the additive noise³⁸⁶

model. This reflects the effect of the stochastic term on the dynamical features of the Lorenz-63 system: it does not only act at short scales, exciting variability at additional scales with respect to the classical Lorenz-63 system, but also affects the attractor geometry and, hence, the time-averaged number of active degrees of freedom as reflected by the scale-dependent fractal dimension metric at larger timescales. The latter property can be linked to the fact that the Lorenz-63 system with non-degenerate noise has an invariant mea-

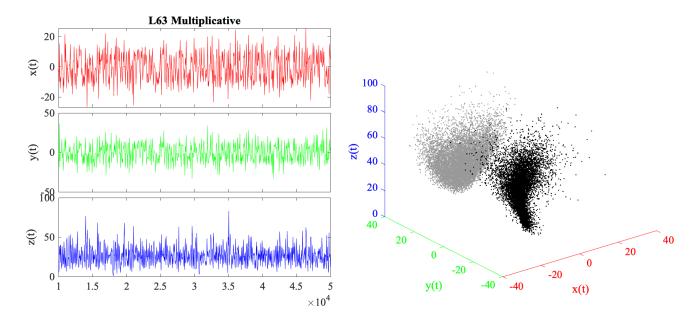


FIG. 3. (Left) Zoom of the trajectory components of the multiplicative noise model as in Eqs. (15)-(17) (L63 Multiplicative). (Right) Corresponding attractor in the 3-D phase-space (black points) and its projection in the x-z plane (gray points). The stochastic noise term has an amplitude $\sigma = 0.4^{16}$.

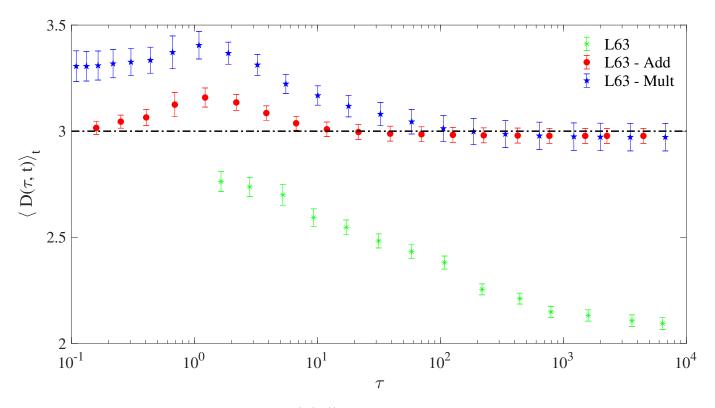


FIG. 4. Average instantaneous scale-dependent dimension $\langle D(\tau,t)\rangle_t$ as a function of the scale τ . Green asterisks refer to the Lorenz '63 system, red circles to the additive **noise** model, and blue stars to the multiplicative **noise** case. Error bars are obtained as the standard deviations of $D(t,\tau)$ along the respective trajectory.

sure that is absolutely continuous with respect to Lebesgue,443 such that when introducing a stochastic term the dimensiona44 must converge to 3, as observed at large timescales for both45 stochastic models.

388

389

391

392

394

397

398

399

400

402

403

405

406

408

409

410

411

412

414

415

417

418

419

420

421

423

428

427

428

429

430

431

432

433

435

436

438

441

442

The most interesting feature emerging for the average diadate mensions is that the largest value $D(t,\tau)$ for both the additived and the multiplicative case is obtained for τ of the order of thedal fundamental period (i.e., the Lyapunov time scale $\tau_L \approx 1.12$ time units) of the dominating unstable periodic orbit of the deast terministic system 27,28; see ref. 29 for a discussion of how unastable periodic orbits are responsible for resonant behaviours in forced systems, and ref. 30 for evidence of the resonant reasts sponse of the Lorenz-63 system.

Another interesting feature is the quantitative differ-456 ence of $\langle D(\tau,t)\rangle$ in the range of scales dominated by the 57 stochastic contribution (below τ_L). While for the additive 458 model the average dimensions converge, as expected, to 3,459 the dimensions are larger than 3 for the multiplicative case-60 at the same timescales, thus suggesting that the dynamics¹⁶¹ at these scales behave as a forcing-like contribution. Conversely, by looking at the full system attractor, i.e., when considering the whole timescales, we are not able to iden 462 tify any difference in the dimensions between the additive and the multiplicative model. Indeed, as expected, the average dimensions tend to saturate to those expected for the full dynamics when $\tau \to \tau_{N_k}$, being $\langle D(\tau,t) \rangle = 2.05 \pm 0.02$ for the deterministic Lorenz-63 system and $\langle D(\tau,t)\rangle=2.98\pm0.04$ for its stochastic versions, because the invariant measure of a elliptic diffusion process has full dimension. The results obtained for the deterministic Lorenz-63 system are in agreement with previous findings by Alberti et al. 14, while our 469 corresponding findings on the stochastic models have been reported here for the first time. 472

C. Instantaneous scale-dependent dimensions

As a second step of our analysis, which is also the main,77 novelty introduced in this work, we investigate the behav π_{78} ior of the instantaneous scale-dependent dimension $D(t,\tau)_{479}$ for the three different systems as reported in Fig. 5.

474

475

476

The deterministic Lorenz-63 system is characterized by instantaneous dimension values close to $D_F \simeq 2.05$ at timescales larger than 10^2 , as expected due to the monofractal nature of the system with all generalized frac made tall dimensions D_q taking the same value for the full system. Conversely, larger values are found for the range tem. $\tau \in [10^0, 10^2]$, the reason for which will be discussed below 487

When a stochastic term is considered, we observe values of a_{88} $D(t,\tau)\gtrsim 3$ at short timescales, extending towards larger scales when localized (in time) intermittent bursts in the trajec tory take place. Typically, dimensions larger than 3 imply 10 the presence of external forcing components, increasing the 10 number of active degrees of freedom. By further inspecting 10 the behavior of the trajectory in the phase-space at large 12 scales (see Fig. 6) this excess over the topological dimension 10 of the phase-space appears to be related to situations assorated 12 cited with approaches of the unstable fixed points in the 13 or 14 or 15 or 15

centers of each of the two lobes and subsequent fast escapes from the neighborhoods of those points along their unstable manifolds. This indicates that the increase in the number of active degrees of freedom at short timescales, not observed for the deterministic model, is related to the stochastic component. Indeed, the imposed noise term acts as an additional forcing to the autonomous dynamics. This means that the noise introduces additional degrees of freedom in the dynamics because it adds energy to the system: the attractor can deform through scales by increasing/decreasing its dimensions depending on the instantaneous concurrent ef**fect** between the noise forcing term and the intrinsic dynamics of the Lorenz-63 system. The main differences between the two stochastic versions emerge at short timescales ($\tau < 10^{0}$), where larger dimensions are found for the multiplicative noise case as compared to the additive one. This could be explained by invoking the fact that in the multiplicative case, the **ampli**tude of the stochastic term depends on the state variables of the system.

D. A scale-dependent instantaneous view of the attractor

As a final step and to better highlight the scale-dependent instantaneous properties of the attractor, Fig. 6 reports three views of the attractor at different timescales color-coded with respect the instantaneous dimensions. The shapes of the different scale-dependent attractors are obtained by summing up empirical modes in a certain range of scales as in Eq. (8). Due to the associated properties of MIMFs they have a zero-average envelope, thus they fluctuate around zero such that the attractors occupy only a small region (especially, at short scales) of the phase-space of scale-dependent fluctuations.

At large timescales (right panels in Fig. 6), roughly corresponding to 100 times the Lyapunov time of the deterministic Lorenz-63 system at the considered parameter values, the geometric shapes and the spatial distribution of dimensions across both stochastic attractors are qualitatively similar and clearly distinct from the chaotic attractor of the deterministic model. This means that we can visually distinguish between the chaotic and the two stochastic attractors, while a clear distinction cannot be made qualitatively and quantitatively between the two random invariant sets.

By further inspecting the spatial distributions of instantaneous dimensions of all three attractors, we clearly observe that larger dimensions are found at the edges of the attractors and close to the origin as compared to lower dimensions observed within the two lobes. While this feature has been also previously highlighted for the deterministic chaotic attractor (see, e.g., Faranda, Messori, and Yiou 31), it is the first time that the spatial distribution of dimensions is inspected for both random attractors. In particular, our analysis reveals that forcing-like mechanisms leading to $D(\tau,t)>3$ are operating at the edges of the attractor and close to the unstable fixed point at the origin, reflecting the repelling nature of the fixed points of the Lorenz-63 system. However, the observation of $D(\tau,t)>3$ suggests

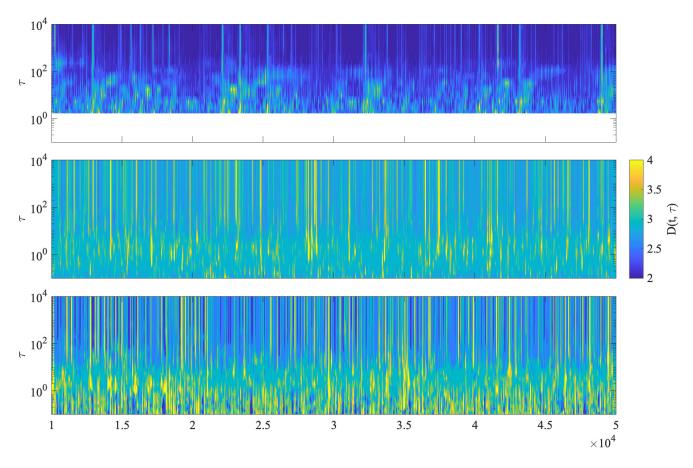


FIG. 5. Behavior of the instantaneous scale-dependent dimension $D(t,\tau)$ for the deterministic Lorenz-63 system (top), its version with additive noise (middle), and the multiplicative noise case (bottom). The colormap for $D(t,\tau)$ has been saturated between 2 and 4 for a better visualization. In all three cases, an excerpt comprising 40,000 time units is shown.

that the number of active degrees of freedom near the orisizing in is increased with respect to the deterministic model placed likely related to the action of the noise term.

498

499

500

501

502

505

507

508

510

513

514

516

519

520

To further investigate the last point on the role of the24 stochastic fluctuations in increasing the number of de-525 grees of freedom near the origin, we investigate the spatia \$26 distribution of dimensions across the trajectory at short 27 timescales, below the Lyapunov time (left panels in Fig. 6),528 Clearly, we do not have any dynamical component below529 the Lyapunov time for the deterministic Lorenz-63 system,530 indicating that in both noisy systems, variability at those31 fast timescales is intimately related to the stochastic forcings 532 However, a completely different spatial distributions of di-533 mensions across the trajectory is observed between the ad-534 ditive and the multiplicative case. While the former has &35 more homogeneous spatial distribution of dimensions wither the most probable value close to 3 and small fluctuations₃₇ around it, the latter is characterized by a saddle point-like38 dynamics $D(\tau,t) > 3$ in a ring-like configuration lying in 39 the x-y plane and $D(\tau,t) < 3$ elongated in the z direction₅₄₀ This is due to the different structure of the noise terms_{\$\varphi^{41}\$} being a "pure" noise term in the additive case, reflecting.42 into $D(\tau,t)=3+\varepsilon$, with $\varepsilon\ll 1$, while acting as a "forcing" 543

for the multiplicative one, providing $D(\tau,t)$ values larger than the system's dimension 15,20.

When approaching the Lyapunov scale τ_L (middle panels in Fig. 6), a different spatial distribution of the dimensions is again observed, together with a different coverage of the available phase-space when comparing the chaotic attractor with the two stochastic ones. The latter are characterized by regions with low dimension surrounded by higher-dimensional ones, markedly differing from the deterministic Lorenz-63 system. We hypothesize that the regions with low instantaneous dimensions could indicate the location of weakly repulsive low-period unstable periodic orbits 32,33 .

Overall, our results indicate, for both the deterministic and the two stochastic models, a clear different spatial distribution of the dimensions across the phase-space at large timescales. In particular, the two stochastic attractors are characterized by a region with dimensions larger than the topological dimension of the system close to the origin O=(0,0,0), suggesting the existence of forcing-like mechanisms altering the structure of this fixed point of the deterministic model. Since the stochastic term mainly operates at short timescales (below the Lyapunov scale τ_L)

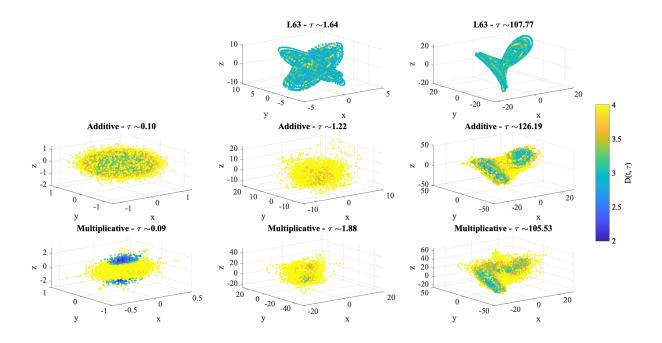


FIG. 6. Three views of the Lorenz attractor at different timescales color-coded with respect the instantaneous dimensions: (top) deterministic system, (middle) additive noise and (bottom) multiplicative noise.

596

597

598

the source of this difference must be searched in this range₇₂ of scales whose corresponding attractors for the additive₇₃ and the multiplicative models are structurally different_{£74} both in terms of the geometric shape and in the spatial₇₅ distribution of the dimension values. In this regard, the₇₆ stochastic term is able to change the stability of the ori-₅₇₇ gin, revealing a new structure of attractors whose prop-₅₇₈ erties (i.e., fractal dimensions) evolve in time and across₅₇₉ scales. This difference disappears when reaching larger₅₈₀ and larger timescales due to the existence of an invariant₈₁₁ measure for the Lorenz-63 system that is absolutely con-₅₈₂ tinuous with respect to Lebesgue, such that when intro-₅₈₃ ducing a stochastic term the dimension must converge to₅₈₄ 3, as observed at large timescales.

Finally, it is important to underline that in the deter₅₈₆ ministic Lorenz-63 system with standard parameters (i.e.,₅₈₇ (s,r,b)=(10,28,8/3)), the origin O is an unstable sad₅₈₈ dle point whose structure is preserved when considering₅₈₉ a multiplicative stochastic term. Conversely, this nature₅₉₀ seems to be modified when considering an additive noise₅₉₁ altering the structural stability of the unstable point to₅₉₂ wards a different nature. However, a linear stability anal₅₉₃ ysis of the stochastic models is beyond the scope of the present work and is left for a future devoted study.

V. CONCLUSIONS

545

547

550

551

553

556

557

558

559

561

562

564

567

570

571

We have presented a formalism to study the behavior of chaotic or stochastic attractors as a function of the timescale \$\textit{\rho}\$01 indicating that when considering different timescales the con-602

cept of a single universal attractor should be revised. Specifically, using the famous Lorenz-63 system in its standard deterministic as well as two stochastically forced versions, we have demonstrated that the attractor of this system is scale dependent.

To reach this conclusion, we have extended an approach recently introduced by Alberti et al. 14 to investigate the instantaneous scale-dependent properties of attractors by combining concepts from time series decomposition methods and extreme value theory applied to recurrences in phase space. More specifically, we have used the Multivariate Empirical Mode Decomposition (MEMD) to derive intrinsic components of a given system at different timescales. Based on this decomposition, we have estimated the instantaneous scaledependent dimensions of the system's attractor at different scales. We have shown that a new structure of attractors, whose properties evolve in time, space and scale, is discovered by looking for fixed points and following their evolution from small to large scale and vice versa. Thus, the geometric structure of the attractor is gradually deformed and depends on the scale at which we are investigating the respective sys-

The main novelty introduced in this study is a powerful method to identify the existence of processes of different origin by looking at the spatial distribution of fractal dimensions across the full phase-space trajectories at different timescales. Concerning the systems considered in this work our formalism allowed us to clearly distinguish between a purely noise-like contribution at short timescales for the additive noise model, being characterized by an ergodic coverage of the available phase-space with dimen-

sions fluctuating around 3 (as expected), as compared to a₅₇ more forcing-like contribution for the multiplicative noise model at the same timescales, where the dimensions are larger than 3 and differently distributed across the attractor. Conversely, by looking at the full system attractor, i.e., when considering the whole range of contributing $_{\mathbf{b}_{61}}$ timescales, we are not able to identify any clear difference $_{\text{b62}}$ both in the attractor shape and in the spatial pattern of the instantaneous (i.e., local in time and phase-space) dimensions, between the additive and the multiplicative model since the invariant measure of an elliptic diffusion process has full dimension. Thus, our method allows us to evidence where the difference between the two stochastic₆₆₇ models resides only by looking at the spatial distribution 608 (see Fig. 6) of instantaneous fractal dimensions at different 669 timescales. 671

605

607

608

610

613

614

616

617

620

621

623

624

626

627

629

630

631

633

634

636

639

640

642

646

649

650

652

655

656

Our formalism can be easily modified by using any alterna-674 tive time series decomposition technique (like wavelet decom-675 position, singular spectrum analysis, or others). Our choice of 676 the MEMD has been motivated by its empirical and adaptive 777 nature, reducing *a priori* constraints and possible artifacts of 678 fixed-frequency/fixed-basis decomposition methods. Further-680 more, the instantaneous nature (i.e., time-dependency) of the 681 intrinsic components derived via the MEMD allows us to per-682 form a more detailed investigation of the dynamical evolution 1983 (in time) of a system variable, better suited for evaluating in-684 stantaneous dynamical system metrics (as the dimension) than 685 fixed-basis methods as Fourier transforms.

We are confident that the proposed formalism provides about novel way to investigate the underlying geometric (fractal) point properties of physical systems at different scales during their time evolution. The concept of a scale-dependent attractor could tackle the problem of defining a more useful concept for the analysis of multiscale systems like in the case of the client mate or for turbulence, which has largely remained unsolved despite numerous efforts reported in the last four decades. In a companion paper 4, where our formalism has been point applied to laboratory experiments on fluids, we observe the emergence of an intrinsic timescale, solely determined by nonlinear interactions, controlling the geometric and topological properties of phase-space trajectories.

In this first study, we focused only on the geometric⁷⁰⁷ properties of attractors, in order to show that the universal⁷⁰⁸ concept of attractor can be insufficient for fully describ⁷¹⁰ ing multiscale systems, in presence or in absence of noise⁷¹¹ The counterpart of our geometric view of each point in⁷¹² phase-space is the instantaneous, i.e., time behavior, of the⁷¹³ scale-dependent dimension. Indeed, this interesting aspect⁷¹⁴ can be used for further studying some crucial aspects of⁷¹⁶ physical systems, e.g., bifurcations, tipping points, small⁷¹⁷ vs. large-scale forcing and/or driving mechanisms¹⁹. The⁷¹⁸ corresponding prospects call for further studies to investigate⁷¹⁹ these aspects in more detail, which is beyond the scope of the⁷²¹ present paper and will be the subject of future work.

ACKNOWLEDGMENTS

672

We wish to acknowledge the support by ANR TILT grant agreement no. ANR-20-CE30-0035. VL acknowledges the support received from the Horizon 2020 project TiPES (grant no. 820970) and from the EPSRC project EP/T018178/1. RVD has received funding by the German Federal Ministry for Education and Research via the JPI Climate/JPI Oceans project ROADMAP (grant no. 01LP2002B). The authors thank two anonymous reviewers for fruitful suggestions.

- ¹E. N. Lorenz, "Deterministic Nonperiodic Flow." Journal of Atmospheric Sciences **20**, 130–148 (1963).
- ²D. Faranda, G. Messori, and S. Vannitsem, "Attractor dimension of time-averaged climate observables: insights from a low-order ocean-atmosphere model," Tellus A: Dynamic Meteorology and Oceanography **71**, 1554413 (2019), https://doi.org/10.1080/16000870.2018.1554413.
- ³C. Nicolis and G. Nicolis, "Is there a climatic attractor?" Nature **311**, 529–532 (1984).
- ⁴M. Ghil and V. Lucarini, "The physics of climate variability and climate change," Reviews of Modern Physics **92**, 035002 (2020), arXiv:1910.00583 [physics.ao-ph].
- ⁵S. Nikolov, O. Wolkenhauer, and J. Vera, "Tumors as chaotic attractors," Mol. BioSyst. 10, 172–179 (2014).
- ⁶W. M. Schaffer and M. Kot, "Do strange attractors govern ecological systems?" BioScience **35**, 342–350 (1985).
- ⁷P. Grassberger and I. Procaccia, "Characterization of strange attractors," Phys. Rev. Lett. **50**, 346–349 (1983).
- ⁸A. N. Kolmogorov, "Entropy per unit time as a metric invariant of automorphism," Doklady of Russian Academy of Sciences 124, 754–755 (1959).
- ⁹H. G. E. Hentschel and I. Procaccia, "The infinite number of generalized dimensions of fractals and strange attractors," Physica D Nonlinear Phenomena 8, 435–444 (1983).
- ¹⁰J. L. Kaplan and J. A. Yorke, "Chaotic behavior of multidimensional difference equations," in *Functional Differential Equations and Approximation of Fixed Points*, edited by H.-O. Peitgen and H.-O. Walther (Springer Berlin Heidelberg, Berlin, Heidelberg, 1979) pp. 204–227.
- ¹¹R. Benzi, G. Paladin, A. Vulpiani, and G. Parisi, "On the multifractal nature of fully developed turbulence and chaotic systems," Journal of Physics A Mathematical General 17, 3521–3531 (1984).
- ¹²W. M. Macek, R. Bruno, and G. Consolini, "Generalized dimensions for fluctuations in the solar wind," Physical Review E 72, 017202 (2005).
- ¹³M. Cencini and F. Ginelli, "Lyapunov analysis: from dynamical systems theory to applications," Journal of Physics A Mathematical General 46, 250301 (2013).
- ¹⁴T. Alberti, G. Consolini, P. D. Ditlevsen, R. V. Donner, and V. Quattrociocchi, "Multiscale measures of phase-space trajectories," Chaos 30, 123116 (2020).
- ¹⁵D. Faranda, V. Lucarini, G. Turchetti, and S. Vaienti, "Generalized Extreme Value Distribution Parameters as Dynamical Indicators of Stability," International Journal of Bifurcation and Chaos 22, 1250276 (2012), arXiv:1107.5972 [math.DS].
- ¹⁶M. D. Chekroun, E. Simonnet, and M. Ghil, "Stochastic climate dynamics: Random attractors and time-dependent invariant measures," Physica D Nonlinear Phenomena 240, 1685–1700 (2011).
- ¹⁷N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society of London Series A 454, 903–998 (1998).
- ¹⁸N. Rehman and D. P. Mandic, "Multivariate empirical mode decomposition," Proceedings of the Royal Society of London Series A 466, 1291–1302 (2010).
- ¹⁹T. Alberti, R. V. Donner, and S. Vannitsem, "Multiscale fractal dimension analysis of a reduced order model of coupled ocean-atmosphere dynamics," Earth System Dynamics 12, 837–855 (2021).
- ²⁰V. Lucarini, D. Faranda, G. Turchetti, and S. Vaienti, "Extreme value theory for singular measures," Chaos 22, 023135 (2012).
- ²¹E. Ott, Chaos in Dynamical Systems 2nd Edition (2002).

- ²²P. Grassberger and I. Procaccia, "Measuring the strangeness of strange at-741 tractors," Physica D Nonlinear Phenomena 9, 189–208 (1983).
- ²³L. Schimansky-Geier, A. V. Tolstopjatenko, and W. Ebelin, "Noise induced 43 725 transitions due to external additive noise," Physics Letters A 108, 329-33244 726 727

723

724

739

- ²⁴L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, "Stochastic reso-746 728 nance," Reviews of Modern Physics 70, 223-287 (1998). 747 729
- $^{25}\mbox{J}.$ P. Eckmann and D. Ruelle, "Ergodic theory of chaos and strange attrac748 tors," Rev. Mod. Phys. 57, 617-656 (1985). 731
- ²⁶V. Lucarini, "Stochastic perturbations to dynamical systems: A responsетьо 732 theory approach," Journal of Statistical Physics 146, 774–786 (2012). 733 ²⁷B. Eckhardt and G. Ott, "Periodic orbit analysis of the lorenz attractor," 52 734
- Zeitschrift für Physik B Condensed Matter 93, 259–266 (1994). 735 ²⁸C. C. Maiocchi, V. Lucarini, and A. Gritsun, "Decomposing the dynamics 54 736 of the lorenz 1963 model using unstable periodic orbits: Averages, tran-755 737 sitions, and quasi-invariant sets," Chaos: An Interdisciplinary Journal of 56 738
- Nonlinear Science 32, 033129 (2022), https://doi.org/10.1063/5.0067673. ²⁹A. Gritsun and V. Lucarini, "Fluctuations, response, and resonances in a 740

- simple atmospheric model," Physica D: Nonlinear Phenomena 349, 62-76 (2017).
- ³⁰V. Lucarini, "Evidence of dispersion relations for the nonlinear response of the lorenz 63 system," Journal of Statistical Physics 134, 381-400 (2009).
- ³¹D. Faranda, G. Messori, and P. Yiou, "Dynamical proxies of North Atlantic predictability and extremes," Scientific Reports 7, 41278 (2017).
- ³²R. V. Donner, Y. Zou, J. F. Donges, N. Marwan, and J. Kurths, "Recurrence networks—a novel paradigm for nonlinear time series analysis," New Journal of Physics 12, 033025 (2010).
- ³³R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, R. Xiang, and J. Kurths, "Recurrence-based time series analysis by means of complex network methods," International Journal of Bifurcation and Chaos 21, 1019-1046 (2011).
- ³⁴T. Alberti, F. Daviaud, R. V. Donner, B. Dubrulle, D. Faranda, and V. Lucarini, "Chameleon attractors in turbulent flows," Chaos, Solitons & Fractals (2022), 10.2139/ssrn.4191328.