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HARNESSING STRUCTURE1
IN COMPOSITE NONSMOOTH MINIMIZATION∗2

GILLES BAREILLES† , FRANCK IUTZELER† , AND JÉRÔME MALICK‡3

Abstract. We consider the problem of minimizing the composition of a nonsmooth function4
with a smooth mapping in the case where the proximity operator of the nonsmooth function can5
be explicitly computed. We first show that this proximity operator can provide the exact smooth6
substructure of minimizers, not only of the nonsmooth function, but also of the full composite7
function. We then exploit this proximal identification by proposing an algorithm which combines8
proximal steps with sequential quadratic programming steps. We show that our method identifies9
the optimal smooth substructure and converges locally quadratically. We illustrate its behavior on10
two problems: the minimization of a maximum of quadratic functions and the minimization of the11
maximal eigenvalue of a parametrized matrix.12

Key words. Nonsmooth optimization, proximal operator, partial smoothness, manifold identi-13
fication, maximum eigenvalue minimization, sequential quadratic programming.14

AMS subject classifications. 65K10, 90C26, 49Q12, 90C55.15

1. Introduction.16

1.1. Context: structured nonsmooth optimization. In this paper, we con-17
sider nonsmooth optimization problems of the form18

min
x∈Rn

F (x) , g(c(x)),(1.1)19
20

where the inner mapping c : Rn → Rm is smooth and the outer function g : Rm →21
R ∪ {+∞} is nonsmooth and may be nonconvex, but admits an explicit proximity22
operator. Such composite nonsmooth optimization problems appear in a variety of23
applications in signal processing, machine learning, and control, such as robust nonlin-24
ear regression, phase synchronization, nonsmooth penalty functions; see e.g. [20, 27]25
and the references therein.26

Throughout the paper, we illustrate our developments on two classes of functions:27
the pointwise maximum of m smooth real-valued functions ci28

F (x) = max
i=1,...,m

(ci(x))(1.2)29
30

and the maximum eigenvalue of a parametrized symmetric real matrix c31

F (x) = λmax (c(x)).(1.3)3233

In these two examples and many others, subgradients of F can be computed and thus34
the composite function can be minimized using standard nonsmooth optimization35
algorithms (e.g. subgradient methods, gradient sampling [7], nonsmooth BFGS [19],36
or bundle methods [13]). Nevertheless, these methods do not exploit the fact that37
F is a composition of a smooth mapping c, which can hinder their performance.38
In contrast, the so-called prox-linear methods leverage this composite expression by39
introducing an extension of the proximity operator where the nonlinear mapping c40
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2 G. BAREILLES, F. IUTZELER, AND J. MALICK

is iteratively replaced by a first-order Taylor approximation [20]. These methods41
benefit from theoretical convergence guarantees, and nicely generalize to Taylor-like42
approximations [9, 3]. However these methods are not always directly implementable43
because the prox-linear step may be hard to compute, as in (1.3).44

In this paper, we propose an optimization algorithm for solving (1.1) exploiting45
that the nonsmooth objective function F = g◦c writes as a composition with a simple46
nonsmooth function g, which displays some smooth substructure, as discussed below.47

1.2. Smooth substructure, identification, and existing algorithms. For48
many composite functions, including (1.2) and (1.3), the nondifferentiability points49
locally organize into smooth manifolds over which F evolves smoothly. We illustrate50
in Figure 1 such a smooth substructure for a maximum of two functions.51
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Fig. 1: Smooth substructure on a simple example (n = m = 2). The figures show
the level curves of g(y) = max(y1, y2) (on the right, in the intermediate space) and of
F = g ◦ c, with two quadratic functions c1(x), c2(x) (on the left, in the input space).
The manifolds of non-differentiability are in green; the image of c is the red area.

The smooth substructure of F can help in solving (1.1). Indeed, if the optimal52
solution x? belongs to a manifold M? that is known beforehand, then minimizing53
the nonsmooth function F over Rn boils down to minimizing the smooth restriction54
F |M? over this smooth optimal manifold M?. This would enable to solve (1.1) by55
smooth constrained optimization algorithms, such as Sequential Quadratic Program-56
ming (SQP) methods (see e.g. [23, 5]). The main difficulty in practice is that we do57
not knowM? in advance.58

Thus, the algorithms exploiting this smooth substructure require two ingredients:59
i) a mechanism to identify the optimal manifold;60
ii) an efficient method to minimize F restricted to this manifold.61

For general convex functions, the algorithm of [21] mixes a proximal bundle it-62
eration (as a heuristic for identification) and a so-called U-Newton iteration (which63
interprets as an SQP step; see [22, Sec. 5]). The obtained superlinear rate hinges on64
the identification of the optimal manifold.65

For max-of-smooth functions (1.2), the paper [29] pioneered the idea of seeking66
the optimal manifold and using it to make second-order steps. Their identification67
heuristic uses the indices of the maximal function along a descent direction. Recently,68
[17, 10] investigate a related setting and propose bundle-like algorithms incorporat-69
ing high-order information that converge (super)linearly on max-of-smooth functions70
when the optimal manifold is known.71
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COMPOSITE NONSMOOTH OPTIMIZATION 3

For the maximum eigenvalue of a parametrized matrix (1.3), a specific version of72
the U-Newton method discussed above is studied by [24]. Again, the identification73
mechanism is a heuristic determining the multiplicity of the maximal eigenvalue and74
the optimization step is an SQP iteration.75

None of these methods guarantee identification of the optimal manifold: they76
either assume that the optimal manifold is known in advance, or rely on heuristics for77
identification. Here, we aim at further harnessing the smooth substructure of F = g◦c78
to have guaranteed local identification of the optimal manifold and then guaranteed79
quadratic convergence when using SQP iterations.80

1.3. Contributions and outline. We propose a second-order algorithm for81
solving the nonsmooth composite problem (1.1) that identifies the optimal manifold82
of non-differentiability. The two main ingredients of our algorithm are the following:83

i) we use the explicit proximal operator of g with chosen stepsizes to provide a84
guaranteed identification procedure;85

ii) for a candidate manifoldM, we make an SQP iteration minimizing a smooth86
extension of F |M subject to the constraint of belonging toM.87

The fact proximal-based operators have identification properties around mini-88
mizers is well-known: the proximal operator [11], the proximal gradient operator [1],89
approximate variable-metric proximal gradient operators [14], and prox-linear oper-90
ators [20] locally identify the optimal manifold under some natural geometrical as-91
sumptions. Here, we only have access to the proximity operator of g, and in order to92
exploit the structure it provides, we face the double challenge of, first, identifying the93
smooth structure around a point which is not a minimizer for g, and, second, deducing94
the corresponding structure of F = g ◦ c. Thus, our main technical contribution is to95
establish that proxγg maps a point y close to c(x?) to c(M?). The step γ should be96
carefully chosen, in particular larger than the distance of y to c(x?). Mathematically,97
we study the range of steps for which the curve γ 7→ proxγg(y) belongs to c(M?).98
This analysis shows connections with recent works in nonsmooth analysis, such as the99
modulus of identifiability appearing in [16].100

We combine this new identification result with standard SQP-steps to propose an101
algorithm for minimizing the composite function F . We pay a special attention to102
prevent the quadratic convergence of SQP from jeopardizing identification: we prove103
that, for a well-chosen stepsize policy, the method identifies the optimal structure104
and locally converges quadratically. We illustrate numerically these properties on105
problems of the form (1.2) and (1.3).106

The outline of the remainder of the paper is as follows. First, in Section 2,107
we introduce the technical tools to describe the manifold identification brought by108
proximity operators (including prox-regularity and partial smoothness). Furthermore,109
we lay out two technical properties needed for proximal identification in the composite110
setting. In Section 3, we show our main result consisting in a description of a stepsize111
range for which the proximity operator of g identifies the optimal manifold locally112
around a minimizer. In Section 4 we detail the proposed method combining SQP-113
steps and proximal identification steps. Finally, we present in Section 5 numerical114
illustrations of our method and of the identification result.115

2. Setting and assumptions. Let us start by representing schematically the116
type of functions we consider:117

Rn c−−−−−−−−−−→
smooth mapping

Im(c) ⊂ Rm g−−−−−−−−−−−−→
nonsmooth function

R ∪ {+∞}.118
119
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4 G. BAREILLES, F. IUTZELER, AND J. MALICK

Throughout the paper, we denote by x points in the input space Rn and by y points120
in the intermediate space Rm.121

In all the results presented in this paper, we make the following assumption that122
describes the minimal global properties on g and c to conduct our reasoning.123

Assumption 2.1. The mapping c : Rn → Rm is C2, the function g : Rm →124
R ∪ {+∞} is proper and lower semi-continuous.125

We work with the set of (general) subgradients (see [26, Def. 8.3]), defined at a126
point ȳ where g(ȳ) is finite as:127

∂g(ȳ) ,
{

lim
r
vr : vr ∈ ∂̂g(yr), yr → ȳ, g(yr)→ g(ȳ)

}
,128

129

where ∂̂g(ȳ) denotes the set of regular (or Fréchet) subgradients, defined as130

∂̂g(ȳ) , {v : g(y) ≥ g(ȳ) + 〈v, y − ȳ〉+ o(‖y − ȳ‖) for all y ∈ Rm} .131132

These two subdifferentials match if (and only if) g is (Clarke) regular at ȳ. Closed133
convex functions are regular everywhere and these subdifferentials match the usual134
convex subdifferential (see [26, Chap. 8.11-12] for details).135

In the remainder of this section, we provide quick recalls and definitions about136
the two important objects of our analysis: the proximity operator in Subsection 2.1137
and the structure manifolds in Subsection 2.2. We illustrate them on our running138
examples (1.2) and (1.3).139

2.1. Proximity operator. The proximity operator of a function g with step140
γ > 0 at y ∈ Rm is defined as the set-valued mapping141

proxγg(y) , argminu∈Rm

{
g(u) +

1

2γ
‖u− y‖2

}
.142

143

This operator is well-defined when g is prox-regular and prox-bounded; see e.g. [26,144
13.37]. We quickly introduce these two notions and recall a result on the uniqueness145
and characterization of the prox operator, which is important in our developments.146

A function g is prox-regular at a point ȳ for a subgradient v̄ ∈ ∂g(ȳ) if g is finite,147
locally lower semi-continuous at ȳ, and there exists r > 0 and ε > 0 such that148

g(y′) ≥ g(y) + 〈v, y′ − y〉 − r

2
‖y′ − y‖2149

150

whenever v ∈ ∂g(y), ‖y − ȳ‖ < ε, ‖y′ − ȳ‖ < ε, ‖v − v̄‖ < ε, and g(y) < g(ȳ) + ε.151
When this holds for all v̄ ∈ ∂g(ȳ), we say that g is prox-regular at ȳ [26, Def. 13.27].152

A function g is prox-bounded if there exists R ≥ 0 such that the function g+R
2 ‖·‖2153

is bounded below. The corresponding threshold (of prox-boundedness) is the smallest154
rpb ≥ 0 such that g+R

2 ‖·‖2 is bounded below for all R > rpb. In this case, g+R
2 ‖·−ȳ‖2155

is bounded below for any ȳ and R > rpb [26, Def. 1.23, Th. 1.25].156
We can now recall a relevant result on the characterization of proximal points.157

Proposition 2.2 ([12, Th. 1]). Suppose that the function g is prox-regular at ȳ158
for v̄ ∈ ∂g(ȳ) with parameter rpr, and prox-bounded with threshold rpb. Then, for any159
γ < min(r−1

pr , r
−1
pb ) and all y near ȳ + γv̄, the proximal operator is:160

• single-valued and locally Lipschitz continuous;161
• uniquely determined by the relation162

p = proxγg(y)⇔ y − p ∈ γ∂g(p).163164
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COMPOSITE NONSMOOTH OPTIMIZATION 5

In addition to its existence and characterization provided by the result above, the165
proximity operator has a closed-form expression in our running examples.166

Example 2.3 (Maximum). The subdifferential of g(y) = max(y1, . . . , ym) is167

∂max(y) = Conv {ei : yi = max(y)} ,168169

where ei is the i-th element of the Cartesian basis of Rm. This function is convex, thus170
globally prox-regular and prox-bounded everywhere (with parameters 0). Its proximity171
operator is given (coordinate-wise) by172

[
proxγmax(y)

]
i

=

{
s if yi > s

yi else
173
174

where s is the unique real number such that
∑
{i:yi>s}(yi − s) = γ.175

Example 2.4 (Maximum eigenvalue). Denote the eigenvalue decomposition of a176
point y ∈ Sm as y = EDiag(λ)E>, where λ ∈ Rm is a vector with decreasing entries177
and E ∈ Rm×m an orthogonal matrix. The subdifferential of the maximum eigenvalue178
at y writes [18, Ex. 3.6]179

∂λmax (y) = {E1:rZE
>
1:r, Z ∈ Sr, Z � 0, traceZ = 1}180181

where r is the multiplicity of the maximum eigenvalue of y. This function is convex,182
thus prox-regular and prox-bounded (with parameters 0). Its proximity operator can183
be expressed using the one of the max function as184

proxγλmax
(y) = EDiag(proxγmax (λ))E>.185186

2.2. Structure manifolds. We now specify the notion of structure manifold in187
relation with a nonsmooth function g.188

A subset M of Rn is said to be a p-dimensional C2-submanifold of Rn around189
x̄ ∈ M if there exists a C2 manifold-defining map h : Rn → Rn−p with a surjective190
derivative at x̄ ∈ M that satisfies for all x close enough to x̄: x ∈ M ⇔ h(x) = 0.191
We define the tangent and normal spaces at a point x ∈M as follows:192

TxM = ker Dh(x) NxM = Im Dh(x)∗193194

The important notion of structure manifolds of g can be defined as a manifold195
Mg where g is nondifferentiable. More precisely, at a point ȳ ∈ Mg, we require g196
to be prox-regular and partly smooth. This property of (C2-)partial smoothness is197
verified at a point ȳ for a function g relatively to a set Mg containing ȳ if Mg is a198
C2 manifold around ȳ and if199

• (smoothness) the restriction of g toMg is a C2 function near ȳ;200
• (regularity) g is (Clarke) regular at all points y ∈Mg near ȳ, with ∂g(y) 6= ∅;201
• (sharpness) the affine span of ∂g(ȳ) is a translate of NȳMg;202
• (sub-continuity) the mapping ∂g restricted toMg is continuous at ȳ.203

The concept of partial smoothness, introduced in [18], captures (locally) well-204
behaved nonsmoothness by requiring g to be smooth along a manifold and non-smooth205
across it. In addition, the prox-regularity of g ensures unicity of the structure manifold206
near ȳ [11, Corollary 4.2, Example 7.1]. To highlight the relation between the manifold207
and the function g, we use the notationMg for the structure manifold related to g.208
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6 G. BAREILLES, F. IUTZELER, AND J. MALICK

Example 2.5. The structure manifolds of max are209

Mmax
I = {y ∈ Rm : yi = max(y) for i ∈ I},210211

where I ⊂ {1, . . . ,m}. A smooth manifold-defining map forMmax
I is h : Rm → R|I|−1212

such that h(y)l = yil − yi|I| , where |I| denotes the size of I and il the l-th element of213
I (with some ordering). As required, this map is surjective. At any point y ∈ Rm, the214
maximum is partly smooth relative toMmax

I , where I = {i : yi = max(y)}.215

Example 2.6. The structure manifolds of λmax in Sm consist of all matrices216
having a largest eigenvalue with fixed multiplicity r:217

Mλmax
r = {y ∈ Sm : λ1(y) = · · · = λr(y)}.218219

A manifold-defining map of Mλmax
r is described in [28] and λmax is partly smooth220

relative toMλmax
r at any point y ∈Mλmax

r .221

In view of the expression of the proximity operators in our examples, their output222
naturally lie on the structure manifolds described above. More precisely, proxγmax(y)223
belongs to the structure manifoldMmax

I , where I collects the indices of the k largest224
entries of y and k grows as γ increases. Similarly, proxγλmax

(y) belongs to the225

structure manifold Mλmax
r , where r increases as γ does. This observation is at the226

core of the ability of proximal operators to identify neighboring structure manifolds.227

2.3. Structure Identification. It is well-known that the proximity operator228
identifies structure locally around critical points (see e.g. [11, Th. 4]): all points near229
a minimizer are mapped to the manifold containing the minimizer. Furthermore, this230
structure is revealed during the computation of the operator.1231

In the situation we consider, the proximity operator of F cannot be explicitly232
computed. However, proxγg is available and can provide some structure in the inter-233
mediate space Rm that we would like to exploit. To do so, we introduce two properties234
(holding on our two running examples), that will allow us to retrieve the structural235
information in the intermediate space near points that are not minimizers of g.236

The first property holds at point ȳ ∈ Mg if the nonsmooth function g strictly237
increases on all directions on which it is nonsmooth.238

Property 2.7 (Normal ascent). A function g satisfies the normal ascent prop-239
erty at point ȳ if 0 lies in the relative interior of the projection of ∂g(ȳ) on the normal240
space at ȳ, that is: 0 ∈ ri projNȳMg ∂g(ȳ).241

Remark 2.8 (Positive directional derivative). In a “nice” setting where g is Lip-242
schitz continuous and regular at ȳ, Property 2.7 implies that the directional derivative243
of g along any normal direction d ∈ NȳMg is positive. Indeed, in that case one-sided244
directional derivatives are well-defined [26, p. 358, Th. 9.16], and the derivative along245
direction w equals maxv∈∂g(x)〈v, w〉. Along a normal direction d ∈ NyMg, by par-246
tial smoothness the directional derivative writes maxvn∈projNyMg (∂g(x))〈vn, d〉. Prop-247

erty 2.7 ensures the existence of α > 0 such that αd ∈ projNyMg (∂g(x)), making the248
derivative positive.249

The second property is more technical and controls the velocity of a curve on the250
manifoldMg.251

1Computing exactly the structure of the output point of the operator, as can be done for the
prox, is opposed to merely observing the structure of the output after its computation. This last
option is not desirable in our opinion as it entails delicate numerical questions such as testing equality
between reals for the maximum, or computing the multiplicity of the maximal eigenvalue of a matrix.
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Property 2.9 (Curve property). A function g partly smooth at ȳ relative toMg252
satisfies the curve property at ȳ when there exists a neighborhood Nȳ of ȳ and T > 0253
such that any smooth application e : Nȳ× [0, T ]→Mg such that e(y, 0) = projMg (y),254
d
dte(y, t)|t=0 = − grad g(projMg (y)) satisfies255

‖ projNe(y,t)Mg (e(y, t)− y)‖ ≤ distMg (y) + L̃ t2 for all y ∈ Nȳ, t ∈ [0, T ],256
257

where distMg (y) , ‖y−projMg (y)‖ is the distance betweenMg and y, and grad g(p) ∈258
TpMg denotes the Riemannian gradient of g obtained as projTpMg (∂g(p)).259

The idea behind this property is to ensure that the differential of the projection260
of the (time dependent) normal space is (uniformly) negligible at time 0. Note that261
for affine spaces, we trivially have ‖ projNe(y,t)Mg (y − e(y, t))‖ = distMg (y) for all t262
near 0: the normal spaces are equal at all points of the manifold.263

These two properties are satisfied at any structured point for the two nonsmooth264
functions max and λmax of our running examples as detailed in the following lemma.265
The proofs for the two functions are rather direct but require precise technical de-266
scriptions; we defer them to Appendix A.267

Lemma 2.10. Consider either:268
• g = max, ȳ ∈ Rm, and the structure manifoldMmax

I (of Example 2.5);269
• g = λmax , ȳ ∈ Sm, and the structure manifoldMλmax

r (of Example 2.6).270
Then, Properties 2.7 and 2.9 hold at ȳ.271

Finally, the structure provided by proxγg lies in the intermediate space Rm, while272
the optimization variable lives in Rn. In order to transfer the structure information to273
the input space, we will also require the smooth map c : Rn → Rm to be transversal274
toMg ⊂ Rm at some point x̄ ∈ Rn, which holds whenMg is a manifold around c(x̄)275
and the following (equivalent) conditions hold:276

ker(D c(x̄)∗) ∩Nc(x̄)Mg = {0} or Tc(x̄)Mg + Im D c(x̄) = Rm.277278

In that case, the set c−1(Mg) is a submanifold of Rn [15, Th. 6.30], whose normal279
space has the same dimension as the one ofMg. Furthermore, we have [15, Ex. 6-10]280

Nxc
−1(Mg) = D c(x)∗Nc(x)Mg and Txc

−1(Mg) = D c(x)−1Tc(x)Mg.281282

3. Collecting structure with the proximity operator. We show in this283
section how to exactly detect the optimal structure manifold of the composite function284
F = g ◦ c around a point x̄ using the proximity operator of g.285

In our nonconvex and nonsmooth setting, we seek only structured points which286
satisfy certain assumptions summarized in our definition of a qualified point.287

Definition 3.1 (Qualified points). A point x̄ ∈ Rn is qualified relative to a288
decomposition (g, c) of F and manifoldMg if289

i) g is prox-bounded and prox-regular at c(x̄);290
ii) g is partly smooth at c(x̄) relative toMg;291
iii) c is transversal toMg at x̄;292
iv) g satisfies Properties 2.7 and 2.9 at point c(x̄).293

Three of these assumptions constrain only the nonsmooth function g and are294
easily verifiable in practice. Only the transversality condition limits the range of295
acceptable smooth mappings; see e.g. [18, Sec. 4]. For such qualified points, we get296
two useful properties: first, F is partly smooth at x̄ relative to M = c−1(Mg) 3 x̄297
(by the chain rule of [18, Th. 4.2]) and second, the operator proxγg is single-valued,298
locally Lipschitz, and defined by its optimality condition near c(x̄).299
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γ = 2.3

{x : proxγmax(c(x)) ∈ Mmax
{1,2,3}}

{x : proxγmax(c(x)) ∈ Mmax
{1,2}}

{x : proxγmax(c(x)) ∈ Mmax
{1,3}}

{x : proxγmax(c(x)) ∈ Mmax
{2,3}}

Fig. 2: Illustration of the main result on a maximum of three quadratic functions, with
x̄ ∈Mmax

{1,2} and a point x̃ near x̄. The three figures show the areas where proxγg ◦ c
detects manifolds for three stepsizes: γ = 0.4 (upper left), γ = 1 (upper right) and
γ = 2.3 (lower left). We see on the upper left fig. that proxγg ◦ c detects no structure
from x̃ because γ is too small, and in constrast, on the lower fig., that it wrongly
detects too much structure (Mmax

{1,2,3}) because γ is too large. On the upper right fig.,
the optimal manifold is detected with γ chosen in the right interval.

3.1. Main result. We show in the following theorem that if x is near a qualified300
point of F with structureM, then proxγg(c(x)) will output a point onMg = c(M),301
the structure manifold of g corresponding to M (in the intermediate space). Our302
theorem provides precise conditions on x and γ that guarantee this structure identi-303
fication and forms the main theoretical contribution of the paper. We illustrate this304
behavior in Figure 2.305

The position of this result with respect to the literature is discussed right after306
in Remark 3.3, and the proof is given in the following Subsection 3.2, in a succession307
of technical lemmas. We stress that we give guarantees on the structure to which the308
point proxγg(c(x)) belongs, rather than on the point itself.309

Theorem 3.2. Consider a function F = g ◦ c and a point x̄. Assume that x̄ is310
qualified relative to a manifold Mg ⊂ Rm. Then, there exists a neighborhood Nx̄ of311
x̄ and a constant Γ such that, for all x ∈ Nx̄,312

proxγg(c(x)) ∈Mg for all γ ∈ [ϕ(distM(x)),Γ],313314
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where distM(x) denotes the distance from x to the manifoldM and ϕ is defined as315

ϕ(t) =
cri

2L̃

1−
√

1− 4L̃cmapt

c2ri

 =
cmap

cri
t+

L̃c2map

c3ri
t2 + o(t2),316

317

with cri, cmap, and L̃ (of Property 2.9) positive constants.318
In particular, there exists L > 0, ε > 0 such that319

‖x− x?‖ ≤ ε and L‖x− x?‖ ≤ γ ≤ Γ =⇒ proxγg(c(x)) ∈Mg.320321

Note that Property 2.9 is only used to compute explicitly an interval of γ guaranteed322
to provide the correct structure; the existence of that interval holds independently.323

Remark 3.3 (Relation with existing results). The difference between Theorem 3.2324
and existing results lies in two aspects. First, the identification properties of the325
proximal operator [8, Th. 28], the proximal-gradient operator [1, Th. 3.1], or even326
approximate prox-gradient operators [14] give structure information directly in the327
input space (even in abstract algorithmic frameworks [11, Th. 4]). In the composite328
case, the proximity operator reveals structure in the intermediate space only, and329
extra work is required to bring it back to the input space.330

Second, most existing results investigate identification properties near minimizers,331
and not just arbitrary points (a notable exception is [1] in a different context). Here,332
we evaluate proxγg near c(x̄), a point without any specific properties even if x̄ is a333
local minimizer. This is why we need Property 2.7 to guarantee identification in the334
intermediate space, and bring the structure information to the input space.335

3.2. Proof of Theorem 3.2. The proof consists in giving conditions on y and336
γ so that p = proxγg(y) lies on the manifold. We characterize this relation by the337
first-order optimality condition:338

y ∈ p+ γ∂g(p).339340

We first show that, for y near ȳ and γ small, there is a unique point p on the manifold341
Mg that satisfies the tangent component of this optimality condition:342

projTpMg (y − p) = γ grad g(p),(3.1)343344

where grad g(p) , projTpMg ∂(g(p)) is unique by the sharpness property of partial345
smoothness, and matches the Riemannian gradient of g on Mg (see [6, Sec. 7.7]).346
Such points p are given by a smooth manifold-valued application e(y, γ), the existence347
of which is guaranteed by the following lemma.348

Lemma 3.4. Consider a function g : Rm → R ∪ {+∞}, a point ȳ ∈ Rm, and a349
manifold Mg with g partly smooth at ȳ relative to Mg. Then, there exists a smooth350
curve e : Nȳ ×N0 →M defined on a neighborhood of (ȳ, 0) in Rm × R+ such that351

• for all y ∈ Nȳ, e(y, 0) = projMg (y) and d
dγ e(y, γ)|γ=0 = − grad g(projMg (y));352

• for all y ∈ Nȳ, γ ∈ N0, Eq. (3.1) is satisfied for p = e(y, γ).353

Proof. We define the mapping Φ : Rm × R×Mg → ∪x∈MgTxMg as354

Φ(y, γ, p) = γ grad g(p)− projTpMg (y − p)355356

and consider the equation Φ(y, γ, p) = 0 near the point (ȳ, 0, ȳ). Using the smoothness357
of g onMg given by partial smoothness, we have that this mapping is continuously358
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10 G. BAREILLES, F. IUTZELER, AND J. MALICK

differentiable on a neighborhood of (ȳ, 0, ȳ). We see that its differential with respect359
to p is Dp Φ(ȳ, 0, ȳ) = I. Indeed, for η ∈ TpMg,360

Dp Φ(y, γ, p)[η] = γHess g(p)[η] + η −Dp′

(
p′ 7→ projTp′Mg (y − p)

)
(p)[η].361

362

At point (ȳ, 0, ȳ), the first term vanishes, and the third term writes363

Dp′

(
p′ 7→ projTp′Mg (0)

)
(ȳ)[η]364

365

and vanishes as well as the differential of the null function p′ 7→ projTp′Mg (0). Thus366

Dp Φ(ȳ, 0, ȳ) = I is invertible. The implicit functions theorem thus grants the exis-367
tence of neighborhoods N 1

ȳ , N 2
0 , N 3

ȳ of ȳ, 0, ȳ in Rm, R, Mg and a continuously368
differentiable function c : N 1

ȳ ×N 2
0 → N 3

ȳ such that, for any (y, γ) ∈ N 1
ȳ ×N 2

0 , Equa-369
tion (3.1) is satisfied with p = e(y, γ). For y ∈ N 1

ȳ , e(y, 0) satisfies y − e(y, 0) ∈370
Ne(y,0)Mg, which is the first-order optimality condition of e(y, 0) = projMg (y). Pos-371
sibly reducing N 1

ȳ so that, for all y ∈ Nȳ projMg (y) is well-defined and unique, the372
previous optimality condition is equivalent to e(y, 0) = projMg (y). Besides, differen-373
tiating Φ(y, γ, e(y, γ)) = 0 relative to γ at γ = 0 yields374

Dγ e(y, 0) = −[Dp Φ(y, 0,projMg (y))]−1 Dγ Φ(y, 0,projMg (y)) = − grad g(projMg (y)),375376

which concludes the proof.377

The previous lemma shows that for every (y, γ) one can find a point e(y, γ) on the378
manifold Mg that solves the tangent part of the optimality condition (3.1). The next379
lemma determines the values of y and γ for which the whole optimality condition380

y ∈ e(y, γ) + γ ri ∂g(e(y, γ))(3.2)381382

holds, as illustrated in Figure 3a.383

N γ
ȳ

e(y, 0) = projM(y)

e(y,
¯
γg(y))

y Mg

(a) the curve γ 7→ e(y, γ) onM.

N γ
ȳ

y = prox0g(y)

ȳ

prox
¯
γg(y)g(y)

Mg

(b) the curve γ 7→ proxγg(y) onM
for γ ≥ ϕ(distMg (y)).

Fig. 3: Illustration of Lemma 3.5 and its consequences.

Lemma 3.5. Consider a function g, a point ȳ ∈ Rm and a manifold Mg such384
that g is partly smooth at ȳ relative toMg and that g satisfies Property 2.7 at ȳ. Let385
e denote a smooth M-valued application defined on a neighborhood of (ȳ, 0) provided386
by Lemma 3.4. Then, there exists C > 0 such that:387

i) for all γ ∈ [0, C], e(ȳ, γ) verifies (3.2) with y = ȳ,388
ii) for all γ ∈ [0, C], there exists a neighborhood N γ

ȳ of ȳ such that, for all389
y ∈ N γ

ȳ , e(y, γ) verifies (3.2),390
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Further assume that g satisfies Property 2.9 at ȳ with constant L̃, then391
iii) there exist Γg > 0 and a neighborhood Nȳ of ȳ such that for all y ∈ Nȳ392

e(y, γ) verifies (3.2) for all γ ∈ [ϕg(distMg (y)),Γg],393394

where cri ≥ 0 and ϕg(t) = cri
2L̃

(
1−

√
1− 4L̃t

c2ri

)
= 1

cri
t+ L̃

c3ri
t2 + o(t2).395

The proof consists in finding the points y, γ such that 0 ∈ ri Ψ(y, γ), where the396
mapping Ψ : Rm × R→ ∪x∈MgNxMg is defined as397

Ψ(y, γ) = projNe(y,γ)Mg

(
1

γ
(e(y, γ)− y) + ∂g (e(y, γ))

)
.398

399

Items i) and ii) are shown by extending the property 0 ∈ Ψ(ȳ, 0) to a neighborhood of400
(ȳ, 0), using the inner-semicontinuity properties of Ψ. We then derive explicit bounds401
on the interval of steps such that 0 ∈ ri Ψ(y, γ): for a fixed y ∈ Nȳ, when γ decreases402
past some value, say

¯
γ(y), the condition 0 ∈ ri Ψ(y, γ) no longer holds. Precisely at403

¯
γ(y), 0 lies on the (relative) boundary of Ψ(y,

¯
γ(y)): denoting rbdS , S \ riS the404

relative boundary of set S,405

0 ∈ rbd projNe(y,
¯
γ(y))Mg

(
1

¯
γ(y)

(
e(y,

¯
γ(y))− y

)
+ ∂g

(
e(y,

¯
γ(y))

))
.406

407

Denoting ∂Ng(p) , projNpMg (∂g(p)) the projection of the subdifferential on the408
normal space of its structure manifold and taking norms yields:409

‖ projNe(y,
¯
γ(y))Mg (y − e(y,

¯
γ(y)))‖ ≥

¯
γ(y) inf

vn∈rbd ∂Ng(e(y,
¯
γ(y)))

‖vn‖410

≥
¯
γ(y) inf

p∈Nȳ
inf

vn∈rbd ∂Ng(p)
‖vn‖︸ ︷︷ ︸

,cri

.411

412

Since 0 ∈ ri projNȳMg ∂g(ȳ) and ∂g is inner-semicontinuous, the former property413
actually holds on a neighborhood of ȳ inMg, thus making the constant cri positive.414
We note that this kind of quantity also appears as the modulus of identifiability in415
the recent [16, Def. 2.3] where it has the same property: its positivity enables the416
identification of the associated structure manifold.417

Using Property 2.9, the left-hand side is upper bounded by a simpler expression:418

L̃
¯
γ(y)2 + distMg (y) ≥ cri

¯
γ(y), that is

¯
γ(y) ≤ cri

2L̃

1−
√

1− 4L̃distMg (y)

c2ri

 ,419

420

which provides the expression for ϕg used in the lemma.421

Proof. Item i) We first consider Ψȳ(·) = Ψ(ȳ, ·). Since ȳ ∈ Mg, Lemma 3.4 tells422
us that e(ȳ, γ) = ȳ − γ grad g(ȳ) + o(γ), and thus423

Ψȳ(0) = projNȳMg (− grad g(ȳ) + ∂g(ȳ)) = projNȳMg (∂g(ȳ))424425

where we used that grad g(ȳ) ∈ TȳMg is orthogonal to NȳMg.426
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12 G. BAREILLES, F. IUTZELER, AND J. MALICK

Property 2.7 provides that 0 ∈ ri Ψȳ(0). We now turn to showing that there exists427
C ′ such that, for all γ ∈ [0, C ′], 0 ∈ ri Ψȳ(γ).428

By contradiction, assume there exist a sequence γk → 0 such that 0 /∈ ri Ψȳ(γk).429
This means that there exists a sequence of unit norm vectors (sk) such that for all k,430

〈sk, z〉 ≤ 0 for all z ∈ Ψȳ(γk).(3.3)431432

As a bounded sequence, sk admits at least one limit point, say s̄. Take z̄ ∈ Ψȳ(0). The433
continuity of ∂g (by partial smoothness, item iv), of γ 7→ (e(ȳ, γ)− ȳ)/γ (by smooth-434
ness of e), and of γ 7→ projNe(ȳ,γ)Mg (by smoothness of Mg) yield the continuity of435

Ψȳ as a set-valued map. This mapping is thus inner-semicontinuous [26, Def. 5.4], so436
there exists a sequence zk ∈ Ψȳ(γk) such that zk converges to z̄. Taking the correct437
subsequence and renaming iterates, we can write sk → s̄ and zk → z̄. Equation (3.3)438
provides 〈sk, zk〉 ≤ 0 for all k, which gives at the limit 〈s̄, z̄〉 ≤ 0. This actually holds439
for all z̄ ∈ Ψȳ(0): s̄ separates 0 and Ψ(0), which contradicts 0 ∈ ri Ψȳ(0).440

Finally, let us take the constant C such that [0, C] is included in [0, C ′] and the441
neighborhood of 0 provided by Lemma 3.4. Then, for any γ ∈ [0, C], adding the442
two orthogonal inclusions 0 ∈ ri Ψȳ(γ) and 0 = Φ(y, γ, c(y, γ)), we obtain that e(ȳ, γ)443
verifies (3.2) with y = ȳ.444

Item ii) Let γ ∈ [0, C]. We turn to show the existence of a neighborhood N γ
ȳ of ȳ such445

that, for all y ∈ N γ
ȳ , e(y, γ) verifies (3.2). By contradiction, assume that there exists446

a sequence (yk) that converges to ȳ such that (3.2) fails for (yk, γ). Since the tangent447
component of (3.2) does hold, necessarily 0 /∈ ri Ψ(yk, γ). However, the mapping448
y 7→ Ψ(y, γ) is inner-semicontinuous (from the same arguments as in the proof of item449
i) and there holds 0 ∈ ri Ψ(ȳ, γ). A reasoning similar to that of item i) reveals the450
contradiction.451

Item iii) Define Nȳ a neighborhood of ȳ and Γg a positive constant such that Prop-452
erty 2.9 applies overNȳ×[0,Γg], Nȳ is contained in ∪γ∈[0,C]N γ

ȳ ∩NC
ȳ and 0 ∈ ri Ψ(y, γ)453

holds for all (y, γ) ∈ Nȳ× [0,Γg]. This last condition can be met on a nontrivial neigh-454
borhood of (ȳ, 0) since it holds at that point, and Ψ is inner-semicontinuous (e(y, γ)455
lies onMg and ∂g is inner-semicontinuous by partial smoothness of g).456

Let y ∈ Nȳ and γ > 0 such that ϕg(distMg (y)) ≤ γ ≤ Γg. The lower bound on457

γ implies that L̃γ2 + distM(y) < criγ. We have successively by Property 2.9 and the458
above bound that459

‖ projNe(y,γ)Mg (y − e(y, γ))‖ ≤ distM(y) + L̃γ2 < criγ460

≤ γ inf{‖n‖, n ∈ rbd ∂Ng(e(y, γ))}.461462

This means that projNe(y,γ)Mg (y − e(y, γ)) belongs to the ball of center 0 and radius463

γ inf{‖n‖, n ∈ rbd ∂Ng(e(y, γ))} in Ne(y,γ)Mg. In addition, this ball is included in464
∂Ng(e(y, γ) since 0 ∈ ∂Ng(e(y, γ) by definition of Nȳ. Therefore, 0 ∈ ri Ψ(y, γ) for all465
y ∈ Nȳ and γ ∈ [ϕg(distMg (y)),Γg].466

We can now proceed to the proof of Theorem 3.2. It consists in first identifying467
the curve e(y, γ) to proxγg(y) and thus prove that it belongs to the sought manifold,468
as illustrated in Figure 3b. Then, this intermediate identification result is brought469
back to the input space using transversality.470

Proof. The standing assumptions allow to call Lemma 3.5 at point c(x̄) with471
manifold Mg. This yields the neighborhood Nc(x̄), constants Γg and C, a function472
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ϕg, and a smooth mapping e : Nc(x̄) × [0, C] → Mg such that, for y ∈ Nc(x̄) and473
γ ∈ [ϕg(distMg (y)),Γg], e(y, γ) verifies the optimality condition (3.2) of e(y, γ) =474
proxγg(y). Besides, since g is prox-regular and prox-bounded at point c(x̄), these475
properties also hold on a neighborhood of that point. Under these conditions, Propo-476
sition 2.2 allows to recover the equality e(y, γ) = proxγg(y). Take Nx̄ = c−1(Nc(x̄)),477
a neighborhood of x̄ as the preimage of a neighborhood of c(x̄) by the continuous c.478
For all x ∈ Nx̄,479

proxγg(c(x)) ∈Mg for all γ ∈ [ϕg(distMg (c(x))),Γg].480481

We turn to show that, for some constant cmap > 0, there holds distMg (c(x)) ≤482
cmap distM(x) for all x ∈ Nx̄. Let x ∈ Nx̄ and xM = projM(x), so that distM(x) =483
‖xM − x‖. Using successively that c(xM) ∈Mg and smoothness of c, there holds for484
x near x̄485

distMg (c(x)) ≤ ‖c(x)− c(xM)‖486

≤ ‖ Jacc(x
M) · (x− xM)‖+O(‖x− xM‖2)487

≤
(

sup
vn∈NxMM,‖vn‖=1

‖ Jacc(x
M) · vn‖

)
‖x− xM‖+O(‖x− xM‖2)488

≤
(

sup
u∈Nx̄

sup
vn∈NuM,‖vn‖=1

‖ Jacc(u) · vn‖
)

︸ ︷︷ ︸
C′′

‖x− xM‖+O(‖x− xM‖2).489

490

Since c is transversal toMg at x̄, its Jacobian restricted to the normal space is invert-491
ible: C ′′ is positive. Therefore, for all x ∈ Nx̄ and a constant cmap > C ′′, there holds492
distMg (c(x)) ≤ cmap distM(x). Monotony of ϕg implies that ϕg(distMg (c(x))) ≤493
ϕg(cmap distM(x)). Hence the claimed bounds with494

ϕ(t) =
cri

2L̃

1−
√

1− 4L̃cmapt

c2ri

 and Γ = Γg.495

496

Finally, we show the existence of positive constants ε, L such that497

‖x− x̄‖ ≤ ε and L‖x− x̄‖ ≤ γ ≤ Γ =⇒ proxγg(c(x)) ∈Mg.498499

Since x̄ ∈ M, distM(·) ≤ ‖ · −x̄‖. By monotony and smoothness of ϕ, there exists500
L > 0 such that ϕ(distM?(·)) ≤ L‖ · −x?‖ over B(x?, ε). Reducing ε if necessary so501
that Lε < Γ yields the result.502

4. Proposed method. In this section, we use the results of Section 3 to pro-503
pose an optimization method that locally identifies the structure of a minimizer and504
converges quadratically to this point.505

Recall the basic idea: if the optimal manifoldM? corresponding to a minimizer506
x? is known, the nonsmooth optimization problem turns into a smooth constrained507
optimization problem. In turn, this problem can be solved using algorithms from508
smooth constrained optimization such as Sequential Quadratic Programming.509

Using this idea and the structure identification mechanism developed in the previ-510
ous section, we propose a method which: i) uses the proximity operator of g to gather511
structure in the intermediate space, ii) brings back this structure to the input space,512
and iii) optimizes smoothly along the identified manifold. The resulting algorithm is513
precisely described in Subsection 4.1 and then analyzed in Subsection 4.2.514
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14 G. BAREILLES, F. IUTZELER, AND J. MALICK

4.1. Description of the algorithm. We proceed to describe the three steps515
exposed above. The full algorithm is depicted in Algorithm 4.1.516

Gathering structure. We showed in Theorem 3.2 that near a qualified point in Rn,517
the operator proxγg(c(·)) provides the optimal structure Mg? (in the intermediate518
space Rm) for an explicit range of steps. We thus define from the current iterate519
xk ∈ Rn and stepsize γk the working manifold Mg

k (in the intermediate space) as520
the structure of proxγkg(c(xk)). One technical point is to guarantee that, after some521
time, γk ∈ [L‖xk − x?‖,Γ] so that the optimal manifold is identified; this is done by522
decreasing γk linearly at each iteration.523

From the intermediate to the input space. We now have a structure manifoldMg
k524

in the intermediate space, and can define g̃k, a smooth extension of g onMg
k to Rm.525

Using a local equation hgk ofMg
k, we define the smooth map hk = hgk ◦ c : Rn → Rpk ,526

which locally definesMk = c−1(Mg
k). Similarly, a smooth extension of F onMk is527

defined by F̃k = g̃k ◦ c.528
Optimizing in the input space. We can now take steps to minimize the smooth529

extension F̃k on the smooth setMk characterized by hk(x) = 0:530

min
x∈Rn

F̃k(x) s.t. hk(x) = 0.531
532

We turn to an elementary version of the traditional second-order Sequential Quadratic533
Programming methodology; see e.g. [5, Chap. 14]. At iteration k, the SQP direction534

dSQP
k (xk) at point xk is defined as the solution of the following quadratic problem:535

dSQP
k (xk) = argmind∈Rn 〈∇F̃k(xk), d〉+

1

2
〈∇2

xxLk(xk, λk(xk))d, d〉
s.t. hk(xk) + Dhk(xk)d = 0

(4.1)536

537

where ∇2
xxLk denotes the Hessian of the Lagrangian Lk(x, λ) = F̃k(x) + 〈λ, hk(x)〉,538

and the multiplier λk(xk) defined from the following least-squares problem:539

λk(xk) = argminλ∈Rpk

∥∥∥∥∥∇F̃k(xk) +

pk∑
i=1

λi∇hk,i(xk)

∥∥∥∥∥
2

.(4.2)540

541

Finally, we check that xk + dSQP
k (xk) provides a functional decrease in order to542

avoid degrading the iterate when the current structure is suboptimal. If the test is not543
verified, xk is not updated and γk is decreased until a satisfying structure is detected.544

4.2. Convergence of Algorithm 4.1. We proceed to give the result guaran-545
teeing identification and local quadratic convergence of Algorithm 4.1.546

In order to benefit from the quadratic rate of SQP, the elements of (4.1) should547
have the minimal regularity typically required by smooth constrained Newton methods548
(see e.g. [5, Th. 14.5]); we thus make the following assumption.549

Assumption 4.1 (Regularity of functions). The smooth extension and the man-550
ifold defining map are C2 with Lipschitz second derivatives, and the Jacobian of the551
constraints is full rank near the solution.552

In order to focus on the algorithmic originality of the method, we slightly simplify553
the situation and make the two following algorithmic assumptions.554

Assumption 4.2 (Nonconvex stability). The iterates of Algorithm 4.1 remain555
in the connex component of the sublevel set {x : F (x) ≤ F (x0)} that contains x?.556
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Algorithm 4.1 General structure exploiting algorithm
Require: Pick x0 near a minimizer, γ0 large enough.
1: repeat
2: γk = γk−1

2
3: Compute proxγkg(c(xk)) and obtainMg

k locally defined by hgk
4: hk = hgk ◦ c (local equation ofMk), F̃k = g̃k ◦ c (smooth extension)
5: Compute dSQP

k (xk) by solving (4.1)
6: if F (xk + dSQP

k (xk)) ≤ F (xk) then
7: xk+1 = xk + dSQP

k (xk)
8: else
9: xk+1 = xk

10: until stopping criterion

This assumption ensures that an update that decreases the functional value remains557
in the neighborhood of the minimizer x?. It is naturally satisfied when F is convex,558
or when x? is a global minimizer of F and x0 is close enough to x?.559

Assumption 4.3 (No Maratos effect). The iterates of Algorithm 4.1 are such560
that a step d that makes x+d quadratically closer to x yields descent: F (x+d) ≤ F (x).561

In smooth constrained optimization, getting closer (even at quadratic rate) to a min-562
imizer does not imply decrease of objective value and constraint violation (measured563
by a merit function). This so-called Maratos effect (see e.g. [5]) is one of the main564
difficulties in globalizing SQP schemes, which is out of the scope of the current paper.565
We thus assume this effect does not affect our algorithm in theory, and use in practice566
one of the successful refinements, as discussed in Subsection 5.2.567

We are now ready for the main convergence result of Algorithm 4.1, which es-568
tablish that, after some finite time, the iterates identify exactly the optimal manifold569
and converge to the minimizer at a quadratic rate.570

Theorem 4.4 (Exact identification and quadratic convergence). Consider a571
function F = g ◦ c and x? a strong minimizer,2 qualified relative to the optimal572
manifold M?. Assume that the smooth extension F̃ of F relative to M? and the573
corresponding manifold defining map h satisfy Assumption 4.1.574

If x0 and F (x0) are close enough to x? and F (x?), γ0 is large enough and the575
simplifying algorithmic Assumptions 4.2 and 4.3 hold, then there exists C > 0 such576
that the iterates (xk,Mk) generated by Algorithm 4.1 verify:577

Mk =M? and ‖xk+1 − x?‖ ≤ C‖xk − x?‖2 for all k large enough.578579

The proof of this result consists in two steps. We first show the existence of a580
neighborhood of initialization on which the proximity operator will eventually identify581
the optimal manifold, once the stepsize has been sufficiently decreased. From this582
point onward, we prove that the SQP step provides a quadratic improvement and583
that the stepsize policy makes the manifold identification stable.584

Proof. Local identification of the optimal structure. By Theorem 3.2, there exists585
a ball centered around x? of radius ε1 > 0 and two positive constants L, Γ such that,586
for all x ∈ B(x?, ε1) and γ ∈ [L‖x − x?‖,Γ], proxγg(c(x)) belongs to the optimal587
manifoldMg? = c(M?).588

2There exists η > 0, ε > 0 such that F (x) ≥ F (x?) + η‖x− x?‖2 for all x ∈ B(x?, ε).
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Local quadratic convergence of SQP on the optimal structure. Let us assume that the589
optimal manifold has been identified. The least square multiplier λ is defined by the590
optimality condition of (4.2):591

λ(x) = −[Jach(x) Jach(x)>]−1 Jach(x)∇F̃ (x).592593

and since h is smooth and its Jacobian is full-rank near x?, λ is a Lipschitz continuous594
function near x?.595

Since x? is a strong minimizer of F , the Hessian of the Lagrangian restricted to596
the tangent space is positive definite. Indeed, since x? is a strong minimizer of F597
onM?, the Riemannian Hessian relative to the optimal manifold is positive definite.598
With the choice of multiplier (4.2), the Riemannian Hessian is exactly the Hessian of599
the Lagrangian restricted to the tangent space toM? at x? (see [6, Sec. 7.7]), which600
is thus itself positive definite.601

Thus, using the local quadratic convergence of SQP [5, Th. 14.5], we get that there602
exists a ball centered around x? of radius ε2 > 0 such that the SQP step computed at603
a point x in that neighborhood relative to the optimal manifold provides a quadratic604
improvement towards x?. Reducing ε2 if necessary, we can in addition have that the605
convergence is at least linear with rate 1/2.606

Initialization, identification, and quadratic convergence. Let ε = min(ε1, ε2,Γ/(2L)).607
We will now show that initializing with x0 ∈ {x : F (x) ≤ F (x?) + ηε2} and γ0 ≥ Γ608
provides the claimed behavior.609

First, the functional decrease test of the algorithm and Assumption 4.3 guarantee610
that all iterates satisfy F (xk) ≤ F (x0). Using that x? is a strong minimizer, we get611
that η‖xk−x?‖2 ≤ F (xk)−F (x?) ≤ F (x0)−F (x?) ≤ ηε2, and thus that the iterates612
remain in B(x?, ε).613

Second, as L‖x − x?‖ ≤ Γ/2 for all x ∈ B(x?, ε) by construction, the fact that614
γ0 > Γ and (γk) decreases with geometric rate 1/2 implies that there exists K such615
that L‖xK − x?‖ ≤ γK ≤ Γ.616

Now, assume that at iteration k ≥ K, L‖xk−x?‖ ≤ γk ≤ Γ. Since xk ∈ B(x?, ε1),617
we have from above thatM? is identified. Thus, the SQP step is performed relative618
to the optimal manifold and xk + dSQP

k (xk) brings a linear improvement of factor 1/2619

at least. Assumption 4.2 ensures that F (xk + dSQP
k (xk)) ≤ F (xk) so that xk+1 =620

xk + dSQP
k (xk) and thus621

L‖xk+1 − x?‖ ≤
L

2
‖xk − x?‖ ≤

γk
2

= γk+1.622
623

This shows that L‖xk+1 − x?‖ ≤ γk+1 ≤ Γ, which completes the induction. We624
get that γk ∈ [L‖xk − x?‖,Γ] for all k ≥ K. Finally, we have that for all k ≥ K,625
Mk =M? and xk+1 is quadratically closer to x? than xk.626

Direct generalizations. Theorem 4.4 actually holds for any decrease factor of γk627
in (0, 1) with the presented SQP update, or actually any superlinearly convergent628
update (e.g. a quasi-Newton type update). The above result is also readily adapted629
to an update that converges merely linearly, as long as its rate of convergence is faster630
than that of γk. This opens the possibility of using SQP methods that rely only on631
first-order information (see e.g. [4]).632

5. Numerical experiments. In this section, we provide numerical illustrations633
for our results. Our goal here is twofold:634
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i) to illustrate the identification of the optimal manifold by the proximity op-635
erator near a minimizer as provided by Theorem 3.2;636

ii) to demonstrate the applicability of Algorithm 4.1 and observe the quadratic637
rates predicted by Theorem 4.4 on our running examples.638

5.1. Test problems. We first consider the minimization of a pointwise maxi-639
mum of smooth functions (1.2):640

min
x∈Rn

max
i=1,...,m

(ci(x)).641
642

We take the celebrated MaxQuad instance, where n = 10, m = 5 and each ci is643
quadratic convex, making the whole function F convex [5, p. 153]. In this instance,644
the optimal manifold isMmax

I with I = {2, 3, 4, 5}.645
Second, we consider the minimization of the maximum eigenvalue of an affine646

mapping (1.3):647

min
x∈Rn

λmax

(
A0 +

n∑
i=1

xiAi

)
.648

649

We take n = 25 and we generate randomly n + 1 symmetric matrices of size 50. In650
this instance, the multiplicity of the maximum eigenvalue at the minimizer is r = 3.651

5.2. Numerical setup. All the algorithms are implemented in Julia [2]; exper-652
iments may be reproduced using the code available online3.653

Algorithm. For the initialization of Algorithm 4.1, we set γ0 as the smallest γ such654
that proxγg(c(x0)) has the most structure (e.g. if g = max, we increase γ until the655
output of the proximity operator sets all coordinates to the same value). We solve the656
quadratic subproblem (4.1) providing the SQP step by the reduced system approach657
presented in [5, p. 133]. Tangent vectors are expressed in an orthonormal basis of658
the nullspace of the Jacobian of the constraints at the current iterate. At iterate xk,659
a second-order correction step dcorr(xk) is added to the SQP step dSQP(xk). It is660
obtained as dcorr(xk) = argmind∈Rn{‖h(xk) + Jach(xk) d‖, s.t. d ∈ Im Jach(xk)>}.661
The full-step is thus xk + dSQP(xk) + dcorr(xk).662

Baselines. For the two nonsmooth problems, we compare with the nonsmooth663
BFGS algorithm of [19] (nsBFGS) and the gradient sampling algorithm [7]. The664
nsBFGS method is not covered by any theoretical guarantees; it is known to perform665
relatively well in practice, often displaying a linear rate of convergence. In contrast,666
the Gradient Sampling algorithm generates with probability one a sequence of iterates667
for which all cluster points are Clarke stationary for F [7, Th. 3.1].4668

Oracles. Traditional methods for nonsmooth optimization, and notably bundle669
methods, require a first-order oracle:670

x 7→ (F (x), v) where v ∈ ∂F (x)671672

while Gradient Sampling and nsBFGS require additionally to know if F is differen-673
tiable at point x. Algorithm 4.1 requires rather different information oracles:674

x 7→ F (x)675

x 7→ Mg 3 proxγg(c(x))676

M, x 7→ h(x), Jach(x),∇F̃ (x),∇2L(x, λ).677678

3https://github.com/GillesBareilles/LocalCompositeNewton.jl
4This holds when F is locally Lipschitz over Rn and lower bounded, the algorithm iterates

indefinitely and the sampling radius decreases to 0.
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Fig. 4: Suboptimality vs time (s)

The second part of the oracle provides the candidate structure at point x. The last679
part of the oracle, which requires a point and a candidate structure, provides the680
second-order information of F required by the SQP step.681

5.3. Experiments. Figure 4 reports the suboptimality of the considered meth-682
ods in terms of CPU time and each marker corresponds to one iteration. All algorithms683
are initialized at a point x0 obtained by running nsBFGS for several iterations.684

Our algorithm compares favorably to nsBFGS and Gradient Sampling: it con-685
verges in a handful of iterations and less time. Note that this happens even though686
the iteration cost of our algorithm is higher than that of the other methods. Indeed,687
the oracles of our method are more complex and a quadratic problem needs to be688
solved, while the iteration cost of nsBFGS and Gradient Sampling is dominated by689
the computation of function values and subgradients at each trials of the linesearch.690

In terms of identification, our method finds the correct manifold at the first it-691
eration for MaxQuad, and at the third iteration for Eigmax. From that point, the692
iterates of Algorithm 4.1 reach machine precision in 3 iterations. This illustrates the693
quadratic convergence, and supports the idea that, for nondifferentiable problems as694
well, it is worth computing higher-order information to get fast local methods.695

Figure 5 allows to observe the identification of the algorithm and the quality of696
the bounds of Theorem 3.2. For each iterate xk of Algorithm 4.1, we report the697
current step γk along with the minimal and maximal steps

¯
γ(xk), γ̄(xk) such that698

proxγg(c(xk)) belongs to the optimal manifold.5 A first remark is that, as predicted699
by Theorem 4.4, the pair xk, γk satisfies the identification condition γk ∈ [L‖xk−x?,Γ]700
after a few iterations. We also observe that γ̄(xk) is near constant and that

¯
γ(xk)701

converges to zero linearly with ‖xk − x?‖, as predicted by our result. Finally, we702
note that even though the initial point is not structured and away from the minimizer703
(‖x0 − x?‖ ≈ 10−2), the initialization of γ0 ensures a quick identification.704

6. Conclusions. This paper studies the local structure of functions that write as705
a composition of a nonsmooth function with a smooth mapping. When the proximity706
operator of the nonsmooth function is explicitly available, we show that the structure707

5To better illustrate the local behavior of our method, we also ran the algorithms with a high
precision floating type. Details and corresponding experiments can be found in Appendix B.
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of the minimizer can be detected. We further use this information to propose a708
local Newton method to minimize the objective harnessing the detected structure.709
This method is guaranteed to identify the structure of the minimizer and to converge710
quadratically. We illustrate this behavior on two standard nonsmooth problems.711

10−33 10−26 10−19 10−12 10−5
10−49

10−30

10−11

‖xk − x?‖

(a) MaxQuad

10−40 10−32 10−24 10−16 10−8 100
10−67

10−42

10−17

‖xk − x?‖

(b) Eigmax affine

¯
γ(xk) γ̄(xk) γk

Fig. 5: Stepsize γk vs iteration

Appendix A. The maximum and maximum eigenvalue satisfy the nor-712
mal ascent and curve properties. We show here that the maximum and the713
maximum eigenvalue meet the normal ascent Property 2.7 and curve properties Prop-714
erty 2.9. We begin with a lemma that simplifies verification of Property 2.9.715

Lemma A.1. Consider a function g, partly smooth at a point ȳ relative to a mani-716
foldMg, and a smooth application e : Nȳ×[0, T ]→Mg defined for a neighborhood Nȳ717
of ȳ and T > 0 such that e(y, 0) = projMg (y), d

dte(y, t)|t=0 = − grad g(projMg (y)).718

If D
(
t 7→ projNe(y,t)Mg (projM(y)− y)

)
= 0 for all y ∈ Nȳ, then g satisfies Prop-719

erty 2.9 at point ȳ.720

Proof. We denote θ(y, t) = projNe(y,t)Mg (e(y, t)− y). First,721

d

dt
θ(y, t)|t=0 = D

(
t 7→ projNe(y,t)Mg (projMg (y)− y)

)
722

+ projNprojM(y)Mg (D(t 7→ (e(y, t)− y))(0)) ,723
724

where the first term is null by assumption and the second is also null since it is the725
normal projection of the tangent vector grad g(projMg (y)). Thus, d

dtθ(y, t)|t=0 = 0.726
Using this fact and smoothness of θ, Taylor’s theorem with Lagrange remainder yields,727
for all y ∈ Nȳ, the existence of t̄ ∈ [0, T ] such that, for all t ∈ [0, T ],728

θ(y, t) = θ(y, 0) +
t2

2

d2

dt2
θ(y, t̄).729

730

Therefore, for all y ∈ Nȳ and t ∈ [0, T ],731

‖θ(y, t)‖ ≤ ‖θ(y, 0)‖+
t2

2
sup
t̄∈[0,T ]

d2

dt2
θ(y, t̄) ≤ ‖θ(y, 0)‖+ t2L̃,732

733
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where L̃ = supy∈Nȳ supt̄∈[0,T ]
d2

dt2 θ(y, t̄).734

We can now proceed with the proof of Lemma 2.10, divided into two parts cor-735
responding to the two cases of the result. The case g = max comes easily, due to the736
polyhedral nature of the function.737

Lemma A.2. Consider g = max, a point ȳ ∈ Rm and the corresponding structure738
manifoldMmax

I (of Example 2.5). Then Properties 2.7 and 2.9 hold at ȳ.739

Proof. Normal ascent Take y ∈Mmax
I for some active indices I ⊂ {1, . . . ,m}. A740

normal direction d ∈ NyMmax
I is such that di = 0 for i /∈ I and

∑
i∈I di = 0. Thus741

max(y+ td) = yi + tdi with i = argmaxi di, and D max(y)[d] = limt↘0(max(y+ td)−742
max(y))/t = di > 0 for all d 6= 0.743

Curve assumption Since the structure manifold of max are affine subspaces, the744
normal spaces are equal at all points of the manifold. Therefore the derivative of the745
projection at a parametrized point is null and Lemma A.1 provides the result.746

The case g = λmax is not difficult per se, but requires a precise description of the747
geometry of the maximum eigenvalue function and its structure manifolds; we refer748
to [28, 25] for the derivation of these tools.749

Lemma A.3. Consider g = λmax , a point ȳ ∈ Sm and the corresponding structure750
manifoldMλmax

r (of Example 2.6). Then Properties 2.7 and 2.9 hold at ȳ.751

Proof. Normal ascent Take y ∈ Mλmax
r , let U ∈ Rm×r denote a basis of the first752

eigenspace of matrix y and d ∈ NyMλmax
r . The normal space at y ∈ Mλmax

r writes753
([25, Th. 4.3, Cor. 4.8])754

NyMλmax
r = {U(y)ZU(y)>, Z ∈ Sr, trace(Z) = 0}.755756

Therefore, d = UZU> for some Z ∈ Sr such that trace(Z) = 0. Let s = U(I/r +757
αZ)U> where α > 0 is small enough so that s is positive definite. Since s has758
also unit trace, it is a subgradient of λmax at y [25, Th. 4.1]. Thus λ′max (y; d) =759
supv∈∂λmax (y)〈v, d〉 ≥ 〈s, d〉 = 〈I/r + αZ,Z〉 = α‖Z‖2. Hence λ′max (y; d) > 0 for any760

d ∈ NyMλmax
r \ {0}.761

Curve assumption Let ȳ ∈ Mλmax
r . For any y ∈ Sm, we denote by P (y) the762

orthogonal projection on the eigenspace corresponding to the r largest eigenvalues763
of y (counting multiplicities). This operator is smooth. We can define a mapping764
U : Sm → Rm×r such that: U(y)>U(y) = Ir, P (y) = U(y)U(y)>, U is smooth near765
our reference point ȳ and its derivative at ȳ satisfies DU(ȳ)>U(ȳ) = 0. The mapping766
U defines a smooth orthonormal basis of the eigenspace corresponding to the r largest767
eigenvalues [28, p. 557]. Finally, for a point y′ ∈Mλmax

r , the projection of d ∈ Sm on768
Ny′Mλmax

r writes769

projNy′Mλmax
r

(d) = U(y′)

{
U(y′)>dU(y′)− 1

r
trace(U(y′)>dU(y′))Ir

}
U(y′)>.770

771

Now, fix y near ȳ, consider the eigenbasis U with reference point e(y, 0) =772
projMλmax

r
(y). Following Lemma A.1, let ν : t 7→ projNe(y,t)Mλmax

r
(d) with d =773

projMλmax
r

(y) − y. We can now give an explicit expression of ν(t) and show that774
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d
dtν(0) is null. Denoting U(t) = U(e(y, t)), we have775

ν(t) = U(t)

{
U(t)>dU(t)− 1

r
trace(U(t)>dU(t))Ir

}
︸ ︷︷ ︸

,χ(t)

U(t)>.776

777

First, as d is a normal vector toMλmax
r at point projMλmax

r
(y), there exists Z ∈ Sr778

such that d = U(0)ZU(0)>. Using that DU(0)>U(0) = 0 yields779

DU(0)>dU(0) = DU(0)>U(0)ZU(0)>U(0) = 0.780781

Then, one readily checks that U(0) Dχ(0)U(0) = 0.782
We turn to the term DU(0)χ(0)U(0)>. A quick computation from the eigen783

decomposition of y shows that d writes U(0)ZU(0)>, where Z is actually diagonal.784
Therefore, χ(0) = Z − (1/r) trace(Z)Ir is a diagonal matrix, so that785

DU(0)χ(0)U(0)> =

r∑
i=1

χ(0)ii DUi(0)Ui(0)>.786

787

Following [28], the differential of t 7→ U(e(y, t)) at t = 0 writes788

DUi(0) =

m∑
k=r+1

1

λ1 − λk
Uk(0)Uk(0)>ηUi(0),789

790

with η = gradλmax (projMλmax
r

(y)). Using that λmax (y) = (1/r)
∑r
i=1 Ui(y)>yUi(y),791

we compute the Riemannian gradient: gradλmax (y) = (1/r)
∑r
i=1 Ui(y)>Ui(y) (see [6,792

Sec. 7.7]). By orthogonality of the smooth basis of eigenvectors, the terms Uk(0)>Ui(0)793
vanish for all i ∈ {1, . . . , r} and k ∈ {r+1, . . . ,m}. We get that DU(0)χ(0)U(0)> = 0,794
and thus that D ν(0) = 0. Thus, Lemma A.1 applies and yields the result.795

Appendix B. Numerical experiments in high precision. We report in Fig-796
ure 6 the evolution of suboptimality versus computing time, for the same problems797
and algorithms as in section 5, but with a high precision floating type. Indeed, the798
flexibility of the Julia language allows to use the same implementation with the high799
precision BigFloat type, which precision is 1.73 · 10−72, or the usual Float64 type,800
which precision is 2.22 · 10−16.801
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