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HARNESSING STRUCTURE
IN COMPOSITE NONSMOOTH MINIMIZATION∗

GILLES BAREILLES† , FRANCK IUTZELER† , AND JÉRÔME MALICK‡

Abstract. We consider the problem of minimizing the composition of a nonsmooth function
with a smooth mapping in the case where the proximity operator of the nonsmooth function can be
explicitly computed. We first show that this proximity operator can provide the exact smooth sub-
structure of minimizers, not only of the nonsmooth function, but also of the full composite function.
We then exploit this proximal identification by proposing an algorithm which combines proximal
steps with sequential quadratic programming steps. We show that our method locally identifies
the optimal smooth substructure and then converges quadratically. We illustrate its behavior on
two problems: the minimization of a maximum of quadratic functions and the minimization of the
maximal eigenvalue of a parametrized matrix.

Key words. Nonsmooth optimization, proximal operator, partial smoothness, manifold identi-
fication, maximum eigenvalue minimization, sequential quadratic programming.

AMS subject classifications. 65K10, 90C26, 49Q12, 90C55.

1. Introduction.

1.1. Context: structured nonsmooth optimization. In this paper, we con-
sider nonsmooth optimization problems of the form

min
x∈Rn

F (x) , g(c(x)),(1.1)

where the inner mapping c : Rn → Rm is smooth and the outer function g : Rm →
R ∪ {+∞} is nonsmooth and may be nonconvex, but admits an explicit proximity
operator. Such composite nonsmooth optimization problems appear in a variety of
applications in signal processing, machine learning, and control, such as robust nonlin-
ear regression, phase synchronization, nonsmooth penalty functions; see e.g. [21, 31]
and the references therein.

Throughout the paper, we illustrate our developments on two classes of functions:
the pointwise maximum of m smooth real-valued functions ci

F (x) = max
i=1,...,m

(ci(x))(1.2)

and the maximum eigenvalue of a parametrized symmetric real matrix c

F (x) = λmax (c(x)).(1.3)

In these two examples and many others, subgradients of F can be computed and thus
the composite function can be minimized using standard nonsmooth optimization
algorithms (e.g. subgradient methods, gradient sampling [7], nonsmooth BFGS [20],
or bundle methods [14]). Nevertheless, these methods do not exploit the fact that
F is a composition of a smooth mapping c, which can hinder their performance.
In contrast, the so-called prox-linear methods leverage this composite expression by
introducing an extension of the proximity operator where the nonlinear mapping c
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is iteratively replaced by a first-order Taylor approximation [21]. These methods
benefit from theoretical convergence guarantees, and nicely generalize to Taylor-like
approximations [9, 3]. However these methods are not always directly implementable
because the prox-linear step may be hard to compute, as in (1.3).

In this paper, we propose an optimization algorithm for solving (1.1) exploiting
that the nonsmooth objective function F = g ◦ c writes as a composition between a
smooth mapping c and a simple nonsmooth function g which displays some smooth
substructure, as discussed below.

1.2. Smooth substructure, identification, and existing algorithms. For
many composite functions, including (1.2) and (1.3), the nondifferentiability points
locally organize into smooth manifolds over which F evolves smoothly. We illustrate
in Figure 1 such a smooth substructure for a maximum of two functions.
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Fig. 1: Smooth substructure on a simple example (n = m = 2) with g(y) =
max(y1, y2) and c(x) = (2.6x2

1 + 4 (x2 − 1)2 − 4, x2
1 + 4 (x2 + 1)2 − 4). The right-

hand figure shows the level curves of g (in the intermediate space), and the left-hand
figure shows the ones of F (in the input space). The manifolds of non-differentiability
of F and g are in green. The right figure also displays the image of c as the red area.

The smooth substructure of F can help in solving (1.1). Indeed, if the optimal
solution x? belongs to a manifold M? that is known beforehand, then minimizing
the nonsmooth function F over Rn boils down to minimizing the smooth restriction
F |M? over this smooth optimal manifold M?. This would enable to solve (1.1) by
smooth constrained optimization algorithms, such as Sequential Quadratic Program-
ming (SQP) methods (see e.g. [25, 5]).1 The main difficulty in practice is that we do
not knowM? in advance.

Thus, the algorithms exploiting this smooth substructure require two ingredients:
i) a mechanism to identify the optimal manifold;
ii) an efficient method to minimize F restricted to this manifold.

For general convex functions, the algorithm of [23] mixes a proximal bundle it-
eration (as a heuristic for identification) and a so-called U-Newton iteration (which
interprets as an SQP step; see [24, Sec. 5]). The obtained superlinear rate hinges on
the identification of the optimal manifold.

1Note thatM? is an arbitrary manifold and thus computing a feasible point is already a difficult
task in general. That is why we consider in this paper infeasible methods, such as SQP, instead of
feasible ones, like the Riemannian Newton algorithm.
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For max-of-smooth functions (1.2), the paper [33] pioneered the idea of seeking
the optimal manifold and using it to make second-order steps. Their identification
heuristic uses the indices of the maximal function along a descent direction. Recently,
[18, 10] investigate a related setting and propose bundle-like algorithms incorporat-
ing high-order information that converge (super)linearly on max-of-smooth functions
when the optimal manifold is known.

For the maximum eigenvalue of a parametrized matrix (1.3), a specific version of
the U-Newton method discussed above is studied by [26]. Again, the identification
mechanism is a heuristic determining the multiplicity of the maximal eigenvalue and
the optimization step is an SQP iteration.

None of these methods guarantee identification of the optimal manifold: they
either assume that the optimal manifold is known in advance, or rely on heuristics for
identification. Here, we aim at further harnessing the smooth substructure of F = g◦c
to have guaranteed local identification of the optimal manifold and then guaranteed
quadratic convergence when using SQP iterations.

1.3. Contributions and outline. We propose a local second-order algorithm
for solving the nonsmooth composite problem (1.1) that identifies the optimal man-
ifold of non-differentiability. The two main ingredients of our algorithm are the fol-
lowing:

i) we use the explicit proximal operator of g with chosen stepsizes to provide a
guaranteed identification procedure;

ii) for a candidate manifoldM, we make an SQP iteration minimizing a smooth
extension of F |M subject to the constraint of belonging toM.

The fact that proximal-based operators have identification properties around min-
imizers is well-known: the proximal operator [11, 8], the proximal gradient opera-
tor [1], approximate variable-metric proximal gradient operators [15], and prox-linear
operators [21] locally identify the optimal manifold under some natural geometrical
assumptions. Here, we only have access to the proximity operator of g, and in order to
exploit the structure it provides, we face the double challenge of, first, identifying the
smooth structure around a point which is not a minimizer for g, and, second, deducing
the corresponding structure of F = g ◦ c. Thus, our main technical contribution is to
establish that proxγg maps a point y close to c(x?) to c(M?). The step γ should be
carefully chosen, in particular larger than the distance of y to c(x?). Mathematically,
we study the range of steps for which the curve γ 7→ proxγg(y) belongs to c(M?).
This analysis shows connections with recent works in nonsmooth analysis, such as the
modulus of identifiability appearing in [17].

We combine this new identification result with standard SQP-steps to propose a
local algorithm for minimizing the composite function F . We pay a special attention to
prevent the quadratic convergence of SQP from jeopardizing identification: we prove
that, for a well-chosen stepsize policy, the method identifies the optimal structure and
converges quadratically. We illustrate numerically these properties on problems of the
form (1.2) and (1.3).

The outline of the remainder of the paper is as follows. First, in Section 2,
we introduce the technical tools to describe the manifold identification brought by
proximity operators (including prox-regularity and partial smoothness). Furthermore,
we lay out two technical properties needed for proximal identification in the composite
setting. In Section 3, we show our main result consisting in a description of a stepsize
range for which the proximity operator of g identifies the optimal manifold locally
around a minimizer. In Section 4 we detail the proposed method combining SQP-
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steps and proximal identification steps. Finally, we present in Section 5 numerical
illustrations of our method and of the identification result.

1.4. Notations. Given a point z in Rp, we denote by Nz a neighborhood of z
in Rp. We reserve the names based on x for points in the input space Rn, and on
y for points in the intermediate space Rm. We denote the differential of a smooth
mapping c at point x by D c(x), and its Jacobian matrix by Jacc(x). The conjugate
of the linear operator A is denoted by A∗. The minimizer is denoted by x?.

2. Setting and assumptions. Let us start by representing schematically the
type of functions we consider:

Rn c−−−−−−−−−−→
smooth mapping

Im(c) ⊂ Rm g−−−−−−−−−−−−→
nonsmooth function

R ∪ {+∞}.

Throughout the paper, we denote by x points in the input space Rn and by y points
in the intermediate space Rm.

In all the results presented in this paper, we make the following assumption that
describes the minimal global properties on g and c to conduct our reasoning.

Assumption 2.1. The mapping c : Rn → Rm is C2, the function g : Rm →
R ∪ {+∞} is proper and lower semi-continuous.

We work with the set of (general) subgradients (see [29, Def. 8.3]), defined at a
point ȳ where g(ȳ) is finite as:

∂g(ȳ) ,
{

lim
r
vr : vr ∈ ∂̂g(yr), yr → ȳ, g(yr)→ g(ȳ)

}
,

where ∂̂g(ȳ) denotes the set of regular (or Fréchet) subgradients, defined as

∂̂g(ȳ) , {v : g(y) ≥ g(ȳ) + 〈v, y − ȳ〉+ o(‖y − ȳ‖) for all y ∈ Rm} .

These two subdifferentials match if (and only if) g is (Clarke) regular at ȳ. Closed
convex functions are regular everywhere and these subdifferentials match the usual
convex subdifferential (see [29, Chap. 8.11-12] for details).

In the remainder of this section, we provide quick recalls and definitions about
the two important objects of our analysis: the proximity operator in Subsection 2.1
and the structure manifolds in Subsection 2.2. We illustrate them on our running
examples (1.2) and (1.3).

2.1. Proximity operator. The proximity operator of a function g with step
γ > 0 at y ∈ Rm is defined as the set-valued mapping

proxγg(y) , argminu∈Rm

{
g(u) +

1

2γ
‖u− y‖2

}
.

This operator is well-defined when g is prox-regular and prox-bounded; see e.g. [29,
13.37]. We quickly introduce these two notions and recall a result on the uniqueness
and characterization of the prox operator, which is important in our developments.

A function g is prox-regular at a point ȳ for a subgradient v̄ ∈ ∂g(ȳ) if g is finite,
locally lower semi-continuous at ȳ, and there exists r > 0 and ε > 0 such that

g(y′) ≥ g(y) + 〈v, y′ − y〉 − r

2
‖y′ − y‖2
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whenever v ∈ ∂g(y), ‖y − ȳ‖ < ε, ‖y′ − ȳ‖ < ε, ‖v − v̄‖ < ε, and g(y) < g(ȳ) + ε.
When this holds for all v̄ ∈ ∂g(ȳ), we say that g is prox-regular at ȳ [29, Def. 13.27].

A function g is prox-bounded if there exists R ≥ 0 such that the function g+R
2 ‖·‖2

is bounded below. The corresponding threshold (of prox-boundedness) is the smallest
rpb ≥ 0 such that g+R

2 ‖·‖2 is bounded below for all R > rpb. In this case, g+R
2 ‖·−ȳ‖2

is bounded below for any ȳ and R > rpb [29, Def. 1.23, Th. 1.25].
We can now recall a relevant result on the characterization of proximal points.

Proposition 2.2 ([12, Th. 1]). Suppose that the function g is prox-regular at ȳ
for v̄ ∈ ∂g(ȳ) with parameter rpr, and prox-bounded with threshold rpb. Then, for any
γ < min(r−1

pr , r
−1
pb ) and all y near ȳ + γv̄, the proximal operator is:

• single-valued and locally Lipschitz continuous;
• uniquely determined by the relation

p = proxγg(y)⇔ y − p ∈ γ∂g(p).

In addition to its existence and characterization provided by the result above, the
proximity operator has a closed-form expression in our running examples.

Example 2.3 (Maximum). The subdifferential of g(y) = max(y1, . . . , ym) is

∂max(y) = Conv {ei : yi = max(y)} ,

where ei is the i-th element of the Cartesian basis of Rm. The max function is
convex, thus globally prox-regular and prox-bounded everywhere (with parameters 0).
Its proximity operator is given (coordinate-wise) by

[
proxγmax(y)

]
i

=

{
s if yi > s

yi else

where s is the unique real number such that
∑
{i:yi>s}(yi − s) = γ.

Example 2.4 (Maximum eigenvalue). Denote the eigenvalue decomposition of a
point y ∈ Sm as y = EDiag(λ)E>, where λ ∈ Rm is a vector with decreasing entries
and E ∈ Rm×m an orthogonal matrix. The subdifferential of the maximum eigenvalue
at y writes [19, Ex. 3.6]

∂λmax (y) = {E1:rZE
>
1:r, Z ∈ Sr, Z � 0, traceZ = 1}

where r is the multiplicity of the maximum eigenvalue of y. The λmax function is con-
vex, thus prox-regular and prox-bounded (with parameters 0). Its proximity operator
can be expressed using the one of the max function as

proxγλmax
(y) = EDiag(proxγmax (λ))E>.

2.2. Structure manifolds. We now specify the notion of structure manifold in
relation with a nonsmooth function g.

A subset M of Rn is said to be a p-dimensional C2-submanifold of Rn around
x̄ ∈ M if there exists a C2 manifold-defining map h : Rn → Rn−p with a surjective
derivative at x̄ ∈ M that satisfies for all x close enough to x̄: x ∈ M ⇔ h(x) = 0.
We define the tangent and normal spaces at a point x ∈M as follows:

TxM = ker Dh(x) NxM = Im Dh(x)∗
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The important notion of structure manifolds of g can be defined as a manifold
Mg where g is nondifferentiable. More precisely, at a point ȳ ∈ Mg, we require g
to be prox-regular and partly smooth. This property of (C2-)partial smoothness is
verified at a point ȳ for a function g relatively to a set Mg containing ȳ if Mg is a
C2 manifold around ȳ and if

• (smoothness) the restriction of g toMg is a C2 function near ȳ;
• (regularity) g is (Clarke) regular at all points y ∈Mg near ȳ, with ∂g(y) 6= ∅;
• (sharpness) the affine span of ∂g(ȳ) is a translate of NȳMg;
• (sub-continuity) the mapping ∂g restricted toMg is continuous at ȳ.

The concept of partial smoothness, introduced in [19], captures (locally) well-
behaved nonsmoothness by requiring g to be smooth along a manifold and non-smooth
across it. In addition, the prox-regularity of g ensures uniqueness of the structure
manifold near ȳ [11, Corollary 4.2, Example 7.1]. To highlight the relation between
the manifold and the function g, we use the notationMg for the structure manifold
related to g.

Example 2.5. The structure manifolds of max are

Mmax
I = {y ∈ Rm : yi = max(y) for i ∈ I},

where I ⊂ {1, . . . ,m}. A smooth manifold-defining map forMmax
I is h : Rm → R|I|−1

such that h(y)l = yil − yi|I| , where |I| denotes the size of I and il the l-th element of
I (with some ordering). As required, this map is surjective. At any point y ∈ Rm, the
maximum is partly smooth relative toMmax

I , where I = {i : yi = max(y)}.
Example 2.6. The structure manifolds of λmax in Sm consist of all matrices

having a largest eigenvalue with fixed multiplicity r:

Mλmax
r = {y ∈ Sm : λ1(y) = · · · = λr(y)}.

A manifold-defining map of Mλmax
r is described in [32] and λmax is partly smooth

relative toMλmax
r at any point y ∈Mλmax

r .

In view of the expression of the proximity operators in our examples, their output
naturally lie on the structure manifolds described above. More precisely, proxγmax(y)
belongs to the structure manifoldMmax

I , where I collects the indices of the k largest
entries of y and k grows as γ increases. Similarly, proxγλmax

(y) belongs to the
structure manifold Mλmax

r , where r increases as γ does. This observation is at the
core of the ability of proximal operators to identify neighboring structure manifolds.

2.3. Structure Identification. It is well-known that the proximity operator
identifies structure locally around critical points (see e.g. [8, Th. 28]): all points near
a minimizer are mapped to the manifold containing the minimizer. Furthermore, this
structure is revealed during the computation of the operator.2

In the situation we consider, the proximity operator of F cannot be explicitly
computed. However, proxγg is available and can provide some structure in the inter-
mediate space Rm that we would like to exploit. To do so, we introduce two properties
(holding on our two running examples), that will allow us to retrieve the structural
information in the intermediate space near points that are not minimizers of g.

2Computing exactly the structure of the output point of the operator, as can be done for the
prox, is opposed to merely observing the structure of the output after its computation. This last
option is not desirable in our opinion as it entails delicate numerical questions such as testing equality
between reals for the maximum, or computing the multiplicity of the maximal eigenvalue of a matrix.



COMPOSITE NONSMOOTH OPTIMIZATION 7

0 1 2 3 4

−1

0

1

0 1

1

2

2

3

3

4

5

y?

d

M

Ny?M

Im g

Fig. 2: Illustration of the level-curves of function g in Example 2.10, along with the
image of c and the tangent and normal spaces toMg at the minimizer.

The first property holds at point ȳ ∈ Mg if the nonsmooth function g strictly
increases on all directions on which it is nonsmooth.

Property 2.7 (Normal ascent). A function g satisfies the normal ascent prop-
erty at point ȳ if 0 lies in the relative interior of the projection of ∂g(ȳ) on the normal
space at ȳ, that is: 0 ∈ ri projNȳMg ∂g(ȳ).

Remark 2.8 (Positive directional derivative). In a “nice” setting where g is Lip-
schitz continuous and regular at ȳ, Property 2.7 implies that the directional derivative
of g along any normal direction d ∈ NȳMg is positive. Indeed, in that case one-sided
directional derivatives are well-defined [29, p. 358, Th. 9.16], and the derivative along
direction w equals maxv∈∂g(ȳ)〈v, w〉. Along a normal direction d ∈ NȳMg, by par-
tial smoothness the directional derivative writes maxvn∈projNȳMg (∂g(ȳ))〈vn, d〉. Prop-
erty 2.7 ensures the existence of α > 0 such that αd ∈ projNȳMg (∂g(ȳ)), making the
derivative positive.

Let us briefly discuss that, even if Property 2.7 may look strong, in practice it
is not. For a given nonsmooth function F which can be decomposed as F = g ◦ c,
Property 2.7 may not hold for g at c(x?) for a minimizer x?. Nevertheless, the
property often holds for a different decomposition F = g̃ ◦ c̃. We give two examples
where changing the decomposition of F ensures that Property 2.7 holds at minimizers.

Example 2.9 (Normal ascent for regularized-type problem). Consider the min-
imization of F (x) = f(x) + r(x), where f(x) = 3

2x and r(x) = |x| − 1
2x, whose

minimizer is x? = 0. This writes as a composite problem by setting c(x) = (f(x), x)
and g(y) = y1 +r(y2). We note first that Property 2.7 does not hold for g at c(x?), the
structure manifold of g at c(x?) beingMg = R×{0}. However the function also writes
F (x) = f̃(x) + r̃(x), with f̃(x) = x and r̃(x) = |x|. Letting similarly c̃(x) = (f̃(x), x)
and g̃(y) = y1 + r̃(y2), we now get that Property 2.7 holds for g̃ at c̃(x?).

Example 2.10 (Normal ascent property for composite problems). Consider the
minimization of F = g ◦ c, with

g(y) =

{
y1 + y2 if y1 > 0

y1 + 0.25 y2 else
, c(x) =

(
2− x

2x

)
.

The minimizer is x? = 0, since g is strictly increasing at all y ∈ Im(c) near y? = c(x?);
see Figure 2. However the normal ascent property does not hold at x?: g is decreasing
at y? along the normal direction (0;−1).

The composite function boils down to F (x) = 2 + max(x,−0.5x) = g̃ ◦ c̃(x), where
g̃(y) = 2 + max(y) and c̃(x) = (x,−0.5x). With this decomposition, g̃ does satisfy the
normal ascent property at x?.
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The second property is more technical and controls the velocity of a curve on the
manifoldMg.

Property 2.11 (Curve property). A function g partly smooth at ȳ relative to
Mg satisfies the curve property at ȳ when there exists a neighborhood Nȳ of ȳ and
T > 0 such that any smooth application e : Nȳ × [0, T ] → Mg such that e(y, 0) =
projMg (y), d

dte(y, t)|t=0 = − grad g(projMg (y)) satisfies

‖ projNe(y,t)Mg (e(y, t)− y)‖ ≤ distMg (y) + L̃ t2 for all y ∈ Nȳ, t ∈ [0, T ],

where distMg (y) , ‖y−projMg (y)‖ is the distance betweenMg and y, and grad g(p) ∈
TpMg denotes the Riemannian gradient of g obtained as projTpMg (∂g(p)).

The idea behind this property is to ensure that the differential of the (time de-
pendent) projection on the normal space is (uniformly) negligible at time 0. Note
that for affine spaces, we trivially have ‖projNe(y,t)Mg (y − e(y, t))‖ = distMg (y) for
all t near 0: the normal spaces are equal at all points of the manifold.

These two properties are satisfied at any structured point for the two nonsmooth
functions max and λmax of our running examples as detailed in the following lemma.
The proofs for the two functions are rather direct but require precise technical de-
scriptions; we defer them to Appendix A.

Lemma 2.12. Consider either:
• g = max, ȳ ∈ Rm, and the structure manifoldMmax

I (of Example 2.5);
• g = λmax , ȳ ∈ Sm, and the structure manifoldMλmax

r (of Example 2.6).
Then, Properties 2.7 and 2.11 hold at ȳ.

Finally, the structure provided by proxγg lies in the intermediate space Rm, while
the optimization variable lives in Rn. In order to transfer the structure information to
the input space, we will also require the smooth map c : Rn → Rm to be transversal
toMg ⊂ Rm at some point x̄ ∈ Rn, which holds whenMg is a manifold around c(x̄)
and the following (equivalent) conditions hold:

Nc(x̄)Mg ∩ ker(D c(x̄)∗) = {0} or Tc(x̄)Mg + Im D c(x̄) = Rm.(2.1)

In that case, the set c−1(Mg) is a submanifold of Rn [16, Th. 6.30], whose normal
space has the same dimension as the one ofMg. Furthermore, we have [16, Ex. 6-10]

Nxc
−1(Mg) = D c(x)∗Nc(x)Mg and Txc

−1(Mg) = D c(x)−1Tc(x)Mg.(2.2)

3. Collecting structure with the proximity operator. We show in this
section how to exactly detect the optimal structure manifold of the composite function
F = g ◦ c around a point x̄ using the proximity operator of g.

In our nonconvex and nonsmooth setting, we seek only structured points which
satisfy certain assumptions summarized in our definition of a qualified point.

Definition 3.1 (Qualified points). A point x̄ ∈ Rn is qualified relative to a
decomposition (g, c) of F and manifoldMg if

i) g is prox-bounded and prox-regular at c(x̄);
ii) g is partly smooth at c(x̄) relative toMg;
iii) c is transversal toMg at x̄;
iv) g satisfies Properties 2.7 and 2.11 at point c(x̄).

Three of these assumptions constrain only the nonsmooth function g and are easily
verifiable in practice. Only the transversality condition limits the range of acceptable
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smooth mappings; see e.g. [19, Sec. 4]. For such qualified points, we get two useful
properties: first, F is partly smooth at x̄ relative to the manifoldM, locally defined
as M , c−1(Mg) 3 x̄ by the chain rule of [19, Th. 4.2], and second, the operator
proxγg is single-valued, locally Lipschitz, and defined by its optimality condition near
c(x̄).

3.1. Main result: proxγg ◦ c as a structure detector. We show in the
following theorem that if x is near a qualified point of F with structure M, then
proxγg(c(x)) will output a point onMg = c(M), the structure manifold of g corre-
sponding toM (in the intermediate space). Our theorem provides precise conditions
on x and γ that guarantee this structure identification and forms the main theoretical
contribution of the paper. We illustrate this behavior in Figures 3 and 4.

The position of this result with respect to the literature is discussed right after
in Remark 3.3, and the proof is given in the following Subsection 3.2, in a succession
of technical lemmas. We stress that we give guarantees on the structure to which the
point proxγg(c(x)) belongs, rather than on the point itself.

Theorem 3.2. Consider a function F = g ◦ c and a point x̄. Assume that x̄ is
qualified relative to a manifold Mg ⊂ Rm. Then, there exists a neighborhood Nx̄ of
x̄ and a constant Γ such that, for all x ∈ Nx̄,

proxγg(c(x)) ∈Mg for all γ ∈ [ϕ(distM(x)),Γ],

where distM(x) denotes the distance from x to the manifoldM and ϕ is defined as

ϕ(t) =
cri

2L̃

1−
√

1− 4L̃cmapt

c2ri

 =
cmap

cri
t+

L̃c2map

c3ri
t2 + o(t2),

with cri, cmap, and L̃ (of Property 2.11) positive constants.
In particular, there exists L > 0, ε > 0 such that

‖x− x?‖ ≤ ε and L‖x− x?‖ ≤ γ ≤ Γ =⇒ proxγg(c(x)) ∈Mg.

Note that Property 2.11 is only used to compute explicitly an interval of γ guaranteed
to provide the correct structure; the existence of that interval holds independently.

Remark 3.3 (Relation with existing results). The difference between Theorem 3.2
and existing results lies in two aspects. First, the identification properties of the
proximal operator [8, Th. 28], the proximal-gradient operator [1, Th. 3.1], or even
approximate prox-gradient operators [15] give structure information directly in the
input space (even in abstract algorithmic frameworks [11, Th. 4] or [22, Th. 4.10]).
In the composite case, the proximity operator reveals structure in the intermediate
space only, and extra work is required to bring it back to the input space.

Second, most existing results investigate identification properties near minimiz-
ers, and not just arbitrary points (two notable exceptions give results near arbitrary
structured points: [22] for an abstract algorithmic framework, and [1] for the proximal
gradient). Here, we evaluate proxγg near c(x̄), a point without any specific proper-
ties (even if x̄ is a local minimizer). This is why we need Property 2.7 to guarantee
identification in the intermediate space, and bring the structure information to the
input space.

Remark 3.4 (About prox-linear methods). Prox-linear methods are known to
identify structure on composite problems [21]. Specifically, [21, Th. 4.11] establishes
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y2
y1

y3

Mmax
2,3

Mmax
1,3

Mmax
1,2

Mmax
1,2,3

c(x)

prox0.25max(c(x))

prox0.75max(c(x))

prox1.2max(c(x))

Fig. 3: Illustration of the main result in the intermediate space, on the function of
Figure 4. The structure manifolds of max : R3 → R are displayed as the three half-
planes and the line in green. The red line illustrates the curve γ 7→ proxγmax(c(x)).
When γ < 0.25, the curve does not lie on any structure manifold. For γ ∈ [0.25, 0.75),
the curve lies on the optimal manifoldMmax

2,3 . For γ ≥ 0.75, the curve lies onMmax
1,2,3.
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γ = 2.3

{x : proxγmax(c(x)) ∈ Mmax
{1,2,3}}

{x : proxγmax(c(x)) ∈ Mmax
{1,2}}

{x : proxγmax(c(x)) ∈ Mmax
{1,3}}

{x : proxγmax(c(x)) ∈ Mmax
{2,3}}

Fig. 4: Illustration of the main result on a maximum of three quadratic functions,
with x̄ ∈ Mmax

{1,2} and a point x near x̄. The three figures show the areas where
proxγg ◦ c detects manifolds for three stepsizes: γ = 0.4 (upper left), γ = 1 (upper
right) and γ = 2.3 (lower left). We see on the upper left fig. that proxγg ◦ c detects
no structure from x because γ is too small, and in contrast, on the lower fig., that it
wrongly detects too much structure (Mmax

{1,2,3}) because γ is too large. On the upper
right fig., the optimal manifold is detected with γ chosen in the right interval.
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that, after some finite time, an intermediate quantity defined from the prox-linear
subproblem exact solution belongs to the optimal structure manifold Mg?. In prin-
ciple, this information could be used to take efficient second-order steps to minimize
F along the identified manifold M?. However, for generic composite problems, it
may be difficult, first, to obtain an exact solution of the prox-linear subproblems, and,
second, to check if the ensuing quantity belongs to Mg?. In contrast, the approach
presented here only needs to compute an exact solution of the proximal operator of
the simple nonsmooth function g.

Remark 3.5 (Theorem 3.2 provides a structure identification tool). In contrast
with the identification of prox-linear methods, Theorem 3.2 provides a simple result
for the detection of structure manifolds near any point x ∈ Rn. We also underline
that the bounds on the range of γ that provide correct identification are surprisingly
simple: the upper bound is constant and the lower bound is essentially proportional
to the distance to the manifold. These simple and explicit bounds allow us to build a
simple algorithm in the forthcoming Section 4.

3.2. Proof of Theorem 3.2. The main difficulty of the proof is to build a
suitable identification result for the nonsmooth function g. Theorem 3.2 (identification
for g ◦ c) would then follow by taking into account the action of the smooth map c.

To derive an identification result on g, we have to give conditions on y and γ so
that p = proxγg(y) lies on the considered manifoldMg. Since g is prox-regular and
prox-bounded at point c(x̄), Proposition 2.2 allows us to characterize this relation by
its first-order optimality condition:

y ∈ p+ γ∂g(p).

Whenever p ∈ Mg (which is what we want to show), this inclusion decomposes
along TpMg and NpMg as:

projTpMg (y − p) = γ grad g(p)(3.1)

projNpMg (y − p) ∈ γ projNpMg ∂g(p).(3.2)

Thus we will show that for suitable (y, γ), there is a unique p that satisfies these two
equations. We do so by considering the smooth tangent component (3.1) first and
then the nonsmooth normal component (3.2) as follows:

• We first show in Lemma 3.6 that for y near ȳ and γ small, there exists a
unique point p = e(y, γ) onMg that satisfies (3.1), which depends smoothly
on γ and y. This result is obtained by applying the implicit function theorem.

• Then, we prove in Lemma 3.7 that e(y, γ) also satisfies the second inclu-
sion (3.2) if γ belongs to the interval [ϕg(distMg (y)),Γg]. This result is a
consequence of the application of some variational analysis tools.

Putting these two results together, we obtain the existence and uniqueness of a
point p = e(y, γ) ∈ Mg verifying both (3.1) and (3.2) for all y near ȳ and γ ∈
[ϕg(distMg (y)),Γg]. By the first-order optimality condition presented above, this
point is necessarily proxγg(y).

Finally, this identification result in the intermediate space on g is transferred back
to the input space using transversality.

3.2.1. Part 1: tangent optimality. We first show that, for y near ȳ and
γ small, there is a unique point p on the manifold Mg that satisfies the tangent
component of this optimality condition:

projTpMg (y − p) = γ grad g(p),(3.1)
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where grad g(p) , projTpMg ∂(g(p)) is unique by the sharpness property of partial
smoothness, and matches the Riemannian gradient of g on Mg (see [6, Sec. 7.7]).
Such points p are given by a smooth manifold-valued application e(y, γ), the existence
of which is guaranteed by the following lemma.

Lemma 3.6. Consider a function g : Rm → R ∪ {+∞}, a point ȳ ∈ Rm, and a
manifold Mg with g partly smooth at ȳ relative to Mg. Then, there exists a smooth
curve e : Nȳ ×N0 →M defined on a neighborhood of (ȳ, 0) in Rm × R+ such that

• for all y ∈ Nȳ, e(y, 0) = projMg (y) and d
dγ e(y, γ)|γ=0 = − grad g(projMg (y));

• for all y ∈ Nȳ, γ ∈ N0, Eq. (3.1) is satisfied for p = e(y, γ).

Proof. We define the mapping Φ : Rm × R×Mg → ∪x∈MgTxMg as

Φ(y, γ, p) = γ grad g(p)− projTpMg (y − p)

and consider the equation Φ(y, γ, p) = 0 near the point (ȳ, 0, ȳ). Using the smoothness
of g onMg given by partial smoothness, we have that this mapping is continuously
differentiable on a neighborhood of (ȳ, 0, ȳ). We see that its differential with respect
to p is Dp Φ(ȳ, 0, ȳ) = I. Indeed, for η ∈ TpMg,

Dp Φ(y, γ, p)[η] = γHess g(p)[η] + η −Dp′

(
p′ 7→ projTp′Mg (y − p)

)
(p)[η].

At point (ȳ, 0, ȳ), the first term vanishes, and the third term writes

Dp′

(
p′ 7→ projTp′Mg (0)

)
(ȳ)[η]

and vanishes as well as the differential of the null function p′ 7→ projTp′Mg (0). Thus
Dp Φ(ȳ, 0, ȳ) = I is invertible. The implicit functions theorem thus grants the exis-
tence of neighborhoods N 1

ȳ , N 2
0 , N 3

ȳ of ȳ, 0, ȳ in Rm, R, Mg and a continuously
differentiable function e : N 1

ȳ ×N 2
0 → N 3

ȳ such that, for any (y, γ) ∈ N 1
ȳ ×N 2

0 , Equa-
tion (3.1) is satisfied with p = e(y, γ). For y ∈ N 1

ȳ , e(y, 0) satisfies y − e(y, 0) ∈
Ne(y,0)Mg, which is the first-order optimality condition of e(y, 0) = projMg (y). Pos-
sibly reducing N 1

ȳ so that, for all y ∈ Nȳ projMg (y) is well-defined and unique, the
previous optimality condition is equivalent to e(y, 0) = projMg (y). Besides, differen-
tiating Φ(y, γ, e(y, γ)) = 0 relative to γ at γ = 0 yields

Dγ e(y, 0) = −[Dp Φ(y, 0,projMg (y))]−1 Dγ Φ(y, 0,projMg (y))

= − grad g(projMg (y)),

which concludes the proof.

3.2.2. Part 2: normal optimality. The previous lemma shows that for every
(y, γ) one can find a point e(y, γ) on the manifold Mg that solves the tangent part of
the optimality condition (3.1). The next lemma determines the values of y and γ for
which the whole optimality condition

y ∈ e(y, γ) + γ ri ∂g(e(y, γ))(3.3)

holds, as illustrated in Figure 5a.

Lemma 3.7. Consider a function g, a point ȳ ∈ Rm and a manifold Mg such
that g is partly smooth at ȳ relative toMg and that g satisfies Property 2.7 at ȳ. Let
e denote a smooth M-valued application defined on a neighborhood of (ȳ, 0) provided
by Lemma 3.6. Then, there exists C > 0 such that:
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N γ
ȳ

e(y, 0) = projM(y)

e(y,
¯
γg(y))

y Mg

(a) the curve γ 7→ e(y, γ) onM.

N γ
ȳ

y = prox0g(y)

ȳ

prox
¯
γg(y)g(y)

Mg

(b) the curve γ 7→ proxγg(y) onM
for γ ≥ ϕ(distMg (y)).

Fig. 5: Illustration of Lemma 3.7 and its consequences.

i) for all γ ∈ [0, C], e(ȳ, γ) verifies (3.3) with y = ȳ,
ii) for all γ ∈ [0, C], there exists a neighborhood N γ

ȳ of ȳ such that, for all
y ∈ N γ

ȳ , e(y, γ) verifies (3.3),
Further assume that g satisfies Property 2.11 at ȳ with constant L̃, then

iii) there exist Γg > 0 and a neighborhood Nȳ of ȳ such that for all y ∈ Nȳ

e(y, γ) verifies (3.3) for all γ ∈ [ϕg(distMg (y)),Γg],

where cri ≥ 0 and ϕg(t) = cri
2L̃

(
1−

√
1− 4L̃t

c2ri

)
= 1

cri
t+ L̃

c3ri
t2 + o(t2).

The proof consists in finding the points y, γ such that 0 ∈ ri Ψ(y, γ), where the
mapping Ψ : Rm × R→ ∪x∈MgNxMg is defined as

Ψ(y, γ) = projNe(y,γ)Mg

(
1

γ
(e(y, γ)− y) + ∂g (e(y, γ))

)
.

Items i) and ii) are shown by extending the property 0 ∈ Ψ(ȳ, 0) to a neighborhood
of (ȳ, 0), using the inner-semicontinuity properties of Ψ. We refer to [29, Def. 5.4]
for an exposition of the notions of continuity of set-valued mappings. We then derive
explicit bounds on the interval of steps such that 0 ∈ ri Ψ(y, γ): for a fixed y ∈ Nȳ,
when γ decreases past some value, say

¯
γ(y), the condition 0 ∈ ri Ψ(y, γ) no longer

holds. Precisely at
¯
γ(y), 0 lies on the (relative) boundary of Ψ(y,

¯
γ(y)): denoting

rbdS , S \ riS the relative boundary of set S,

0 ∈ rbd projNe(y,
¯
γ(y))Mg

(
1

¯
γ(y)

(
e(y,

¯
γ(y))− y

)
+ ∂g

(
e(y,

¯
γ(y))

))
.

Denoting ∂Ng(p) , projNpMg (∂g(p)) the projection of the subdifferential on the
normal space of its structure manifold and taking norms yields:

‖ projNe(y,
¯
γ(y))Mg (y − e(y,

¯
γ(y)))‖ ≥

¯
γ(y) inf

vn∈rbd ∂Ng(e(y,
¯
γ(y)))

‖vn‖

≥
¯
γ(y) inf

p∈Nȳ
inf

vn∈rbd ∂Ng(p)
‖vn‖︸ ︷︷ ︸

,cri

.



14 G. BAREILLES, F. IUTZELER, AND J. MALICK

We note that the constant cri is positive. Indeed, y 7→ grad g(y) = projNyMg ∂g(y) is
a continuous selection of the affine hull of ∂g, and grad g(ȳ) ∈ ri ∂g(ȳ) by property 2.7.
Lemma 20 from [8] then guarantees that grad g(y) ∈ ri ∂g(y) for y close enough to ȳ.
Projecting back on the normal space at y provides the inclusion 0 ∈ ri projNȳMg ∂g(ȳ)
a neighborhood of ȳ on Mg. This implies positivity of cri, reducing the size of Nȳ
if necessary. We note that this kind of quantity also appears as the modulus of
identifiability in the recent [17, Def. 2.3] where it has the same property: its positivity
enables the identification of the associated structure manifold.

Using Property 2.11, the left-hand side is upper bounded by a simpler expression:

L̃
¯
γ(y)2 + distMg (y) ≥ cri

¯
γ(y), that is

¯
γ(y) ≤ cri

2L̃

1−
√

1− 4L̃distMg (y)

c2ri

 ,

which provides the expression for ϕg used in the lemma.

Proof. Item i) We first consider Ψȳ(·) = Ψ(ȳ, ·). Since ȳ ∈ Mg, Lemma 3.6 tells
us that e(ȳ, γ) = ȳ − γ grad g(ȳ) + o(γ), and thus

Ψȳ(0) = projNȳMg (− grad g(ȳ) + ∂g(ȳ)) = projNȳMg (∂g(ȳ))

where we used that grad g(ȳ) ∈ TȳMg is orthogonal to NȳMg. Property 2.7 provides
that 0 ∈ ri Ψȳ(0). We now turn to show that there exists C ′ such that, for all
γ ∈ [0, C ′], 0 ∈ ri Ψȳ(γ).

By contradiction, assume there exist a sequence γk → 0 such that 0 /∈ ri Ψȳ(γk).
This means that there exists a sequence of unit norm vectors (sk) such that for all k,

〈sk, z〉 ≤ 0 for all z ∈ Ψȳ(γk).(3.4)

As a bounded sequence, sk admits at least one limit point, say s̄. Take z̄ ∈ Ψȳ(0). The
continuity of ∂g (by partial smoothness, item iv), of γ 7→ (e(ȳ, γ)− ȳ)/γ (by smooth-
ness of e), and of γ 7→ projNe(ȳ,γ)Mg (by smoothness of Mg) yield the continuity of
Ψȳ as a set-valued map. This mapping is thus inner-semicontinuous [29, Def. 5.4], so
there exists a sequence zk ∈ Ψȳ(γk) such that zk converges to z̄. Taking the correct
subsequence and renaming iterates, we can write sk → s̄ and zk → z̄. Equation (3.4)
provides 〈sk, zk〉 ≤ 0 for all k, which gives at the limit 〈s̄, z̄〉 ≤ 0. This actually holds
for all z̄ ∈ Ψȳ(0): s̄ separates 0 and Ψ(0), which contradicts 0 ∈ ri Ψȳ(0).

Finally, let us take the constant C such that [0, C] is included in both [0, C ′] and
the neighborhood of 0 provided by Lemma 3.6. Then, for any γ ∈ [0, C], adding the
two orthogonal inclusions 0 ∈ ri Ψȳ(γ) and 0 = Φ(y, γ, e(y, γ)), we obtain that e(ȳ, γ)
verifies (3.3) with y = ȳ.

Item ii) Let γ ∈ [0, C]. We turn to show the existence of a neighborhood N γ
ȳ of ȳ such

that, for all y ∈ N γ
ȳ , e(y, γ) verifies (3.3). By contradiction, assume that there exists

a sequence (yk) that converges to ȳ such that (3.3) fails for (yk, γ). Since the tangent
component of (3.3) does hold, necessarily 0 /∈ ri Ψ(yk, γ). However, the mapping
y 7→ Ψ(y, γ) is inner-semicontinuous (from the same arguments as in the proof of item
i) and there holds 0 ∈ ri Ψ(ȳ, γ). A reasoning similar to that of item i) reveals the
contradiction.

Item iii) Define Nȳ a neighborhood of ȳ and Γg a positive constant such that Prop-
erty 2.11 applies over Nȳ× [0,Γg], and 0 ∈ ri Ψ(y, γ) holds for all (y, γ) ∈ Nȳ× [0,Γg].
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The second condition can be met on a nontrivial neighborhood of (ȳ, 0): it holds
at that point, and Ψ is inner-semicontinuous (e(y, γ) lies on Mg and ∂g is inner-
semicontinuous by partial smoothness of g).

Let y ∈ Nȳ and γ ∈ [ϕg(distMg (y)),Γg]. We show that 0 ∈ ri Ψ(y, γ), that is

projNe(y,γ)Mg (y − e(y, γ)) ∈ γ ri ∂Ng (e(y, γ)) .

Combining this with the orthogonal inclusion 0 = Φ(y, γ, e(y, γ)) yields the claim.
The inequality ϕg(distMg (y)) ≤ γ implies L̃γ2 + distM(y) ≤ γcri. We have

successively by definition of Nȳ and the above bound that

‖ projNe(y,γ)Mg (y − e(y, γ))‖ ≤ distM(y) + L̃γ2 ≤ γcri
≤ γ inf{‖n‖, n ∈ rbd ∂Ng(e(y, γ))}.

This means that projNe(y,γ)Mg (y − e(y, γ)) belongs to the ball of center 0 and radius
γ inf{‖n‖, n ∈ rbd ∂N (g(e(y, γ)))} in Ne(y,γ)Mg. Besides, this ball is included in
γ∂N (g(e(y, γ)) since 0 ∈ ∂Ng(e(y, γ) by definition of Nȳ. Therefore, 0 ∈ ri Ψ(y, γ) for
all y ∈ Nȳ and γ ∈ [ϕg(distMg (y)),Γg].

3.2.3. Part 3: From the intermediate space to the input space. To
conclude the proof of Theorem 3.2, we will first identify the curve e(y, γ) to proxγg(y)
and thus prove that it belongs to the sought manifold, as illustrated in Figure 5b.
Then, this intermediate identification result is brought back to the input space using
transversality.

Proof. The standing assumptions allow to call Lemma 3.7 at point c(x̄) with
manifold Mg. This yields the neighborhood Nc(x̄), constants Γg and C, a function
ϕg, and a smooth mapping e : Nc(x̄) × [0, C] → Mg such that, for y ∈ Nc(x̄) and
γ ∈ [ϕg(distMg (y)),Γg], e(y, γ) verifies the optimality condition (3.3) of e(y, γ) =
proxγg(y). Besides, since g is prox-regular and prox-bounded at point c(x̄), these
properties also hold on a neighborhood of that point. Under these conditions, Propo-
sition 2.2 allows to recover the equality e(y, γ) = proxγg(y). Take Nx̄ = c−1(Nc(x̄)),
a neighborhood of x̄ as the preimage of a neighborhood of c(x̄) by the continuous c.
For all x ∈ Nx̄,

proxγg(c(x)) ∈Mg for all γ ∈ [ϕg(distMg (c(x))),Γg].

We turn to show that, for some constant cmap > 0, there holds distMg (c(x)) ≤
cmap distM(x) for all x ∈ Nx̄. Let x ∈ Nx̄ and xM = projM(x), so that distM(x) =
‖xM − x‖. Using successively that c(xM) ∈Mg and smoothness of c, there holds for
x near x̄

distMg (c(x)) ≤ ‖c(x)− c(xM)‖
≤ ‖ Jacc(x

M) · (x− xM)‖+O(‖x− xM‖2)

≤
(

sup
vn∈NxMM,‖vn‖=1

‖ Jacc(x
M) · vn‖

)
‖x− xM‖+O(‖x− xM‖2)

≤
(

sup
u∈Nx̄

sup
vn∈NuM,‖vn‖=1

‖ Jacc(u) · vn‖
)

︸ ︷︷ ︸
C′′

‖x− xM‖+O(‖x− xM‖2).
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We show by contradiction that the constant C ′′ is positive. If C ′′ = 0, there exists
vn ∈ Nx̄M of unit norm such that D c(x̄)vn = 0. By (2.2), we have vn = D c(x̄)∗v̂n
for some v̂n ∈ Nc(x̄)Mg, so that D c(x̄) D c(x̄)∗v̂n = 0. Pre-multiplying by v̂∗n yields
‖D c(x̄)∗v̂n‖2 = 0: there holds v̂n ∈ ker(D c(x̄)

∗
) ∩ Nc(x̄)Mg. The transversality

condition (2.1) implies v̂n = 0, and in turn vn = 0, which contradicts the fact that
this vector has unit length.

Therefore, for all x ∈ Nx̄ and a constant cmap > C ′′, there holds distMg (c(x)) ≤
cmap distM(x). Monotony of ϕg implies that ϕg(distMg (c(x))) ≤ ϕg(cmap distM(x)),
which yields the claimed bounds with

ϕ(t) =
cri

2L̃

1−
√

1− 4L̃cmapt

c2ri

 and Γ = Γg.

Finally, we show the existence of positive constants ε, L such that

‖x− x̄‖ ≤ ε and L‖x− x̄‖ ≤ γ ≤ Γ =⇒ proxγg(c(x)) ∈Mg.

Since x̄ ∈ M, distM(·) ≤ ‖ · −x̄‖. By monotony and smoothness of ϕ, there exists
L > 0 such that ϕ(distM?(·)) ≤ L‖ · −x?‖ over B(x?, ε). Reducing ε if necessary so
that Lε < Γ yields the result.

4. A local Newton algorithm for nonsmooth composite minimization.
In this section, we use the results of Section 3 to propose an optimization method
that locally identifies the structure of a minimizer and converges quadratically to this
point.

Recall the basic idea: if the optimal manifoldM? corresponding to a minimizer
x? is known, the nonsmooth optimization problem turns into a smooth constrained
optimization problem. In turn, this problem can be solved using algorithms from
smooth constrained optimization such as Sequential Quadratic Programming.

Using this idea and the structure identification mechanism developed in the previ-
ous section, we propose a method which: i) uses the proximity operator of g to gather
structure in the intermediate space, ii) brings back this structure to the input space,
and iii) optimizes smoothly along the identified manifold. The resulting algorithm is
precisely described in Subsection 4.1 and then analyzed in Subsection 4.2.

4.1. Description of the algorithm. We proceed to describe the three steps
exposed above. The full algorithm is depicted in Algorithm 4.1.

Gathering structure. We showed in Theorem 3.2 that near a qualified point in Rn,
the operator proxγg(c(·)) provides the optimal structure Mg? (in the intermediate
space Rm) for an explicit range of steps. We thus define from the current iterate
xk ∈ Rn and stepsize γk the working manifold Mg

k (in the intermediate space) as
the structure of proxγkg(c(xk)). One technical point is to guarantee that, after some
time, γk ∈ [L‖xk − x?‖,Γ] so that the optimal manifold is identified; this is done by
decreasing γk linearly at each iteration.

From the intermediate to the input space. We now have a structure manifoldMg
k

in the intermediate space, and can define g̃k, a smooth extension of g onMg
k to Rm.

Using a local equation hgk ofMg
k, we define the smooth map hk = hgk ◦ c : Rn → Rpk ,

which locally definesMk = c−1(Mg
k). Similarly, a smooth extension of F onMk is

defined by F̃k = g̃k ◦ c.
Optimizing in the input space. We can now take steps to minimize the smooth
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extension F̃k on the smooth setMk characterized by hk(x) = 0:

min
x∈Rn

F̃k(x) s.t. hk(x) = 0.

We turn to an elementary version of the traditional second-order Sequential Quadratic
Programming methodology; see e.g. [5, Chap. 14]. At iteration k, the SQP direction
dSQP
k (xk) at point xk is defined as the solution of the following quadratic problem:

dSQP
k (xk) = argmind∈Rn 〈∇F̃k(xk), d〉+

1

2
〈∇2

xxLk(xk, λk(xk))d, d〉
s.t. hk(xk) + Dhk(xk)d = 0

(4.1)

where ∇2
xxLk denotes the Hessian of the Lagrangian Lk(x, λ) = F̃k(x) + 〈λ, hk(x)〉,

and the multiplier λk(xk) defined from the following least-squares problem:

λk(xk) = argminλ∈Rpk

∥∥∥∥∥∇F̃k(xk) +

pk∑
i=1

λi∇hk,i(xk)

∥∥∥∥∥
2

.(4.2)

Finally, we check that xk + dSQP
k (xk) provides a functional decrease in order to

avoid degrading the iterate when the current structure is suboptimal. If the test is not
verified, xk is not updated and γk is decreased until a satisfying structure is detected.

Algorithm 4.1 General structure exploiting algorithm
Require: Pick x0 near a minimizer, γ0 large enough.
1: repeat
2: γk = γk−1

2
3: Compute proxγkg(c(xk)) and obtainMg

k locally defined by hgk
4: hk = hgk ◦ c (local equation ofMk), F̃k = g̃k ◦ c (smooth extension)
5: Compute dSQP

k (xk) by solving (4.1)
6: if F (xk + dSQP

k (xk)) ≤ F (xk) then
7: xk+1 = xk + dSQP

k (xk)
8: else
9: xk+1 = xk

10: until stopping criterion

Remark 4.1 (Complexity of one iteration). The main computational cost of one
iteration of Algorithm 4.1 consists in the resolution of the quadratic program (4.1). Its
plain resolution incurs a O(n3) complexity. However, efficient approaches reduce this
problem to a quadratic program on the subspace ker Dhk(xk), which has dimension
dim(Mk). We refer to [5, Chap. 14] for an in-depth exposition of these techniques.
The cost of an iteration is thus O(dim(Mk)3). In situations where minimizers are
highly structured (i.e. dim(M?) � n) this complexity may be comparable with the
O(n2) iteration complexity of classical nonsmooth optimization algorithms, such as
nonsmooth BFGS [20].

4.2. Convergence of Algorithm 4.1. We proceed to give the result guaran-
teeing identification and local quadratic convergence of Algorithm 4.1.

In order to benefit from the quadratic rate of SQP, the elements of (4.1) should
have the minimal regularity typically required by smooth constrained Newton methods
(see e.g. [5, Th. 14.5]); we thus make the following assumption.
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Assumption 4.2 (Regularity of functions). The smooth extension and the man-
ifold defining map are C2 with Lipschitz second derivatives, and the Jacobian of the
constraints is full rank near the solution.

In order to focus on the algorithmic originality of the method, we slightly simplify
the situation and make the two following algorithmic assumptions.

Assumption 4.3 (Nonconvex stability). The iterates of Algorithm 4.1 remain
in the connected component of the sublevel set {x : F (x) ≤ F (x0)} that contains x?.
This assumption ensures that an update that decreases the functional value remains
in the neighborhood of the minimizer x?. It is naturally satisfied when F is convex,
or when x? is a global minimizer of F and x0 is close enough to x?.

Assumption 4.4 (No Maratos effect). The iterates of Algorithm 4.1 are such
that a step d that makes x+d quadratically closer to x yields descent: F (x+d) ≤ F (x).

In smooth constrained optimization, getting closer (even at quadratic rate) to a min-
imizer does not imply decrease of objective value and constraint violation (measured
by a merit function). This so-called Maratos effect (see e.g. [5]) is one of the main
difficulties in globalizing SQP schemes, which is out of the scope of the current paper.
We thus assume this effect does not affect our algorithm in theory, and use in practice
one of the successful refinements, as discussed in Subsection 5.2.

We are now ready for the main convergence result of Algorithm 4.1, which es-
tablish that, after some finite time, the iterates identify exactly the optimal manifold
and converge to the minimizer at a quadratic rate.

Theorem 4.5 (Exact identification and quadratic convergence). Consider a
function F = g ◦ c and x? a strong minimizer,3 qualified relative to the optimal
manifold M?. Assume that the smooth extension F̃ of F relative to M? and the
corresponding manifold defining map h satisfy Assumption 4.2.

If x0 and F (x0) are close enough to x? and F (x?), γ0 is large enough and the
simplifying algorithmic Assumptions 4.3 and 4.4 hold, then there exists C > 0 such
that the iterates (xk,Mk) generated by Algorithm 4.1 verify:

Mk =M? and ‖xk+1 − x?‖ ≤ C‖xk − x?‖2 for all k large enough.

The proof of this result consists in two steps. We first show the existence of a
neighborhood of initialization on which the proximity operator will eventually identify
the optimal manifold, once the stepsize has been sufficiently decreased. From this
point onward, we prove that the SQP step provides a quadratic improvement and
that the stepsize policy makes the manifold identification stable.

Proof. Local identification of the optimal structure. By Theorem 3.2, there exists
a ball centered around x? of radius ε1 > 0 and two positive constants L, Γ such that,
for all x ∈ B(x?, ε1) and γ ∈ [L‖x − x?‖,Γ], proxγg(c(x)) belongs to the optimal
manifoldMg? = c(M?).

Local quadratic convergence of SQP on the optimal structure. Let us assume that the
optimal manifold has been identified. The least square multiplier λ is defined by the
optimality condition of (4.2):

λ(x) = −[Jach(x) Jach(x)>]−1 Jach(x)∇F̃ (x).

3There exists η > 0, ε > 0 such that F (x) ≥ F (x?) + η‖x− x?‖2 for all x ∈ B(x?, ε).
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and since h is smooth and its Jacobian is full-rank near x?, λ is a Lipschitz continuous
function near x?.

Since x? is a strong minimizer of F , the Hessian of the Lagrangian restricted to
the tangent space is positive definite. Indeed, since x? is a strong minimizer of F
onM?, the Riemannian Hessian relative to the optimal manifold is positive definite.
With the choice of multiplier (4.2), the Riemannian Hessian is exactly the Hessian of
the Lagrangian restricted to the tangent space toM? at x? (see [6, Sec. 7.7]), which
is thus itself positive definite.

Thus, using the local quadratic convergence of SQP [5, Th. 14.5], we get that there
exists a ball centered around x? of radius ε2 > 0 such that the SQP step computed at
a point x in that neighborhood relative to the optimal manifold provides a quadratic
improvement towards x?. Reducing ε2 if necessary, we can in addition have that the
convergence is at least linear with rate 1/2.

Initialization, identification, and quadratic convergence. Let ε = min(ε1, ε2,Γ/(2L)).
We will now show that initializing with x0 ∈ {x : F (x) ≤ F (x?) + ηε2} and γ0 ≥ Γ
provides the claimed behavior.

First, the functional decrease test of the algorithm and Assumption 4.4 guarantee
that all iterates satisfy F (xk) ≤ F (x0). Using that x? is a strong minimizer, we get
that η‖xk−x?‖2 ≤ F (xk)−F (x?) ≤ F (x0)−F (x?) ≤ ηε2, and thus that the iterates
remain in B(x?, ε).

Second, as L‖x − x?‖ ≤ Γ/2 for all x ∈ B(x?, ε) by construction, the fact that
γ0 > Γ and (γk) decreases with geometric rate 1/2 implies that there exists K such
that L‖xK − x?‖ ≤ γK ≤ Γ.

Now, assume that at iteration k ≥ K, L‖xk−x?‖ ≤ γk ≤ Γ. Since xk ∈ B(x?, ε1),
we have from above thatM? is identified. Thus, the SQP step is performed relative
to the optimal manifold and xk + dSQP

k (xk) brings a linear improvement of factor 1/2

at least. Assumption 4.3 ensures that F (xk + dSQP
k (xk)) ≤ F (xk) so that xk+1 =

xk + dSQP
k (xk) and thus

L‖xk+1 − x?‖ ≤
L

2
‖xk − x?‖ ≤

γk
2

= γk+1.

This shows that L‖xk+1 − x?‖ ≤ γk+1 ≤ Γ, which completes the induction. We
get that γk ∈ [L‖xk − x?‖,Γ] for all k ≥ K. Finally, we have that for all k ≥ K,
Mk =M? and xk+1 is quadratically closer to x? than xk.

Direct generalizations. Theorem 4.5 actually holds for any decrease factor of γk
in (0, 1) with the presented SQP update, or actually any superlinearly convergent
update (e.g. a quasi-Newton type update). The above result is also readily adapted
to an update that converges merely linearly, as long as its rate of convergence is faster
than that of γk. This opens the possibility of using SQP methods that rely only on
first-order information (see e.g. [4]).

5. Numerical experiments. In this section, we provide numerical illustrations
for our results. Our goal here is twofold:

i) to illustrate the identification of the optimal manifold by the proximity op-
erator near a minimizer as provided by Theorem 3.2;

ii) to demonstrate the applicability of Algorithm 4.1 and observe the quadratic
rates predicted by Theorem 4.5 on our running examples.
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5.1. Test problems. We first consider the minimization of a pointwise maxi-
mum of smooth functions (1.2):

min
x∈Rn

max
i=1,...,m

(ci(x)).

We take the celebrated MaxQuad instance, where n = 10, m = 5 and each ci is
quadratic convex, making the whole function F convex [5, p. 153]. In this instance,
the optimal manifold isMmax

I with I = {2, 3, 4, 5}.
Second, we consider the minimization of the maximum eigenvalue of an affine

mapping (1.3):

min
x∈Rn

λmax

(
A0 +

n∑
i=1

xiAi

)
.

We take n = 25 and we generate randomly n + 1 symmetric matrices of size 50. In
this instance, the multiplicity of the maximum eigenvalue at the minimizer is r = 3.

5.2. Numerical setup. All the algorithms are implemented in Julia [2]; exper-
iments may be reproduced using the code available online4.

Algorithm. For the initialization of Algorithm 4.1, we set γ0 as the smallest γ
such that proxγg(c(x0)) has the most structure (e.g. if g = max, we increase γ until
the output of the proximity operator sets all coordinates to the same value, and if
g = λmax , we increase γ until the multiplicity of the maximal eigenvalue of the output
of the proximity operator is maximal). We solve the quadratic subproblem (4.1)
providing the SQP step by the reduced system approach presented in [5, p. 133].
Tangent vectors are expressed in an orthonormal basis of the nullspace of the Jacobian
of the constraints at the current iterate. At iterate xk, a second-order correction
step dcorr(xk) is added to the SQP step dSQP(xk). It is obtained as dcorr(xk) =
argmind∈Rn{‖h(xk) + Jach(xk) d‖, s.t. d ∈ Im Jach(xk)>}. The full-step is thus
xk + dSQP(xk) + dcorr(xk).

Baselines. For the two nonsmooth problems, we compare with the nonsmooth
BFGS algorithm of [20] (nsBFGS) and the gradient sampling algorithm [7]. The
nsBFGS method is not covered by any theoretical guarantees; it is known to perform
relatively well in practice, often displaying a linear rate of convergence. In contrast,
the Gradient Sampling algorithm generates with probability one a sequence of iterates
for which all cluster points are Clarke stationary for F [7, Th. 3.1].5

Other methods could be considered as relevant baselines. In particular, the min-
imization of convex composite functions can be tackled with dedicated bundle meth-
ods [30]. Alternatively, some approaches try to estimate and use the optimal structure
M?, leading to potential superlinear convergence: [33] for the maximum of smooth
functions, [27, 13] for the maximum eigenvalue, and [23] for general convex functions.
However, the superlinear speed of these methods hinges on the correct identification
of the optimal manifold M?, which is done only heuristically. We do not include
these methods in our numerical comparison since they are rather advanced, and thus
difficult to implement and tune efficiently.

4See https://github.com/GillesBareilles/LocalCompositeNewton.jl for Algorithm 4.1 and https:
//github.com/GillesBareilles/NonSmoothSolvers.jl for the baselines.

5This holds when F is locally Lipschitz over Rn and lower bounded, the algorithm iterates
indefinitely and the sampling radius decreases to 0.

https://github.com/GillesBareilles/LocalCompositeNewton.jl
https://github.com/GillesBareilles/NonSmoothSolvers.jl
https://github.com/GillesBareilles/NonSmoothSolvers.jl
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Oracles. Traditional methods for nonsmooth optimization, and notably bundle
methods, require a first-order oracle:

x 7→ (F (x), v) where v ∈ ∂F (x)

while Gradient Sampling and nsBFGS require additionally to know if F is differen-
tiable at point x. Algorithm 4.1 requires rather different information oracles:

x 7→ F (x)

x 7→ Mg 3 proxγg(c(x))

M, x 7→ h(x), Jach(x),∇F̃ (x),∇2L(x, λ).

The second part of the oracle provides the candidate structure at point x. The last
part of the oracle, which requires a point and a candidate structure, provides the
second-order information of F required by the SQP step.

5.3. Experiments. Figure 6 reports the suboptimality of the considered meth-
ods in terms of CPU time and each marker corresponds to one iteration. All algorithms
are initialized at a point x0 obtained by running nsBFGS for several iterations.

Our algorithm compares favorably to nsBFGS and Gradient Sampling: it con-
verges in a handful of iterations and less time. Note that this happens even though
the iteration cost of our algorithm is higher than that of the other methods. Indeed,
the oracles of our method are more complex and a quadratic problem needs to be
solved, while the iteration cost of nsBFGS and Gradient Sampling is dominated by
the computation of function values and subgradients at each trials of the linesearch.

In terms of identification, our method finds the correct manifold at the first it-
eration for MaxQuad, and at the third iteration for Eigmax. From that point, the
iterates of Algorithm 4.1 reach machine precision in 3 iterations. This illustrates the
quadratic convergence, and supports the idea that, for nondifferentiable problems as
well, it is worth computing higher-order information to get fast local methods.

Figure 7 allows to observe the identification of the algorithm and the quality of
the bounds of Theorem 3.2. For each iterate xk of Algorithm 4.1, we report the
current step γk along with the minimal and maximal steps

¯
γ(xk), γ̄(xk) such that

proxγg(c(xk)) belongs to the optimal manifold.6 A first remark is that, as predicted
by Theorem 4.5, the pair xk, γk satisfies the identification condition γk ∈ [L‖xk−x?,Γ]
after a few iterations. We also observe that γ̄(xk) is near constant and that

¯
γ(xk)

converges to zero linearly with ‖xk − x?‖, as predicted by our result. Finally, we
note that even though the initial point is not structured and away from the minimizer
(‖x0 − x?‖ ≈ 10−2), the initialization of γ0 ensures a quick identification.

6. Conclusions. This paper studies the local structure of functions that write as
a composition of a nonsmooth function with a smooth mapping. When the proximity
operator of the nonsmooth function is explicitly available, we show that the structure
of the minimizer can be detected. We further use this information to propose a
local Newton method to minimize the objective harnessing the detected structure.
This method is guaranteed to identify the structure of the minimizer and to converge
quadratically. We illustrate this behavior on two standard nonsmooth problems.

Appendix A. The maximum and maximum eigenvalue satisfy the nor-
mal ascent and curve properties. We show here that the maximum and the

6To better illustrate the local behavior of our method, we also ran the algorithms with a high
precision floating type. Details and corresponding experiments can be found in Appendix B.
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maximum eigenvalue meet the normal ascent Property 2.7 and curve properties Prop-
erty 2.11. We begin with a lemma that simplifies verification of Property 2.11.

Lemma A.1. Consider a function g, partly smooth at a point ȳ relative to a mani-
foldMg, and a smooth application e : Nȳ×[0, T ]→Mg defined for a neighborhood Nȳ
of ȳ and T > 0 such that e(y, 0) = projMg (y), d

dte(y, t)|t=0 = − grad g(projMg (y)).

If D
(
t 7→ projNe(y,t)Mg (projM(y)− y)

)
= 0 for all y ∈ Nȳ, then g satisfies Prop-

erty 2.11 at point ȳ.

Proof. We denote θ(y, t) = projNe(y,t)Mg (e(y, t)− y). First,

d

dt
θ(y, t)|t=0 = D

(
t 7→ projNe(y,t)Mg (projMg (y)− y)

)
+ projNprojM(y)Mg (D(t 7→ (e(y, t)− y))(0)) ,

where the first term is null by assumption and the second is also null since it is the
normal projection of the tangent vector grad g(projMg (y)). Thus, d

dtθ(y, t)|t=0 = 0.
Using this fact and smoothness of θ, Taylor’s theorem with Lagrange remainder yields,
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for all y ∈ Nȳ, the existence of t̄ ∈ [0, T ] such that, for all t ∈ [0, T ],

θ(y, t) = θ(y, 0) +
t2

2

d2

dt2
θ(y, t̄).

Therefore, for all y ∈ Nȳ and t ∈ [0, T ],

‖θ(y, t)‖ ≤ ‖θ(y, 0)‖+
t2

2
sup
t̄∈[0,T ]

d2

dt2
θ(y, t̄) ≤ ‖θ(y, 0)‖+ t2L̃,

where L̃ = supy∈Nȳ supt̄∈[0,T ]
d2

dt2 θ(y, t̄).

We can now proceed with the proof of Lemma 2.12, divided into two parts cor-
responding to the two cases of the result. The case g = max comes easily, due to the
polyhedral nature of the function.

Lemma A.2. Consider g = max, a point ȳ ∈ Rm and the corresponding structure
manifoldMmax

I (of Example 2.5). Then Properties 2.7 and 2.11 hold at ȳ.

Proof. Normal ascent Take y ∈Mmax
I for some active indices I ⊂ {1, . . . ,m}. A

normal direction d ∈ NyMmax
I is such that di = 0 for i /∈ I and

∑
i∈I di = 0. Thus

max(y+ td) = yi + tdi with i = argmaxi di, and D max(y)[d] = limt↘0(max(y+ td)−
max(y))/t = di > 0 for all d 6= 0.

Curve assumption Since the structure manifold of max are affine subspaces, the
normal spaces are equal at all points of the manifold. Therefore the derivative of the
projection at a parametrized point is null and Lemma A.1 provides the result.

The case g = λmax is not difficult per se, but requires a precise description of the
geometry of the maximum eigenvalue function and its structure manifolds; we refer
to [32, 28] for the derivation of these tools.

Lemma A.3. Consider g = λmax , a point ȳ ∈ Sm and the corresponding structure
manifoldMλmax

r (of Example 2.6). Then Properties 2.7 and 2.11 hold at ȳ.

Proof. Normal ascent Take y ∈ Mλmax
r , let U ∈ Rm×r denote a basis of the first

eigenspace of matrix y and d ∈ NyMλmax
r . The normal space at y ∈ Mλmax

r writes
([28, Th. 4.3, Cor. 4.8])

NyMλmax
r = {U(y)ZU(y)>, Z ∈ Sr, trace(Z) = 0}.

Therefore, d = UZU> for some Z ∈ Sr such that trace(Z) = 0. Let s = U(I/r +
αZ)U> where α > 0 is small enough so that s is positive definite. Since s has
also unit trace, it is a subgradient of λmax at y [28, Th. 4.1]. Thus λ′max (y; d) =
supv∈∂λmax (y)〈v, d〉 ≥ 〈s, d〉 = 〈I/r + αZ,Z〉 = α‖Z‖2, which yields λ′max (y; d) > 0

for any d ∈ NyMλmax
r \ {0}.

Curve assumption Let ȳ ∈ Mλmax
r . For any y ∈ Sm, we denote by P (y) the

orthogonal projection on the eigenspace corresponding to the r largest eigenvalues
of y (counting multiplicities). This operator is smooth. We can define a mapping
U : Sm → Rm×r such that: U(y)>U(y) = Ir, P (y) = U(y)U(y)>, U is smooth near
our reference point ȳ and its derivative at ȳ satisfies DU(ȳ)>U(ȳ) = 0. The mapping
U defines a smooth orthonormal basis of the eigenspace corresponding to the r largest
eigenvalues [32, p. 557]. Finally, for a point y′ ∈Mλmax

r , the projection of d ∈ Sm on
Ny′Mλmax

r writes

projNy′Mλmax
r

(d) = U(y′)

{
U(y′)>dU(y′)− 1

r
trace(U(y′)>dU(y′))Ir

}
U(y′)>.
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Now, fix y near ȳ, consider the eigenbasis U with reference point e(y, 0) =
projMλmax

r
(y). Following Lemma A.1, let ν : t 7→ projNe(y,t)Mλmax

r
(d) with d =

projMλmax
r

(y) − y. We can now give an explicit expression of ν(t) and show that
d
dtν(0) is null. Denoting U(t) = U(e(y, t)), we have

ν(t) = U(t)

{
U(t)>dU(t)− 1

r
trace(U(t)>dU(t))Ir

}
︸ ︷︷ ︸

,χ(t)

U(t)>.

First, as d is a normal vector toMλmax
r at point projMλmax

r
(y), there exists Z ∈ Sr

such that d = U(0)ZU(0)>. Using that DU(0)>U(0) = 0 yields

DU(0)>dU(0) = DU(0)>U(0)ZU(0)>U(0) = 0.

Then, one readily checks that U(0) Dχ(0)U(0) = 0.
We turn to the term DU(0)χ(0)U(0)>. A quick computation from the eigen

decomposition of y shows that d writes U(0)ZU(0)>, where Z is actually diagonal.
Therefore, χ(0) = Z − (1/r) trace(Z)Ir is a diagonal matrix, so that

DU(0)χ(0)U(0)> =

r∑
i=1

χ(0)ii DUi(0)Ui(0)>.

Following [32], the differential of t 7→ U(e(y, t)) at t = 0 writes

DUi(0) =

m∑
k=r+1

1

λ1 − λk
Uk(0)Uk(0)>ηUi(0),

with η = gradλmax (projMλmax
r

(y)). Using that λmax (y) = (1/r)
∑r
i=1 Ui(y)>yUi(y),

we compute the Riemannian gradient (see [6, Sec. 7.7]):

gradλmax (y) =
1

r

r∑
i=1

Ui(y)>Ui(y).

By orthogonality of the smooth basis of eigenvectors, the terms Uk(0)>Ui(0) vanish
for all i ∈ {1, . . . , r} and k ∈ {r + 1, . . . ,m}. We get that DU(0)χ(0)U(0)> = 0, and
thus that D ν(0) = 0. Thus, Lemma A.1 applies and yields the result.

Appendix B. Numerical experiments in high precision. We report in Fig-
ure 8 the evolution of suboptimality versus computing time, for the same problems
and algorithms as in section 5, but with a high precision floating type. Indeed, the
flexibility of the Julia language allows to use the same implementation with the high
precision BigFloat type, which precision is 1.73 · 10−72, or the usual Float64 type,
which precision is 2.22 · 10−16.
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