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Chaos propagation in mean field networks of FitzHugh-Nagumo
neurons

Laetitia Colombani*, Pierre Le Bris†

Abstract

In this article, we are interested in the behavior of a fully connected network of N neurons, where N tends
to infinity. We assume that neurons follow the stochastic FitzHugh-Nagumo model, whose specificity is the
non-linearity with a cubic term. We prove a result of uniform in time propagation of chaos of this model in
a mean-field framework. We also exhibit explicit bounds. We use a coupling method initially suggested by
A. Eberle [Ebe16], and recently extended by [DEGZ20], known as the reflection coupling. We simultaneously
construct a solution of the N particles system and N independent copies of the non-linear McKean-Vlasov limit
such that, by considering an appropriate semimetrics that takes into account the various possible behaviors of the
processes, the two solutions tend to get closer together asN increases, uniformly in time. The reflection coupling
allows us to deal with the non-convexity of the underlying potential in the dynamics of the quantities defining
our network, and show independence at the limit for the system in mean field interaction with sufficiently small
Lipschitz continuous interactions.

1 Introduction

1.1 Understanding the model

Understanding the brain activity is both a complex and important challenge in current research. Of course, interests
are plentiful: characterizing brain functions, understanding structures and links between them and figuring out
some phenomena - such as cyclic heartbeat. A way of modeling this activity is by considering a very large number
of individual neurons with interactions. Since the number of neurons in a human brain is around 1011, and even
"small" parts of the brain are thus constituted of very large number of them, such a strategy can be considered
coherent.

The main quantity we study is the membrane potential of the nerve cells: it can "easily" be observed and its
modification characterizes a synapse (an interaction between neurons). Neurons regulate their electrical potential.
In general, without interaction, the potential evolves with time but has quite small changes. Incoming potentials
from other neurons are usually what make the neuron fire, i.e. send potential to other neurons. We will here focus
on an homogeneous network of neurons and consider mean-field interactions. This way, each neuron will interact
with every other one, as it can be the case in small regions of the brain. The parameters of the model will be
considered the same for each neuron.

A classical model was introduced by Hodgkin and Huxley [HH52] using experimental data of the activity of
the giant squid axon. It describes the ion exchanges K+, Na+ and Cl− through the membrane and their effects on
the potential. A simplification of this model is the FitzHugh-Nagumo model, which reduces the dimension: from
four-dimensional model (for one neuron) with Hodgkin-Huxley equations, we obtain a two-dimensional model.
It’s a compromise between the biological accuracy and the mathematical simplicity.
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The deterministic FitzHugh-Nagumo model for one neuron (or one particle) is given by the following equations:{
dXt = (Xt − (Xt)

3 − Ct − α)dt
dCt = (γXt − Ct + β)dt,

where X is the potential membrane and C is a recovery variable, called the adaptation variable. The parameters γ
and β are positive constants that determine the duration of an excitation and the position of the equilibrium point
of this system. Finally α ∈ R is the magnitude of a stimulus current (an entrance current in the system). Note that
the variable C isn’t a physical quantity, and is used to allow X to mimic the behavior of the potential. This variable
C has linear dynamics and provides a slower negative feedback.

This deterministic model has been largely studied. In Chapter 7 of [Thi13], Thieullen describes the behavior of
the solution of one deterministic FitzHugh-Nagumo system. She also extends the result in the case of a stochastic
FitzHugh-Nagumo system: she considers a noise on the dynamics of X .

In fact, noise can be introduced in both equations to model different types of randomness : when the noise is in
the first equation (dynamics of X) with a standard deviation σX > 0, it models a noisy presynaptic current. When
it is in the second equation (dynamics of C) with a standard deviation σC > 0, it describes a noisy conductance
dynamic (a noise in the chemical behavior). In general, noise in this model is additive. Various mathematical
questions can be studied. Some authors choose to focus on the properties of the natural macroscopic limit of the
model as N → ∞ when it is clearly defined (see system (1.2)), when others work on properties of the particles
system for fixed N . These models can be quite complicated to study mathematically. The main objectives are to
characterize the behavior of these models when the number of neurons N tends to +∞ in a mean-field limit, and
to prove whether or not there exists an equilibrium, a stationary behavior, when t tends to +∞. The question of
the synchronization of neurons can also be studied, since it is a phenomenon observed in different contexts, such
as the generation of respiratory rhythm or complex neurological functionalities.

In [TRW03], the authors work on the determination of firing time. They consider a stochastic FitzHugh-
Nagumo model for one neuron, with Brownian noise onX , obtain approximation of firing times and compare them
with numerical simulations.

Even if the majority of authors consider a noise only on one equation of the model, some study stochastic
models with two noises. Berglund and Landon describe the behavior of the deterministic FitzHugh-Nagumo model
for one neuron in [BL12], and consider the stochastic model, with noise on both equations, to work on the behavior
of the interspike interval and the distribution of oscillations of the solution.

In [TBSST13], Tatchim Bemmo, Siewe Siewe and Tchawoua focus on a quite different stochastic model by
considering additive noise η on the dynamics ofX , and multiplicative noise ξ on the dynamics ofC, both defined as
sinusoidal function of correlated Brownian motions. They choose to avoid Gaussian noises since it is an unbounded
noise. They also consider a deterministic and periodic entrance signal in the first equation. They observe abrupt
transitions of the potential membrane X when the intensity of the noise is gradually changed.

In general, a lot of authors focus on a noise on only one variable. In [LS18], León and Samson consider a
FitzHugh-Nagumo model with a noise on C but not on X , i.e. σX = 0, and study the properties of the equations
for one neuron. In particular, they focus on hypoellipticity of the model, the existence and uniqueness of an invari-
ant probability and a mixing property by establishing a link between the model and the class of stochastic damping
Hamiltonian systems. They also consider neuronal modeling questions and study the generation of spikes in func-
tion of parameters of the model. On the contrary, the article [Uda19] focuses on stochastic FitzHugh-Nagumo
model with noise in the dynamics of X , and σC = 0. They study one neuron in a periodically forced regime.
This study relies on the theory of Markovian Random Dynamical System. The model is driven by a cosinus sig-
nal, and Uda studies the spike rate and compares it with the probability of two-points motion of membrane potential.

As said above, we consider mean-field interactions. These interactions are described by two functions KX and
KC , applied on the difference between two states ((Xi

t , C
i
t) − (Xj

t , C
j
t )). In particular, this type of interaction
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models electrical synapses, which are a sort of synapses.
In their article [BFFT12], Baladron, Fasoli, Faugeras and Touboul study FitzHugh-Nagumo and Hodgkin-

Huxley models with mean-field interaction, only on X . They consider more general interactions, not only applied
on the difference between two states, modeling chemical synapses and electrical synapses. For the FitzHugh-
Nagumo model, they consider a noise on X , and prove propagation of chaos, i.e. the convergence of the law of
k neurons towards the law of k independent solutions of the mean-field equations. This article is completed and
clarified by the work of Bossy, Faugeras and Talay in [BFO19].
Mischler, Quininao and Touboul consider a FitzHugh-Nagumo model in [MQT16], with a linear interaction on X ,
and a noise only onX , i.e. σC = 0 andKX(z) = λx. The drift onX is not exactly the same as in the model above,
but remains similar as it is a cubic function of X . They work on the properties of a solution of the McKean-Vlasov
evolution PDE associated to this model and obtain the uniqueness of a global weak solution. Furthermore, they
prove that there exists at least one stationary solution, and when the interaction is small, the stationary solution is
unique and exponentially stable. They also exhibit numerical results with open problems, like attractive periodic
solution in time. In a similar framework, Luçon and Poquet study the macroscopic limit of this mean-field model in
[LP21], and in particular the periodicity of such a system. They analyze the influence of both noise and interaction
on the emergence of periodic behavior, and prove the existence of periodic solution, exponentially attractive, when
the parameters satisfy some assumptions and the drift is "small" enough with respect to interaction and noise. Their
approach relies on a slow-fast analysis and Floquet theory.

This model can be complexified, by considering non mean-field interaction. In particular, Bayrak, Hövel and
Vuksanović work on a stochastic FitzHugh-Nagumo model with a network interaction in [BHV21]. Their type of
interaction take into account a connectivity coefficient between two neurons, and a propagation velocity.

Other authors choose to complexify the model by considering stochastic FitzHugh-Nagumo with a spatial
model. A second spatial derivative of X is added in the dynamics of X . Various authors study the behavior of such
a model, and explore the notion of random attractors [LW10], [Li21], [LL19] and [LX21] .

Various authors also study numerical schemes for the interacting particles system in the stochastic model. In
[RS22], the authors adapt Euler-Maruyama scheme to approximate solution of the particles system.

1.2 Framework and results

Combining noise and interaction, we work specifically on the following equations, for 1 ≤ i ≤ N , where N is the
number of neurons:{

dXi,N
t = (Xi,N

t − (Xi,N
t )3 − Ci,Nt − α)dt+ 1

N

∑N
j=1KX(Zi,Nt − Zj,Nt ) + σXdB

i,X
t

dCi,Nt = (γXi,N
t − Ci,Nt + β)dt+ 1

N

∑N
j=1KC(Zi,Nt − Zj,Nt ) + σCdB

i,C
t ,

(1.1)

where we denote by Zit the couple (Xi
t , C

i
t) to simplify the notations.

We assume (Bi,X
t )i and (Bi,C

t )i to be independent Brownian motions. Here, we consider two Brownian noises
BX and BC , one on each equation, and thus assume that each neuron has its own independent noises, and that
there is no environmental (or shared) noise.

We also assume KX and KC to be Lipschitz continuous and respectively denote their Lipschitz constants by
LX and LC .

The goal of this article is to describe the behavior of this network as the number N of neurons tends to infinity.

To describe its behavior, we consider the R2-valued process (Z̄t)t≥0 = (X̄t, C̄t)t≥0 evolving according to the
following non-linear stochastic differential equation of McKean-Vlasov type{

dX̄t = (X̄t − (X̄t)
3 − C̄t − α)dt+KX ∗ µ̄t(Z̄t)dt+ σxdB̄

X
t

dC̄t = (γX̄t − C̄t + β)dt+KC ∗ µ̄t(Z̄t)dt+ σcdB̄
C
t ,

(1.2)
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where µ̄t = Law(Z̄t) is the law at time t of the process (X̄t, C̄t), and ∗ denotes the operation of convolution, i.e.

KX ∗ µ̄t(u) =

∫
KX(u− v)µt(dv).

To some extent, (1.1) can be seen as an approximation of (1.2) in which the operation of convolution is applied to
the empirical measure µt,emp = 1

N

∑N
i=1 δZit , and what We wish to prove is that, indeed, the law µNt of the network

(1.1) converges in some sense to µ̄⊗Nt (i.e the law of the solution of (1.2) tensorizedN times) asN tends to infinity.
This phenomenon has been stated under the name propagation of chaos -an idea motivated by M. Kac [Kac56]-
as it amounts to saying that, as the number of particle increases in the system, two particles will become "more
and more" independent, converging towards a tensorized law. The notion of "propagation" refers to the fact that
proving such convergence at time 0 is sufficient to prove it at a later time t.

In order to prove the convergence of µNt to µ̄⊗Nt , we follow the coupling method described in a recent work
by one of the authors in [GLM21], the result of which cannot be applied directly here. This method has been put
forward by Eberle, following earlier works by Lindvall and Rogers [LR86]. Before recalling the method, let us
also mention the recent work [Sch22], which uses a coupling approach adapted to a well-chosen distance.

We consider rit = |X̄i
t −X

i,N
t |+ δ|C̄it − C

i,N
t | with δ > 0, a constant not yet specified.

A natural distance between probability measures is the Wasserstein distance, linked to the theory of optimal
transport. For µ and ν two probability measures on Rd, we denote

Wp(µ, ν) = inf
X∼µ, Y∼ν

E
(
||X − Y ||pp

)1/p
, (1.3)

where || · ||p denotes the usual Lp distance on Rd. It is thus defined as the minimum over all possible choices of
a pair (X,Y ), such that X is distributed according to µ and Y according to ν, of the expectation of the distance
between X and Y . The basic idea behind a coupling method is then that an upper bound on the Wasserstein
distance between µ and ν is given by the construction of any pair of random variables distributed according to
these probability measures. Thus, instead of considering the minimum over all possible coupling, we construct
simultaneously two solutions of (1.1) and (1.2) that will tend to get closer together as the number of neurons
increases.

Have
(
X̄i
t , C̄

i
t

)
, for i between 1 and N , be N independent copies of a solution of (1.2) driven by some indepen-

dent Brownian motions (B̄i,X
t )t>0 and (B̄i,C

t )t>0. A coupling of
(
X̄i
t , C̄

i
t

)
and

(
Xi,N
t , Ci,Nt

)
then follows from a

coupling of the Brownian motions B and B̄.
The first natural choice, popularized by Sznitman [Szn91], is the synchronous coupling and consists in choosing

B = B̄. By doing so, when considering the time evolution of Z̄it − Z
i,N
t =

(
X̄i
t −X

i,N
t , C̄it − C

i,N
t

)
, the noise

cancels out. The contraction of a distance between the processes can then only be induced by the deterministic
drift, as in [BGM10], and this usually only holds under rather restrictive conditions (in particular the drift should be
strongly convex). Nevertheless, in our case, the calculation of the evolution of X̄i

t −X
i,N
t and C̄it−C

i,N
t (see later)

shows that there is still some deterministic contraction when X̄i
t −X

i,N
t = 0. We can therefore use a synchronous

coupling in the vicinity of this subspace.
Outside of this subspace, we use the noise to get the processes closer together. In the direction orthogonal to

the contracting space we consider B = −B̄, as this maximizes the variance of the noise. This yields the reflection
coupling. Notice however at this stage that, because of the symmetry of the noise, there is a priori no reason rit
should decrease rather than increase. This invites us to consider f(rit), with f a concave function, so that a random
decrease has more effect than a random increase of the same value. We will define the function f later.

Finally we construct a Lyapunov function H to take into account the trend of each process to come back to
some compact set of R2. We are then led to the study of a suitable distance between the two processes, which will
be of the form ρt := 1

N

∑N
i=1 f(rit)(1 + εH(Z̄it) + εH(Zi,Nt )), where ε > 0. This quantity controls the usual L1

and L2 distances between the two systems, and is interesting as, when rit is small, f(rit) tends to decrease either
because of the deterministic drift or the reflection coupling, and when rit is big, the Lyapunov functions H will
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tend to decrease. We thus show that Eρt decays exponentially fast. This leads to several constraints on δ, ε and on
the parameters involved in the definition of f , and we have to prove that it is possible to meet all these conditions
simultaneously. In reality, the quantity ρt considered will be a slight twist of the one given above (see (2.23)) so as
to take into account the non linearity of the process.

As explained, this method requires some noise in the direction orthogonal to the naturally contracting subspace.
This means, in the description of the method above, that one should have σX > 0 (so that we can use a reflection
coupling to bring X̄i

t and Xi,N
t closer together). In the case σX = 0 and σC > 0, a modification of the calculations

is necessary. We describe this case and the resulting modifications of the computations in Appendix B.

Assumption 1. Let LX,max and LC,max be two universal constants

∃LX ∈ [0, LX,max],∀z, z′ ∈ R2 |KX(z)−KX(z′)| ≤ LX(‖z − z′‖1)

∃LC ∈ [0, LC,max],∀z, z′ ∈ R2 |KC(z)−KC(z′)| ≤ LC(‖z − z′‖1)

KX(0, 0) = 0 and KC(0, 0) = 0

These constants LX,max and LC,max might seem at first glance off putting as they are not given. When we
prove non uniform in time propagation of chaos, these constants can be chosen to be +∞. When we prove uniform
in time propagation of chaos however, LX,max and LC,max are a priori bounds : Theorem 2 below will be true
for LX and LC sufficiently small. The condition LX ≤ LX,max and LC ≤ LC,max are therefore not restrictive
conditions, and are useful in proving some parameters are independent of LX and LC . Lemma 2.2 below shows
that one can for instance consider LX,max = 4 and LC,max = 1

5 .
Before any result on propagation of chaos, we prove that both systems (1.1) and (1.2) have well-defined solu-

tions:

Proposition 1.1. Let KX and KC satisfy Assumptions 1, with LX,max = ∞ and LC,max = ∞. There exists a
unique strong solution for system (1.1) and a unique strong solution for system (1.2).

We denoteW1 andW2 the usual L1 and L2 Wasserstein distances defined in (1.3).

Theorem 1. [Non uniform in time propagation of chaos] LetKX andKC satisfy Assumptions 1, withLX,max =∞
and LC,max = ∞. There exist explicit C1, C2 > 0, such that for all probability measures µ0 on R2 with finite
second moment,

W1

(
µk,Nt , µ̄⊗kt

)
≤ C1e

C2t k√
N
,

for all k ∈ N, where µk,Nt is the marginal distribution at time t of the first k neurons
(
(X1

t , C
1
t ), ...., (Xk

t , C
k
t )
)

of
an N particles system (1.1) with initial distribution (µ0)⊗N , while µ̄t is a solution of (1.2) with initial distribution
µ0.

This first theorem is in accordance with the theorem from [KNRS20], and explicits the dependency in t. Since
its proof is rather quick, and provides a good entry point into coupling methods, we give it in Subsection 1.4.

Our main result consist in removing the time dependency in the previous upperbound. This uniform in time
propagation of chaos however requires stronger assumptions on the interaction kernels.

Theorem 2. [Uniform in time propagation of chaos] Let Cinit,exp > 0 and ã > 0. There is an explicit cK > 0 such
that, for all KX and KC satisfying Assumptions 1 with LX , LC < cK , there exist explicit B1, B2 > 0, such that
for all probability measures µ0 on R2 satisfying Eµ0

(
eã(|X|+|C|)) ≤ Cinit,exp ,

W1

(
µk,Nt , µ̄⊗kt

)
≤ B1

k√
N
, W2

2

(
µk,Nt , µ̄⊗kt

)
≤ B2

k√
N
,

for all k ∈ N, where µk,Nt is the marginal distribution at time t of the first k neurons
(
(X1

t , C
1
t ), ...., (Xk

t , C
k
t )
)

of
an N particles system (1.1) with initial distribution (µ0)⊗N , while µ̄t is a solution of (1.2) with initial distribution
µ0.
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As previously mentioned, this work follows the method described in [GLM21]. Beyond the result of uniform
in time propagation of chaos for the FitzHugh-Nagumo model, which is in itself an interesting result, the present
work is also a testament to the robustness of the coupling method.

The reader will find an index containing all notations, constants and parameters for reference at the end of
the document.

1.3 Existence of solutions

First of all, we prove Proposition 1.1, i.e existence of strong solutions of systems (1.1) and (1.2), under Assumption
1, and with begin with (1.1).
Let’s denote, for K ∈ R+,

gK(x) =


−K3 if x < −K
x3 if x ∈ [−K,K]
K3 if x > K.

gK is locally Lipschitz and is bounded.

Thus, it’s well known (see Chapter 3 [IW89]) that the following system (under Assumption 1){
dXi,N

t = (Xi,N
t − gK(Xi,N

t )− Ci,Nt − α)dt+ 1
N

∑N
j=1KX(Zi,Nt − Zj,Nt ) + σXdB

i,X
t

dCi,Nt = (γXi,N
t − Ci,Nt + β)dt+ 1

N

∑N
j=1KC(Zi,Nt − Zj,Nt ) + σCdB

i,C
t ,

(1.4)

for 1 ≤ i ≤ N , have strong and unique solution.

In consequence, for a fixedK ∈ R+, there exists strong solution of system (1.1) until time TK = sup{t,∀i,∀s ≤
t,Xi

t ≤ K and Cit ≤ K}, and the solution coincide with the solution of the system with gK .

We have the following Proposition:

Proposition 1.2. If, for each i ≤ N , E(|Xi,N
0 |2) < +∞ and E(|Ci,N0 |2) < +∞, then for all t ≥ 0 there exists

Ct <∞ such that, for each i ≤ N :
E
(
|Xi,N

t |2 + |Ci,Nt |2
)
≤ Ct. (1.5)

The proof relies on the Lyapunov function defined in the next Section, and is given in Appendix A.2.
Then, by denoting T∞ the explosion time of a solution of system (1.1)

T∞ = inf{t,∃i,∀A > 0,∃ε > 0,∀s ∈ (t− ε, t), Xi,N
s > A or Ci,Ns > A}

we deduce ∀t ∈ R+,P(T∞ ≤ t) = 0 and P(T̄∞ ≤ t) = 0. Eventually, there exists unique and strong solution for
system (1.1).

The existence and uniqueness of a solution of (1.2) is known from the Theorem 3.3 from [RST19]. We only
have to prove that the Assumptions 3.2 [RST19] are verified. We define, for all t ∈ R+, z = (x, c) ∈ R2 and for
all probability distribution ν with a finite variance:

b(t, z, ν) =

(
x− x3 − c− α+KX ∗ ν(z)
γx− c+ β +KC ∗ ν(z)

)
and σ(t, z, ν) =

(
σX
σC

)
.

σ is a constant function, so it clearly satisfies the various conditions.
For t ∈ R+, z, z′ in R2, and ν a probability measure:

〈z − z′, b(t, z, ν)− b(t, z′, ν)〉 =(x− x′)
(
(x− x′)− (x3 − x′3)− (c− c′) +KX ∗ ν(z)−KX ∗ ν(z′)

)
6



+ (c− c′)
(
γ(x− x′)− (c− c′) +KC ∗ ν(z)−KC ∗ ν(z′)

)
=(x− x′)2 − (x− x′)2(x2 + xx′ + x′2) + (γ − 1)(c− c′)(x− x′)− (c− c′)2

+ (KX ∗ ν(z)−KX ∗ ν(z′)) + (KC ∗ ν(z)−KC ∗ ν(z′)).

Since x2 + xx′ + x′2 ≥ 0, the second term is non-positive. KX and KC are Lipschitz function, so the last line is
clearly bounded by ‖z − z′‖22 up to a multiplicative constant. Then, there exists a constant L such that

〈z − z′, b(t, z, ν)− b(t, z′, ν)〉 ≤ L‖z − z′‖22.

Since KX and KC are Lipschitz function, we also have, for all probability distribution ν and ν ′ with a finite
variance,

‖b(t, z, ν)− b(t, z, ν ′)‖2 ≤ LW2(ν, ν ′).

Eventually, since b is Locally Lipschitz with polynomial growth, each Assumption is satisfied and Theorem 3.3
[RST19] can be applied. Note that we could also apply Proposition 2.19 from [LS14] : assumptions are the same,
and it gives a result for interaction depending on a spatial position.

To complete the Proposition 1.2, we also give the following

Proposition 1.3. If E(|X̄0|2) < +∞ and E(|C̄0|2) < +∞, then there exists C0,1 and C0,2 such that:

E
(
|X̄t|2 + |C̄t|2

)
≤ C0,1e

C0,2t. (1.6)

The proof is very similar with Proposition 1.2 and is in Appendix A.2.

1.4 Quick result : non uniform in time propagation of chaos

We start by proving Theorem 1, a non uniform in time propagation of chaos, as it highlights the basic strategy behind
a coupling argument. Some of the following expressions will be used in the proof of Theorem 2, in Section 3.

We consider a synchronous coupling between (Zi,Nt )i and (Z̄it)i, i.e. B̃i,X
t = Bi,X

t and B̃i,C
t = Bi,C

t . We have{
dXi,N

t = (Xi,N
t − (Xi,N

t )3 − Ci,Nt − α)dt+ 1
N

∑N
j=1KX(Zit − Z

j
t )dt+ σxdB

i,X
t

dCi,Nt = (γXi,N
t − Ci,Nt + β)dt+ 1

N

∑N
j=1KC(Zit − Z

j
t )dt+ σcdB

i,C
t

and {
dX̄i

t = (X̄i
t − (X̄i

t)
3 − C̄it − α)dt+KX ∗ µ̄t(Z̄it)dt+ σxdB

i,X
t

dC̄it = (γX̄i
t − C̄it + β)dt+KC ∗ µ̄t(Z̄it)dt+ σcdB

i,C
t ,

with µ̄t the law of Z̄1
t . The method is the following :

• we compute the time evolution of Erit = E
(
|Xi,N

t − X̄i
t |+ |C

i,N
t − C̄it |

)
using Ito’s formula,

• we control the difference between the drifts 1
N

∑
j 6=iK(Z̄it − Z̄

j
t ) and K ∗ µ̄t(Z̄it) using some form of law

of large number. This is where the convergence rate
√
N appears,

• and we conclude using Gronwall’s lemma.

Time evolution : We have,

d(Xi,N
t − X̄i

t) =

(Xi,N
t − X̄i

t)−
(

(Xi,N
t )3 − (X̄i

t)
3
)
− (Ci,Nt − C̄it) +

1

N

N∑
j=1

KX(Zit − Z
j
t )−KX ∗ µ̄t(Z̄it)

 dt.
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We denote

sign(x) =

{ x
|x| if x 6= 0,

0 otherwise,

and obtain, using Ito’s formula,

d|Xi,N
t − X̄i

t | =
(

sign(Xi,N
t − X̄i

t)(X
i,N
t − X̄i

t)− sign(Xi,N
t − X̄i

t)
(

(Xi,N
t )3 − (X̄i

t)
3
)

−sign(Xi,N
t − X̄i

t)(C
i,N
t − C̄it) + sign(Xi,N

t − X̄i
t)

1

N

N∑
j=1

KX(Zit − Z
j
t )−KX ∗ µ̄t(Z̄it)

 dt

≤

|Xi,N
t − X̄i

t | −
∣∣∣(Xi,N

t )3 − (X̄i
t)

3
∣∣∣+
∣∣∣Ci,Nt − C̄it

∣∣∣+

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Zit − Z
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
 dt.

(1.7)

Similarly,

d(Ci,Nt − C̄it) =

γ(Xi,N
t − X̄i

t)− (Ci,Nt − C̄it) +
1

N

N∑
j=1

KC(Zit − Z
j
t )−KC ∗ µ̄t(Z̄it)

 dt,

and we obtain

d|Ci,Nt − C̄it | ≤

γ ∣∣∣Xi,N
t − X̄i

t

∣∣∣− |Ci,Nt − C̄it |+

∣∣∣∣∣∣ 1

N

N∑
j=1

KC(Zit − Z
j
t )−KC ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
 dt. (1.8)

Thus, denoting rit = |Xi,N
t − X̄i

t |+ |C
i,N
t − C̄it |

drit ≤
(

(1 + γ)|Xi,N
t − X̄i

t | −
∣∣∣(Xi,N

t )3 − (X̄i
t)

3
∣∣∣

+

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Zit − Z
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

N

N∑
j=1

KC(Zit − Z
j
t )−KC ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
 dt.

Difference of the drifts : Let us now consider these last two terms∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Zit − Z
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Zit − Z
j
t )−

1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣ .

The first sum can be decomposed, using Assumption 1,

1

N

∣∣∣∣∣∣
N∑
j=1

KX(Zit − Z
j
t )−KX(Z̄it − Z̄

j
t )

∣∣∣∣∣∣ ≤LXN
N∑
j=1

‖Zit − Z
j
t − (Z̄it − Z̄

j
t )‖1

8



≤LX
N

N∑
j=1

(
‖Zit − Z̄it‖1 + ‖Zjt − Z̄

j
t ‖1
)

≤LXrit +
LX
N

N∑
j=1

rjt .

Similarly, we obtain∣∣∣∣∣∣ 1

N

N∑
j=1

KC(Zit − Z
j
t )−KC ∗ µ̄t(Z̄it)

∣∣∣∣∣∣ ≤ LCrit +
LC
N

N∑
j=1

rjt +

∣∣∣∣∣∣ 1

N

N∑
j=1

KC(Z̄it − Z̄
j
t )−KC ∗ µ̄t(Z̄it)

∣∣∣∣∣∣ .
Hence, we get

drit ≤

(1 + γ)|Xi,N
t − X̄i

t | −
∣∣∣(Xi,N

t )3 − (X̄i
t)

3
∣∣∣+ (LX + LC)

rit +
1

N

N∑
j=1

rjt


+

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

N

N∑
j=1

KC(Z̄it − Z̄
j
t )−KC ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
 dt

≤

(1 + γ)rit + (LX + LC)

rit +
1

N

N∑
j=1

rjt


+

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

N

N∑
j=1

KC(Z̄it − Z̄
j
t )−KC ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
 dt.

By considering the expectation, since E(rjt ) = E(rit) for each j, by exchangeability of the particles, we have

dE(rit) ≤

(1 + γ + 2LX + 2LC)E(rit) + E

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣


+E

∣∣∣∣∣∣ 1

N

N∑
j=1

KC(Z̄it − Z̄
j
t )−KC ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
 dt.

Now, we bound the interaction part. We begin with KX . By Cauchy-Schwarz, we can write

E

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
 ≤E

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
21/2

We notice that (Z̄jt )j are i.i.d with law µ̄t. Let’s denote Z̄t a generic random variable of law µ̄t independent
of Z̄it . What is more, KX ∗ µ̄t(Z̄it) =

∫
KX(Z̄it − z)µ̄t(dz) = E[KX(Z̄it − Z̄t)|Z̄it ]. Hence

E

E

∣∣∣∣∣∣ 1

N − 1

∑
j 6=i

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
2 ∣∣∣Z̄it

 = E

Var

 1

N − 1

∑
j 6=i

KX(Z̄it − Z̄
j
t )
∣∣∣Z̄it


=
1

N − 1
E
(

Var
(
KX(Z̄it − Z̄t)

∣∣∣Z̄it))
9



≤
L2
X

N − 1
E
(

Var
(
‖Z̄it − Z̄t‖1

∣∣∣Z̄it)) .
Since

E
[
Var
(
‖Z̄it − Z̄t‖1

∣∣∣Z̄it)] ≤E [E(‖Z̄it − Z̄t‖21∣∣∣Z̄it)] ≤ E
[
E
(

2‖Z̄it‖21 + 2‖Z̄t‖21
∣∣∣Z̄it)] ≤ 4E(‖Z̄t‖21),

we obtain

E

E

∣∣∣∣∣∣ 1

N − 1

∑
j 6=i

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
2 ∣∣∣Z̄it

 ≤ 4L2
X

N − 1
E(‖Z̄t‖21).

We now want to control E
(∣∣∣ 1

N

∑N
j=1KX(Z̄it − Z̄

j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣2) . We decompose it with

E

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
2

=E

∣∣∣∣∣∣N − 1

N

1

N − 1

N∑
j=1

KX(Z̄it − Z̄
j
t )−

(
N − 1

N
+

1

N

)
KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
2

≤2

(
N − 1

N

)2

E

∣∣∣∣∣∣ 1

N − 1

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
2+

2

N2
E
(
|KX ∗ µ̄t(Z̄it)|2

)
.

Since

E
(
|KX ∗ µ̄t(Z̄it)|2

)
=E

(∣∣∣E(KX(Z̄it − Z̄t)|Z̄it
)∣∣∣2) ≤ L2

XE
(
E
(
‖Z̄it − Z̄t‖21|Z̄it

))
≤ 4L2

XE(‖Z̄t‖21),

we obtain

E

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
2 ≤(N − 1

N

)2 4L2
X

N − 1
E(‖Z̄t‖21) +

4L2
X

N2
E(‖Z̄t‖21) ≤

8L2
X

N
E(‖Z̄t‖21),

(1.9)

and finally

E

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
 ≤(8L2

X

N
E(‖Z̄t‖21)

)1/2

.

Similarly, we have

E

∣∣∣∣∣∣ 1

N

N∑
j=1

KC(Z̄it − Z̄
j
t )−KC ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
 ≤(8L2

C

N
E(‖Z̄t‖21)

)1/2

.

Finally,

dE(rit) ≤

(
(1 + γ + 2LX + 2LC)E(rit) +

√
8L2

X + 8L2
C

(
1

N
E(‖Z̄t‖21)

)1/2
)
dt.
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Then using Proposition 1.3, we obtain

dE(rit) ≤

(1 + γ + 2LX + 2LC)E(rit) +

√
8L2

X + 8L2
C

√
2C0,1

√
N

e
1
2
C0,2t

 dt

Conclusion : We have thus obtained

d

(
E(rit) +

√
16(L2

X + L2
C)C0,1

N

1

1 + γ + 2LX + 2LC − C0,2

2

e
1
2
C0,2t

)

≤ (1 + γ + 2LX + 2LC)

(
E(rit)

√
16(L2

X + L2
C)C0,1

N

1

1 + γ + 2LX + 2LC − C0,2

2

e
1
2
C0,2t

)
dt

and Gronwall’s lemma yields

E(rit)+

√
16(L2

X + L2
C)C0,1

N

1

1 + γ + 2LX + 2LC − C0,2

2

e
1
2
C0,2t

≤ e(1+γ+2LX+2LC)t

[
E(ri0) +

√
16(L2

X + L2
C)C0,1

N

1

1 + γ + 2LX + 2LC − C0,2

2

]
,

thus

E(rit) ≤ C1e
C2t 1√

N
.

Let µ0 a measure on R2, µk,Nt the marginal distribution at time t of the first k neurons
(
Z1
t , . . . , Z

k
t

)
of an

N particles system (1.1) with initial distribution (µ0)⊗N , and µ̄t is a solution of (1.2) with initial distribution
µ0.
We obtain for Wasserstein 1 distance

W1(µk,Nt , µ̄⊗kt ) = inf
{
E[‖Z(k) − Z̄(k)‖1],PZ(k) = µk,Nt ,PZ̄(k) = µ̄⊗kt

}
≤ inf

{
E

[
k∑
i=1

rit

]
,P

(Zi,Nt )i
= µk,Nt ,P(Z̄it)i

= µ̄⊗kt

}
≤kE(r1

t )

≤C1e
C2t k√

N
.

Hence Theorem 1.

2 Preliminaries

2.1 Notations

For h : R2N → R, for all (zi)1≤i≤N = (xi, ci)1≤i≤N ∈ R2N , the generator of (1.1) is

LNh(z1, .., zN ) =
N∑
i=1

Li,Nh,

11



where

Li,Nh(z1, .., zN ) =

xi − x3
i − ci − α+

1

N

N∑
j=1

KX(zi − zj)

 ∂xih

+

γxi − ci + β +
1

N

N∑
j=1

KC(zi − zj)

 ∂cih

+
σ2
x

2
∂2
xi,xih+

σ2
c

2
∂2
ci,cih.

For h : R2 → R, for all z = (x, y) ∈ R2, the generator of (1.2) for a given distribution µ is

Lµh(x, c) =
(
x− x3 − c− α+KX ∗ µ(z)

)
∂xh+ (γx− c+ β +KC ∗ µ(z)) ∂ch

+
σ2
x

2
∂2
xxh+

σ2
c

2
∂2
cch.

In particular, we notice that for fixed (zi)1≤i≤N ∈ (R2)N , if we consider the empirical measure {µemp = 1
N

∑
j δzj},

we have for all h : R2 → R and z̄ ∈ R2,

Lµemph(z̄) =
(
x̄− x̄3 − c̄− α+KX ∗ µemp(z̄)

)
∂xh+

(
γx̄− c̄+ β +KC ∗ µemp(z̄)

)
∂ch+

σ2
x

2
∂2
xxh+

σ2
c

2
∂2
cch

=

x̄− x̄3 − c̄− α+
1

N

N∑
j=1

KX(z̄ − zj)

 ∂xh+

γx̄− c̄+ β +
1

N

N∑
j=1

KC(z̄ − zj)

 ∂ch

+
σ2
x

2
∂2
xxh+

σ2
c

2
∂2
cch.

In this case, if we consider z̄ = zi for a specific i and we denote h̄i : (z1, .., zN )→ h(zi), then

Lµemph(zi) =

xi − x3
i − ci − α+

1

N

N∑
j=1

KX(zi − zj)

 ∂xh

+

γxi − ci + β +
1

N

N∑
j=1

KC(zi − zj)

 ∂ch+
σ2
x

2
∂2
xxh+

σ2
c

2
∂2
cch

= Li,N h̄i(z1, . . . , zN ).

2.2 First Lyapunov function

Let H : R2 → R be defined by

H(z) = H(x, c) =
1

2
γx2 + βx+

1

2
c2 + αc+H0, (2.1)

with

H0 =
β2

γ
+ α2,

where γ, β and α are the parameters of the system (1.1).

Lemma 2.1. We have

12



(i) For all x, c ∈ R, we have H(x, c) ≥ γ
4x

2 + c2

4 ≥ 0,

(ii) For all x, c ∈ R, we have H(x, c) ≥ 1
2 max(γ,1)

(
(γx+ β)2 + (c+ α)2

)
,

(iii) For all δ > 0 there is Cr,H > 0 such that for all x, x′, c, c′ ∈ R, we have(
|x− x′|+ δ|c− c′|

)2 ≤ Cr,H(H(x, c) +H(x′, c′)),

(iv) A direct consequence of the previous point is that for all B ∈ R, λ > 0 and δ > 0, there is R ≥ 0 such that,
for x, x′, c, c′ ∈ R satisfying |x− x′|+ δ|c− c′| ≥ R, we have H(x, c) +H(x′, c′) ≥ 80B

λ . An explicit value

of R is given by R =
√

1280(1+δ2)B
λmin(γ,1) .

The first two points are consequences of direct calculations. The last two points are proved in Appendix A.1.

Lemma 2.2 (Lyapunov’s property of H). H , defined in (2.1), is a Lyapunov function. In fact, let λ ∈ R such that

LX
8

+ LC

(
2 +

1

8

)
< 1− λ

2
, (2.2)

then there exists B > 0 such that for all (x̄, c̄) ∈ R2, for all probability distribution µ on R2,

LµH(z̄) ≤ B + (αXLX + βXLC)
(
Eµ(|X|)2 − x̄2

)
+ (αCLX + βCLC)

(
Eµ(|C|)2 − c̄2

)
− λH(z̄). (2.3)

Moreover, for all (zi)1≤i≤N ∈ R2N , by denoting H : (z1, . . . , zN ) 7→ H(zi),

Li,NH(z1, . . . , zN ) ≤B + (αXLX + βXLC)

 1

N

N∑
j=1

|xj |

2

− x2
i


+ (αCLX + βCLC)

 1

N

N∑
j=1

|cj |

2

− c2
i

− λH(zi), (2.4)

with
αX =

γ

2
+

1

2
, βX =

17

2
, αC =

1

16
, βC =

1

2
+

1

32

We refer to Appendix A.2 for the proof of this lemma and of the following Proposition.

Proposition 2.1. We have

LN
(

1

N

N∑
i=1

H
(
Zi,Nt

))
≤ B − λ

(
1

N

N∑
i=1

H
(
Zi,Nt

))
, (2.5)

A direct consequence of (2.3) is

EH
(
Z̄it
)
≤ EH

(
Z̄i0
)

+

∫ t

0

(
B − λEH

(
Z̄is
))
ds, (2.6)

and a consequence of (2.5) is(
1

N

N∑
i=1

EH
(
Zi,Nt

))
≤

(
1

N

N∑
i=1

EH
(
Zi,N0

))
+

∫ t

0

(
B − λ 1

N

N∑
i=1

EH
(
Zi,Ns

))
ds. (2.7)

From (2.7) we obtain bounds on the moments of
∣∣∣Xi,N

t

∣∣∣2 and
∣∣∣Ci,Nt ∣∣∣2, and from (2.6) Proposition 1.3 on the second

moments of X̄i
t and C̄it . The proof is given is Appendix A.2. It also yields the following result
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Lemma 2.3. Provided the interaction kernels satisfy

LX
8

+ LC

(
2 +

1

8

)
< 1,

and that E(|X̄0|2) < +∞ and E(|C̄0|2) < +∞, then there exists Cinit,2 such that for all t ≥ 0:

E
(
|X̄t|2 + |C̄t|2

)
≤ Cinit,2.

From now on, we consider λ > 0 satisfying (2.2) (and use the a priori bounds LX,max and LC,max to ensure
the existence of such a λ).

2.3 Modification of the function

Let Cinit,exp > 0, ã > 0 and consider an initial measure µ0 on R2 which satisfies Eµ0
(
eã(|X|+|C|)) ≤ Cinit,exp.

For technical reasons, we need a greater restoring force by the Lyapunov function than the one given in
Lemma 2.2. We thus modify it in order to obtain estimates such as (2.13) and (2.19) below.

Let a > 0, such that a ≤ ã/
(
4
√

2 max
(√
γ, 1
))

. This choice of a is only necessary for further Propositions
and Lemmas, in Section 3.

Let us consider for all z ∈ R2,

H̃(z) =

∫ H(z)

0
exp

(
a
√
u
)
du =

2

a2
exp

(
a
√
H(z)

)(
a
√
H(z)− 1

)
+

2

a2
. (2.8)

Direct calculations yield the following technical lemma.

Lemma 2.4. We have, for all z ∈ R2

H(z) exp
(
a
√
H(z)

)
≥ H̃(z) ≥ exp

(
a
√
H(z)

)
− 2

a2

(
exp

(
a2

2

)
− 1

)
, (2.9)

2

a

√
H(z) exp

(
a
√
H(z)

)
≥ H̃(z) ≥1

a

√
H(z) exp

(
a
√
H(z)

)
− 1

a2
(e− 2) , (2.10)

H̃(z) ≥H(z) (2.11)

We may calculate, using Lemma 2.1 and Equation (2.3)

Lµ
(
H̃
)

= exp
(
a
√
H
)
LµH +

1

2

a

2
√
H

exp
(
a
√
H
) (
|σx∂xH|2 + |σc∂cH|2

)
= exp

(
a
√
H
)
LµH +

a

4
√
H

exp
(
a
√
H
)(

σ2
x (γx+ β)2 + σ2

c (c+ α)2
)

≤ exp
(
a
√
H
) (
B + (αXLX + βXLC)Eµ(|X|)2 + (αCLX + βCLC)Eµ(|C|)2 − λH

)
+

1

2
max

(
σ2
x, σ

2
c

)
max (γ, 1) a

√
H exp

(
a
√
H
)

≤ exp
(
a
√
H
)(

B +

(
1
2 max

(
σ2
x, σ

2
c

)
max (γ, 1)

)2
a2

2λ
+ (αXLX + βXLC)Eµ(|X|)2

+ (αCLX + βCLC)Eµ(|C|)2 − λ

2
H

)
, (2.12)

where for this last inequality we used Young’s inequality

1

2
max

(
σ2
x, σ

2
c

)
max (γ, 1) a

√
H ≤ λ

2
H +

(
1
2 max

(
σ2
x, σ

2
c

)
max (γ, 1)

)2
a2

2λ
.
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Notice that (2.12) ensures that this new Lyapunov function also tends to bring back particle which ventured at
infinity, and at an even greater rate. This new rate H exp(

√
H) however comes at a cost : the initial condition

must have a finite exponential moment, and no longer just have a finite second moment. First, by Lemma 2.3,
E(X̄t)

2 + E(C̄t)
2 ≤ Cinit,2. Furthermore, the function h 7→ exp

(
a
√
h
) (
B − λ

4h
)

is bounded from above for

h ≥ 0. We therefore obtain from (2.12) the existence of B̃ such that

Lµ̄t
(
H̃
(
Z̄it
))
≤B̃ − λ

4

(
H
(
Z̄it
)

exp

(
a
√
H
(
Z̄it
)))

(2.13)

d

dt
EH̃

(
Z̄it
)
≤B̃ − λ

4
E
(
H
(
Z̄it
)

exp

(
a
√
H
(
Z̄it
)))

(2.14)

and
d

dt
EH̃

(
Z̄it
)
≤B̃ − λ

4
EH̃

(
Z̄it
)
, (2.15)

where for this last inequality, we used (2.9). While (2.13) and (2.14) will be useful in ensuring a sufficient restoring
force, Equation (2.15) give us a uniform in time bound on EH̃

(
Z̄it
)
, provided we have an initial bound. These

inequalities are to be understood in the sense of SDEs, where (2.15) should for instance be rigorously written

EH̃
(
Z̄it
)
≤ EH̃

(
Z̄i0
)

+

∫ t

0

(
B̃ − λ

4
EH̃

(
Z̄is
))

ds.

Now, for the system of particle, we have, using (2.12), ∀i, ∀xi, vi ∈ Rd,

LNH̃ (zi) ≤ exp
(
a
√
H (zi)

)B̃ + (αXLX + βXLC)

 1

N

N∑
j=1

|xj |

2

+ (αCLX + βCLC)

 1

N

N∑
j=1

|cj |

2

− λ

2
H (zi)

 .

Summing over i ∈ {1, .., N}, we may calculate

(αXLX + βXLC)
N∑
j=1

(∑N
j=1 |xj |
N

)2 N∑
i=1

exp
(
a
√
H (zi)

)
N

− λ

16

N∑
i=1

H (zi) exp
(
a
√
H (zi)

)
N

≤ λ

16

( N∑
i,j=1

H (zi)

N

exp
(
a
√
H (zj)

)
N

−
N∑
i=1

H (zi) exp
(
a
√
H (zi)

)
N

)
≤0. (2.16)

Here, we used Lemma 2.1, the fact that ∀x, y ≥ 0 xe
√
y + ye

√
x − xe

√
x − ye

√
y = (e

√
x − e

√
y)(y − x) ≤ 0 and

assumed
(αXLX + βXLC) ≤ γλ

64
.

Likewise,

(αCLX + βCLC)
N∑
j=1

(∑N
j=1 |cj |
N

)2 N∑
i=1

exp
(
a
√
H (zi)

)
N

− λ

16

N∑
i=1

H (zi) exp
(
a
√
H (zi)

)
N

≤ 0, (2.17)

provided

(αCLX + βCLC) ≤ λ

64
.
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There is therefore a constant, which for the sake of clarity we will also denote B̃ (as we may take the maximum of
the previous constants), such that we get

Li,NH̃(Zi,Nt ) ≤B̃ + (αXLX + βXLC)

(∑N
j=1 |X

j,N
t |

N

)2

exp

(
a

√
H
(
Zi,Nt

))

+ (αCLX + βCLC)

(∑N
j=1 |C

j,N
t |

N

)2

exp

(
a

√
H
(
Zi,Nt

))

− λ

4
H
(
Zi,Nt

)
exp

(
a

√
H
(
Zi,Nt

))
(2.18)

LN
(

1

N

N∑
i=1

H̃(Zi,Nt )

)
≤B̃ − λ

4

(
1

N

N∑
i=1

H(Zi,Nt ) exp

(
a

√
H
(
Zi,Nt

)))
(2.19)

and

LN
(

1

N

N∑
i=1

H̃(Zi,Nt )

)
≤ B̃ − λ

4

(
1

N

N∑
i=1

H̃(Zi,Nt )

)
(2.20)

Once again, (2.18) and (2.19) will be useful in ensuring a sufficient restoring force, and (2.20) yields a uniform in
time bound on the expectation of H̃(Zi,Nt ), since E

(
1
N

∑N
j=1 H̃(Zj,Nt )

)
= E

(
H̃(Zi,Nt )

)
by exchangeability of

the particles.

2.4 Parameters

We start by fixing the values of some parameters. The somewhat intricate expressions in this section are dictated
by the computations arising in the proofs later on. They are somewhat roughly chosen and far from optimal as we
only wish to convey the fact that every constant is explicit.

Recall αX , βX , αC and βC given in Lemma 2.2. a > 0 is fixed from the last Subsection and the definition of
H̃ , and λ and B̃ are obtained from the same Subsection.

We consider the following parameters

Assumption 2. Given any η > 4 and δ̃ > 0, consider the following set of parameters

δ =(1 + δ̃)
1 + LX,max
1− LC,max

, R0 =

√
1280B̃

λmin(γ, 1)
, R =

√
1 + δ2R0,

Cf,1 =16

(
1

a2

(
γ + a

(
β +

α

δ

)√
2 max (γ, 1)

)(
exp

(
a2

2

)
− 1

)
+
√

2 max (γ, 1)

(
√
γ +

1

δ

)
(e− 2)

)
Cf,2 =4

(
γ +

(
a
(
β +

α

δ

)
+ 2a2

(
√
γ +

1

δ

))√
2 max (γ, 1)

)
c = min

{
2B̃

η
,
λ

160

η − 4

η
,

1

2(1 + η)
min

(
σx√
πR

, 1− LC −
1 + LX

δ

)
exp

(
− 1

4σ2
x

(
1 + δγ + LX,max + δLC,max + (Cf,1 + Cf,2)σ2

x

)
R2

)}
,

ε =
ηc

2B̃
, φmin = exp

(
− 1

4σ2
x

(1 + δγ + LX,max + δLC,max + (εCf,1 + Cf,2)σ2
x)R2

)
C1 =

1

min (δ, 1)

2

φmin
max

(
16(1 + δ2)

εmin (γ, 1)
, 1

)
, C2 =

1

min (δ2, 1)

2

φmin
max

(
16(1 + δ2)

εmin (γ, 1)
, 1

)
16



Cz =
2

φmin
max

(
1,

4

ε
max

(√
1

γ
, 1

))
.

We define f as follows

f(r) =

∫ r∧R

0
φ(s)g(s)ds, (2.21)

φ(r) = exp

(
− 1

4σ2
x

(
1 + δγ + LX + δLC + (εCf,1 + Cf,2)σ2

x

)
r2

)
,

Φ(s) =

∫ s

0
φ(u)du,

g(r) =1− c+ 2εB̃

σ2
x

∫ r

0
Φ(s)φ(s)−1ds.

Assume furthermore that LX and LC , the Lipschitz constants, satisfy

LX ≤ min

(
λ

128Cz
,

λa

512εCz
,
c

2C1

)
and LC ≤ min

(
λ

128δCz
,

λa

512εδCz
,

c

2δC1

)
αXLX + βXLC ≤

γλ

128
and αCLX + βCLC ≤

λ

128
,

LX
8

+ LC

(
2 +

1

8

)
< 1− λ

2
.

Notice how the bounds on LX and LC depend on c. This is one of the reasons why we use the a priori bounds
LX ∈ [0, LX,max] and LC ∈ [0, LC,max] given in Assumption 1 : they allow us to bound c and δ independently of
LC and LX . We are thus able to begin by choosing an acceptable values for those parameters, before then giving
upper bounds on LX and LC .

We quickly mention that the constants C1, C2 and Cz above come from Lemma 2.6 later. We gather some
properties required in the calculations of the proof of Theorem 2 in the following lemma. Again, these properties
are the ones motivating the choice of parameters

Lemma 2.5. The set of parameters given in Assumption 2 satisfy

• f is C2 on (0, R) such that f ′+ (0) = 1 and f ′− (R) > 0, and constant on [R,∞). Moreover, f is non-negative,
non-decreasing and concave, and for all s ≥ 0,

min (s,R) f ′− (R) ≤ f (s) ≤ min (s, f (R)) ≤ min (s,R) .

• For all r ∈ [0, R], φ(r) ≥ φmin and g(r) ≥ 1
2 .

• We have the conditions

2f ′(R) ≥ exp

(
− 1

4σ2
x

(
1 + δγ + LX + δLC + (εCf,1 + Cf,2)σ2

x

)
R2

)
,

2c+ 4εB̃ ≤
(

1− LC −
1 + LX

δ

)
min
r∈]0,R]

f ′(r)r

f(r)
,

c ≤ λ

160

80εB̃
λ

1 + 80εB̃
λ

,
1 + LX
1− LC

< δ and ε ≤ 1.

The proof of this lemma is done in Appendix A.3.
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2.5 Control of the usual distances

As explained previously, we consider a modified semimetrics. For z = (x, c) ∈ R2 and z′ = (x′, c′) ∈ R2, define

r(z, z′) = r(x, c, x′, c′) = |x− x′|+ δ|c− c′|, (2.22)

and let ρ((zj , z
′
j)1≤j≤N ) be defined as follows:

ρ
(
(zj , z

′
j)1≤j≤N

)
=

1

N

N∑
i=1

f
(
r
(
zi, z

′
i

))
Gi
(
(zj , z

′
j)j
)
, (2.23)

where for each i ∈ {1, ..., N},

Gi
(
(zj , z

′
j)j
)

= 1 + εH̃ (zi) + εH̃
(
z′i
)

+
ε

N

N∑
j=1

H̃ (zj) +
ε

N

N∑
j=1

H̃
(
z′j
)
. (2.24)

An immediate corollary of the definition and properties ofH is that ρ is a quantity on R4N which controls the usual
L1 and L2 distances.

Lemma 2.6. The constants C1, C2, Cz > 0, given in Assumption 2, are such that for all z = (x, c) ∈ R2 and
z′ = (x′, c′) ∈ R2

(i) ‖z − z′‖1 ≤ C1f (r (z, z′))
(

1 + εH̃(z) + εH̃(z′)
)

(ii) ‖z − z′‖22 ≤ C2f (r (z, z′))
(

1 + εH̃(z) + εH̃(z′)
)

(iii) ‖z − z′‖1 ≤ Czf(r(z, z′))
(

1 + ε
√
H(z) + ε

√
H(z′)

)
The proof of this lemma is postponed to Appendix A.4.

3 Proof of Theorem 2 in the case σX > 0

Let ξ > 0 be a parameter destined to vanish, and let ϕsc : R+ 7→ R+ and ϕrc : R+ 7→ R+ be two Lipschitz
continuous functions such that

∀x, ϕ2
sc(x) + ϕ2

rc(x) =1

ϕrc(x) =1 if ξ ≤ x ≤ R

ϕrc(x) =0 if x ≤ ξ

2
or x ≥ R+ ξ.

Intuitively, ϕrc represents the region of space in which we consider a reflection coupling, and ϕsc the one in which
we consider a synchronous coupling. We thus simultaneously construct the following solutions

dXi,N
t = (Xi,N

t − (Xi,N
t )3 − Ci,Nt − α)dt+ 1

N

∑N
j=1KX(Zit − Z

j
t )dt

+σxϕsc

(
|Xi,N

t − X̄i
t |
)
dBi,sc,X

t + σxϕrc

(
|Xi,N

t − X̄i
t |
)
dBi,rc,X

t

dCi,Nt = (γXi,N
t − Ci,Nt + β)dt+ 1

N

∑N
j=1KC(Zit − Z

j
t )dt+ σcdB

i,C
t ,

and 
dX̄i

t = (X̄i
t − (X̄i

t)
3 − C̄it − α)dt+KX ∗ µ̄t(Z̄it)dt

+σxϕsc

(
|Xi,N

t − X̄i
t |
)
dBi,sc,X

t − σxϕrc

(
|Xi,N

t − X̄i
t |
)
dBi,rc,X

t

dC̄it = (γX̄i
t − C̄it + β)dt+KC ∗ µ̄t(Z̄it)dt+ σcdB

i,C
t .

Notice that we consider a symmetric coupling on the dynamics of C.
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3.1 Main proof and results

Proposition 3.1. We denote rit = r(Zi,Nt , Z̄it) and Git = Gi((Zj,Nt )j , (Z̄
j
t )j). For all c ∈ R, for each i ∈

{1, . . . , N}, we have
d(ectf(rit)G

i
t) ≤ ectKi

tdt+ dM i
t , (3.1)

where M i
t is a continuous local martingale and Ki

t can be written as

Ki
t = K̃i

t + I1,i
t + I2,i

t + I3,i
t . (3.2)

We define K̃i
t , I

1,i
t , I2,i

t , I3,i
t and I4,i

t as followed:

K̃i
t =Git

[
2cf(rit) +

1

2
f ′′(rit)

(
2σ2

xϕrc

(
|Xi,N

t − X̄i
t |
)2
)

+ f ′(rit)
(

(1 + γδ + LX + δLC)|Xi,N
t − X̄i

t | − |(X
i,N
t )3 − (X̄i

t)
3|+ (1 + LX + δLC − δ)|Ci,Nt − C̄it |

+ (εCf,1 + Cf,2)σ2
xϕrc

(
|Xi,N

t − X̄i
t |
)2
rit

)]
+ εf(rit)

4B̃ − λ

16
H̃(Z̄it)−

λ

16
H̃(Zi,Nt )− λ

16N

N∑
j=1

H̃(Z̄jt )−
λ

16N

N∑
j=1

H̃(Zj,Nt )

 , (3.3)

I1,i
t =Gitf

′(rit)

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
+ δGitf

′(rit)

∣∣∣∣∣∣ 1

N

N∑
j=1

KC(Z̄it − Z̄
j
t )−KC ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
 ,

(3.4)

I2,i
t =Gitf

′(rit)

LX
N

 N∑
j=1

‖Zj,Nt − Z̄jt ‖1

+ δGitf
′(rit)

LC
N

 N∑
j=1

‖Zj,Nt − Z̄jt ‖1


− cf(rit)G

i
t − εf(rit)

[
λ

16
H(Z̄it) exp

(
a
√
H(Z̄it)

)
+

λ

16
H(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

)]

− εf(rit)

 λ

16N

N∑
j=1

H(Z̄jt ) exp

(
a

√
H(Z̄jt )

)
+

λ

16N

N∑
j=1

H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

) , (3.5)

and I3,i
t =εf(rit)

(αXLX + βXLC)

(∑N
j=1 |X

j,N
t |

N

)2

exp

(
a

√
H(Zi,Nt )

)

+ (αCLX + βCLC)

(∑N
j=1 |C

j,N
t |

N

)2

exp

(
a

√
H(Zi,Nt )

)

− λ

16
H(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

)
− λ

16N

N∑
j=1

H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

) . (3.6)

We need a control on E(Git), which is a consequence of Lyapunov’s properties on H̃ and the initial assumption
of the Theorem 2. A proof is given in Appendix A.5.

Lemma 3.1. There exists CG,1 and CG,2, such that for each i ≤ N , for all t > 0, we have

E(Git) ≤ CG,1 and E[(Git)
2] ≤ CG,2.
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Each of the terms given in Proposition 3.1 will be controlled in a different way. The following lemmas sum-
marize it. The first term, K̃i

t , contains the various behaviors we have previously identified : we deal with it either
through a synchronous coupling (when the deterministic drift is contracting), or through a reflection coupling (no-
tice the second derivative f” which will provide contraction provided f is sufficiently concave). Finally, notice the
effect of Lyapunov function H̃ which yields a restoring force.

Lemma 3.2. For each i ≤ N , for all t > 0,

EK̃i
t ≤ ξ

(
2 + δγ + LX + δLC − LC −

1 + LX
δ

)
EGit. (3.7)

The interaction term 1
NKX(Zj,Nt −Z

i,N
t )−KX∗µ̄t(Z̄it) can be decomposed into 1

NKX(Z̄jt − Z̄it)−KX ∗ µ̄t(Z̄it)
and 1

N

∑[
KX(Zj,Nt − Zi,Nt )−KX(Z̄jt − Z̄it)

]
. The first part, which is in I1,i

t , is dealt with using some form of
law of large number in a similar way as what has been done in the proof of Theorem 1.

Lemma 3.3. For each i ≤ N , for all t > 0,

E(I1,i
t ) ≤ 4

√
Cinit,2CG,2

N
(LX + LC), (3.8)

where CG,2 is defined in Lemma 3.1 and Cinit,2 is defined in Lemma 2.3.

I2,i
t contains the leftovers of this decomposition and some of the additional terms of the Lyapunov function.

Lemma 3.4. For all t > 0,

1

N

N∑
i=1

I2,i
t ≤ 0. (3.9)

Finally, I3,i
t deals with the non linearity appearing in the dynamics of the Lyapunov function, and will be non

positive for values of LX and LC sufficiently small. It is also here we justify adding the last two terms in (2.24).

Lemma 3.5. For each i ≤ N , for all t > 0,

I3,i
t ≤ 0. (3.10)

Proof of Theorem 2. With these four Lemmas, we can calculate

1

N

N∑
i=1

EKi
t =

1

N

N∑
i=1

EK̃i
t +

1

N

N∑
i=1

EI1,i
t +

1

N

N∑
i=1

EI2,i
t +

1

N

N∑
i=1

EI3,i
t

≤ 1

N

N∑
i=1

ξ

(
2 + δγ + LX + δLC − LC −

1 + LX
δ

)
EGit +

1

N

N∑
i=1

4

√
Cinit,2CG,2

N
(LX + LC)

≤ξ
(

2 + δγ + LX + δLC − LC −
1 + LX

δ

)
1

N

N∑
i=1

EGit + 4

√
Cinit,2CG,2

N
(LX + LC)

Since by Lemma 3.1, we have 1
N

∑N
i=1 EGit ≤ CG,1,we obtain

1

N

N∑
i=1

EKi
t ≤ξA+ (LX + LC)

B√
N
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where A and B are constants.
For all initial couplings such that Eρ

(
(Zj0 , Z̄

j
0)1≤j≤N

)
< ∞, by taking the expectation of (3.1) along a

sequence of increasing localizing stopping times, we have thanks to Fatou’s lemma

ectE
(
ρ
(

(Zjt , Z̄
j
t )1≤j≤N

))
≤E

(
ρ
(

(Zj0 , Z̄
j
0)1≤j≤N

))
+ ξA

∫ t

0
ecsds+ (LX + LC)

B√
N

∫ t

0
ecsds

≤E
(
ρ
(

(Zj0 , Z̄
j
0)1≤j≤N

))
+ ξA

ect − 1

c
+ (LX + LC)

B√
N

ect − 1

c
.

We obtain

E
(
ρ
(

(Zjt , Z̄
j
t )1≤j≤N

))
≤E

(
ρ
(

(Zj0 , Z̄
j
0)1≤j≤N

))
e−ct +

ξA

c

(
1− e−ct

)
+

(LX + LC)B

c

1√
N

(
1− e−ct

)
.

By using the exchangeability of the particles, we have E
(
ρ
(

(Zjt , Z̄
j
t )1≤j≤N

))
= E

(
1
N

∑N
i=1 f(rit)G

i
t

)
=

E
(

1
k

∑k
i=1 f(rit)G

i
t

)
for all k ∈ N. Then

E

(
k∑
i=1

f(rit)G
i
t

)
= kE

(
ρ
(

(Zjt , Z̄
j
t )1≤j≤N

))
.

Let µ0 a measure on R2, µk,Nt the marginal distribution at time t of the first k neurons
(
(X1

t , C
1
t ), ...., (Xk

t , C
k
t )
)

of an N particles system (1.1) with initial distribution (µ0)⊗N , and µ̄t is a solution of (1.2) with initial distribution
µ0. This implies E

(
ρ
(

(Zj0 , Z̄
j
0)1≤j≤N

))
= 0. By Lemma 2.6, we obtain for Wasserstein 1 distance

W1(µk,Nt , µ̄⊗kt ) = inf
{
E[‖Z(k) − Z̄(k)‖1],PZ(k) = µk,Nt ,PZ̄(k) = µ̄⊗kt

}
= inf

{
E

[
k∑
i=1

‖Zi,Nt − Z̄it‖1

]
,P

(Zi,Nt )i
= µk,Nt ,P(Z̄it)i

= µ̄⊗kt

}

≤ inf

{
C1E

[
k∑
i=1

f(rit)G
i
t

]
,P

(Zi,Nt )i
= µk,Nt ,P(Z̄it)i

= µ̄⊗kt

}
≤ inf

{
kC1E

(
ρ
(

(Zjt , Z̄
j
t )1≤j≤N

))
,P

(Zi,Nt )i
= µk,Nt ,P(Z̄it)i

= µ̄⊗kt

}
≤ξAkC1

c

(
1− e−ct

)
+

(LX + LC)BC1

c

k√
N

(
1− e−ct

)
By taking the limit as ξ → 0 uniformly in time, we obtain the desired result. The same lemma and the same type
of calculations yield the result for Wasserstein 2

W2(µk,Nt , µ̄⊗kt )2 ≤ k√
N
C2

(LX + LC)B

c
.

3.2 Proof of the decomposition

Proof of Proposition 3.1. First, we need to calculate d(ectf(rit)G
i
t), where we recall

rit = |Xi,N
t − X̄i

t |+ δ|Ci,Nt − C̄it |
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and

Git = 1 + εH̃(Z̄it) + εH̃(Zi,Nt ) +
ε

N

N∑
j=1

H̃(Zj,Nt ) +
ε

N

N∑
j=1

H̃(Z̄jt ).

We have already calculated d(Xi,N
t − X̄i

t) and d|Xi,N
t − X̄i

t | in the case of symmetric coupling in Subsection 1.4
in (1.7). Here, we need to use Ito’s formula and usual convergence lemmas (see Lemma 7 of [DEGZ20]) to take
care of the Brownian term. We obtain

d|Xi,N
t − X̄i

t | =AXt dt+ 2sign(Xi,N
t − X̄i

t)σxϕrc

(
|Xi,N

t − X̄i
t |
)
dBi,rc,X

t ,

with

AXt ≤ |X
i,N
t − X̄i

t | −
∣∣∣(Xi,N

t )3 − (X̄i
t)

3
∣∣∣+
∣∣∣Ci,Nt − C̄it

∣∣∣+

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Zit − Z
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣ .
Likewise, as it has already been calculated in (1.8) in Subsection 1.4,

d|Ci,Nt − C̄it | = ACt dt, (3.11)

with

ACt ≤ γ
∣∣∣Xi,N

t − X̄i
t

∣∣∣− |Ci,Nt − C̄it |+

∣∣∣∣∣∣ 1

N

N∑
j=1

KC(Zit − Z
j
t )−KC ∗ µ̄t(Z̄it)

∣∣∣∣∣∣ .
Now we have

drit =
(
AXt + δACt

)
dt+ 2sign(Xi,N

t − X̄i
t)σxϕrc

(
|Xi,N

t − X̄i
t |
)
dBi,rc,X

t

and we deduce with the Ito’s formula

df(rit) = f ′(rit)dr
i
t +

1

2
f ′′(rit)

(
2σxϕrc

(
|Xi,N

t − X̄i
t |
))2

dt.

Finally, for c > 0,

d(ectf(rit)) = cectf(rit)dt+ ectdf(rit).

Then, by Ito’s formula,

1

ε
dGit =

(
Lµ̄tH̃(Z̄it) + LNH̃(Zi,Nt )

)
dt

+ σxϕrc

(
|Xi,N

t − X̄i
t |
)(

∂xH̃(Zi,Nt )− ∂xH̃(Z̄it)
)
dBi,rc,X

t

+ σxϕsc

(
|Xi,N

t − X̄i
t |
)(

∂xH̃(Zi,Nt ) + ∂xH̃(Z̄it)
)
dBi,sc,X

t

+ σc

(
∂cH̃(Zi,Nt ) + ∂cH̃(Z̄it)

)
dBi,C

t

+
1

N

N∑
j=1

(
Lµ̄tH̃(Z̄jt ) + LNH̃(Zj,Nt )

)
dt

+
σx
N

N∑
j=1

ϕrc

(
|Xj,N

t − X̄j
t |
)(

∂xH̃(Zj,Nt )− ∂xH̃(Z̄jt )
)
dBj,rc,X

t

22



+
σx
N

N∑
j=1

ϕsc

(
|Xj,N

t − X̄j
t |
)(

∂xH̃(Zj,Nt ) + ∂xH̃(Z̄jt )
)
dBj,sc,X

t

+
σc
N

N∑
j=1

(
∂cH̃(Zj,Nt ) + ∂cH̃(Z̄jt )

)
dBj,C

t .

We finally get

d(ectf(rit)G
i
t) =Gitd(ectf(rit)) + ectf(rit)dG

i
t

+ 2ε

(
1 +

1

N

)
σ2
xϕrc

(
|Xi,N

t − X̄i
t |
)2

sign(Xi,N
t − X̄i

t)
(
∂xH̃(Zi,Nt )− ∂xH̃(Z̄it)

)
ectf ′(rit)dt.

Now, we need to use the following Lemma, proven in Appendix A.5, to have a more tractable expression:

Lemma 3.6. We have the upper bound

2ε

(
1 +

1

N

)
σ2
xϕrc

(
|Xi,N

t − X̄i
t |
)2

sign(Xi,N
t − X̄i

t)
(
∂xH̃(Zi,Nt )− ∂xH̃(Z̄it)

)
≤ (εCf,1 + Cf,2)σ2

xϕrc

(
|Xi,N

t − X̄i
t |
)2
ritG

i
t.

Eventually, by denoting the terms in dBi,rc,X
t , dBi,sc,X

t , dBi,C
t , ... as the local martingale dM i

t , we obtain

d(ectf(rit)G
i
t) ≤Gitcectf(rit)dt+ ectGitf

′(rit)
(
AXt + δACt

)
dt

+ ectGit
1

2
f ′′(rit)

(
2σxϕrc

(
|Xi,N

t − X̄i
t |
))2

dt

+ ectf(rit)

(Lµ̄tH̃(Z̄it) + LNH̃(Zi,Nt )
)
dt+

1

N

N∑
j=1

(
Lµ̄tH̃(Z̄jt ) + LNH̃(Zj,Nt )

)
dt


+ (εCf,1 + Cf,2)σ2

xϕrc

(
|Xi,N

t − X̄i
t |
)2
ritG

i
te
ctf ′(rit)dt

+ dM i
t .

We use (2.13) to bound Lµ̄tH̃(Z̄it) and (2.18) to bound LNH̃(Zi,Nt ). The interaction terms in AXt and ACt are
decomposed and we define I1,i

t as follows

I1,i
t = Gitf

′(rit)

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
+ δGitf

′(rit)

∣∣∣∣∣∣ 1

N

N∑
j=1

KC(Z̄it − Z̄
j
t )−KC ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
 .

The second part of the decomposition is grouped in I2,i
t with compensating terms, and in particular Lyapunov

functions, which appears with the use of (2.13) and (2.18), to control the sum:

I2,i
t =Gitf

′(rit)

LX
N

 N∑
j=1

|Xj,N
t − X̄j

t |+ |C
j,N
t − C̄jt |

+ δGitf
′(rit)

LC
N

 N∑
j=1

|Xj,N
t − X̄j

t |+ |C
j,N
t − C̄jt |


− cf(rit)G

i
t − εf(rit)

[
λ

16
H(Z̄it) exp

(
a
√
H(Z̄it)

)
+

λ

16
H(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

)]

− εf(rit)

 λ

16N

N∑
j=1

H(Z̄jt ) exp

(
a

√
H(Z̄jt )

)
+

λ

16N

N∑
j=1

H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

) .
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We gather the expectations terms, obtained with (2.18), in I3,i
t , and we keep a fraction of Lyapunov function to

control it:

I3,i
t = εf(rit)

(αXLX + βXLC)

(∑N
j=1 |X

j,N
t |

N

)2

exp

(
a

√
H(Zi,Nt )

)

+ (αCLX + βCLC)

(∑N
j=1 |C

j,N
t |

N

)2

exp

(
a

√
H(Zi,Nt )

)

− λ

16
H(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

)
− λ

16N

N∑
j=1

H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

) .

Finally, we define K̃i
t with the leftovers. It will, in particular, give the constraints on f which explain its choice.

K̃i
t =Git

[
2cf(rit) +

1

2
f ′′(rit)

(
2σ2

xϕrc

(
|Xi,N

t − X̄i
t |
)2
)

+ f ′(rit)
(

(1 + γδ + LX + δLC)|Xi,N
t − X̄i

t | − |(X
i,N
t )3 − (X̄i

t)
3|+ (1 + LX + δLC − δ)|Ci,Nt − C̄it |

+ (εCf,1 + Cf,2)σ2
xϕrc

(
|Xi,N

t − X̄i
t |
)2
rit

)]
+ εf(rit)

4B̃ − λ

16
H̃(Z̄it)−

λ

16
H̃(Zi,Nt )− λ

16N

N∑
j=1

H̃(Z̄jt )−
λ

16N

N∑
j=1

H̃(Zj,Nt )

 .

3.3 Controls of I1,i
t , I2,i

t and I3,i
t

Proof of Lemma 3.5. Since we assume

4

γ
(αXLX + βXLC) ≤ λ

32
and 4 (αCLX + βCLC) ≤ λ

32
,

and since

H(Zj,Nt ) exp

(
a

√
H(Zi,Nt )

)
≤ H(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

)
+H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

)
we obtain

(αXLX + βXLC)

(∑N
j=1 |X

j,N
t |

N

)2

exp

(
a

√
H(Zi,Nt )

)
+ (αCLX + βCLC)

(∑N
j=1 |C

j,N
t |

N

)2

exp

(
a

√
H(Zi,Nt )

)

− λ

16N

NH(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

)
+

N∑
j=1

H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

) ≤ 0.

Then, for each i ≤ N , and for all t > 0, I3,i
t ≤ 0.

Proof of Lemma 3.4. We prove the non-positivity of 1
N

∑N
i=1 I

2,i
t . First, since f ′

(
rit
)
≤ 1, we have

1

N

N∑
i=1

 1

N
f ′
(
rit
)
Git

N∑
j=1

‖Zj,Nt − Z̄jt ‖1

 ≤ 1

N2

N∑
i,j=1

‖Zj,Nt − Z̄jt ‖1Git
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≤ 1

N

N∑
i=1

‖Zi,Nt − Z̄it‖1 +
2ε

N2

N∑
i,j=1

‖Zi,Nt − Z̄it‖1
(
H̃
(
Z̄jt

)
+ H̃(Zj,Nt )

)
and, using Lemma 2.6 (i)

1

N

N∑
i=1

‖Zi,Nt − Z̄it‖1 ≤
C1

N

N∑
i=1

f(rit)G
i
t

and with Lemma 2.6 (iii)

N∑
i,j=1

‖Zi,Nt − Z̄it‖1
(
H̃
(
Z̄jt

)
+ H̃(Zj,Nt )

)

≤Cz
N∑

i,j=1

f(rit)

(
1 + ε

√
H(Zi,Nt ) + ε

√
H(Z̄it)

)(
H̃
(
Z̄jt

)
+ H̃(Zj,Nt )

)

≤Cz
N∑

i,j=1

f(rit)
(
H̃
(
Z̄jt

)
+ H̃(Zj,Nt )

)
+ εCz

N∑
i,j=1

f(rit)

(√
H(Zi,Nt ) +

√
H(Z̄it)

)(
H̃
(
Z̄jt

)
+ H̃(Zj,Nt )

)
.

Using (2.9) from Lemma 2.4, we obtain for the first sum:

Cz
N∑

i,j=1

f(rit)
(
H̃
(
Z̄jt

)
+ H̃(Zj,Nt )

)
≤ Cz

N∑
i,j=1

f(rit)

(
H(Z̄jt ) exp

(
a

√
H(Z̄jt )

)
+H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

))
.

With (2.10) from the same Lemma, we obtain for the second sum:

εCz
N∑

i,j=1

f(rit)

(√
H(Zi,Nt ) +

√
H(Z̄it)

)(
H̃
(
Z̄jt

)
+ H̃(Zj,Nt )

)

≤εCz
2

a

N∑
i,j=1

f(rit)

(√
H(Zi,Nt ) +

√
H(Z̄it)

)(√
H
(
Z̄jt

)
exp

(
a

√
H
(
Z̄jt

))
+

√
H
(
Zj,Nt

)
exp

(
a

√
H
(
Zj,Nt

)))
.

Since for all (y1, y2, y3, y4) ∈ (R+)4, we have

(y1 + y2) (y3e
ay3 + y4e

ay4) ≤ 2
(
y2

1e
ay1 + y2

2e
ay2 + y2

3e
ay3 + y2

4e
ay4
)
,

we obtain for this last sum

2εCz
a

N∑
i,j=1

f(rit)

(√
H(Zi,Nt ) +

√
H(Z̄it)

)(√
H
(
Z̄jt

)
exp

(
a

√
H
(
Z̄jt

))
+

√
H
(
Zj,Nt

)
exp

(
a

√
H
(
Zj,Nt

)))

≤4εCz
a

N∑
i,j=1

f(rit)

(
H(Z̄it) exp

(
a
√
H(Z̄it)

)
+H(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

))

+
4εCz
a

N∑
i,j=1

f(rit)

(
H(Z̄jt ) exp

(
a

√
H(Z̄jt )

)
+H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

))

≤4εCz
a

N

N∑
i=1

f(rit)

(
H(Z̄it) exp

(
a
√
H(Z̄it)

)
+H(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

))

+
4εCz
a

N∑
i,j=1

f(rit)

(
H(Z̄jt ) exp

(
a

√
H(Z̄jt )

)
+H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

))
.
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Then, by reconsidering the first expression:

1

N

N∑
i=1

 1

N
f ′
(
rit
)
Git

N∑
j=1

‖Zj,Nt − Z̄jt ‖1


≤C1

N

N∑
i=1

f(rit)G
i
t +

2ε

N2
Cz

N∑
i,j=1

f(rit)

(
H(Z̄jt ) exp

(
a

√
H(Z̄jt )

)
+H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

))

+
2ε

N2

4εCz
a

N
N∑
i=1

f(rit)

(
H(Z̄it) exp

(
a
√
H(Z̄it)

)
+H(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

))

+
2ε

N2

4εCz
a

N∑
i,j=1

f(rit)

(
H(Z̄jt ) exp

(
a

√
H(Z̄jt )

)
+H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

))
This way, by Assumption 2 since

LXC1 ≤
c

2
, 2CzLX ≤

λ

64
and LXε

8Cz
a
≤ λ

64
,

we get

1

N

N∑
i=1

 1

N
f ′
(
rit
)
Git

N∑
j=1

‖Zj,Nt − Z̄jt ‖1


≤ 1

N

c

2LX

N∑
i=1

f(rit)G
i
t +

ε

N2

λ

64LX

N∑
i,j=1

f(rit)

(
H(Z̄jt ) exp

(
a

√
H(Z̄jt )

)
+H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

))

+
ε

N

λ

64LX

N∑
i=1

f(rit)

(
H(Z̄it) exp

(
a
√
H(Z̄it)

)
+H(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

))

+
ε

N2

λ

64LX

N∑
i,j=1

f(rit)

(
H(Z̄jt ) exp

(
a

√
H(Z̄jt )

)
+H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

))
and we finally obtain "half" the result

1

N

N∑
i=1

Gitf
′(rit)

LX
N

 N∑
j=1

‖Zj,Nt − Z̄jt ‖1


− c

2

1

N

N∑
i=1

f(rit)G
i
t −

ε

2

1

N

N∑
i=1

f(rit)

[
λ

16
H(Z̄it) exp

(
a
√
H(Z̄it)

)
+

λ

16
H(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

)]

− ε

2

1

N

N∑
i=1

f(rit)

 λ

16N

N∑
j=1

H(Z̄jt ) exp

(
a

√
H(Z̄jt )

)
+

λ

16N

N∑
j=1

H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

) ≤ 0.

Likewise, by Assumption 2, since

δLCC1 ≤
c

2
, 2CzδLC ≤

λ

64
and δLCε

8Cz
a
≤ λ

64
,
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we obtain the second "half"

1

N

N∑
i=1

δGitf
′(rit)

LC
N

 N∑
j=1

‖Zj,Nt − Z̄jt ‖1


− c

2

1

N

N∑
i=1

f(rit)G
i
t −

ε

2

1

N

N∑
i=1

f(rit)

[
λ

16
H(Z̄it) exp

(
a
√
H(Z̄it)

)
+

λ

16
H(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

)]

− ε

2

1

N

N∑
i=1

f(rit)

 λ

16N

N∑
j=1

H(Z̄jt ) exp

(
a

√
H(Z̄jt )

)
+

λ

16N

N∑
j=1

H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

) ≤ 0.

Eventually, we have proved
∑N

i=1 I
2,i
t ≤ 0.

Proof of Lemma 3.3. Since f ′(r) ≤ 1, we have by Cauchy-Schwarz

E

Gitf ′(rit)
∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣


≤E
(
|Git|2

)1/2 E
∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
21/2

.

By Lemma 3.1, we have for each i ≤ N , for all t ≥ 0, E[(Git)
2] ≤ CG,2.

Moreover, we notice that (Z̄jt )j are i.i.d with law µ̄t. Let’s denote Z̄t a generic random variable of law µ̄t
independent of Z̄it . The calculus of the right term of the product has already be done in Subsection 1.4, and we
have (1.9):

E

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
2 ≤8L2

X

N
E(‖Z̄t‖21)E(‖Z̄t‖21).

A similar calculation yields

E

∣∣∣∣∣∣ 1

N

N∑
j=1

KC(Z̄it − Z̄
j
t )−KC ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
2 ≤ 8L2

C

N
E(‖Z̄t‖21).

By Lemma 2.3, E
(
|X̄t|2 + |C̄t|2

)
≤ Cinit,2. In particular,

E
(
‖Z̄t‖21

)
= E

([
|X̄t|+ |C̄t|

]2) ≤ 2E
(
|X̄t|2 + |C̄t|2

)
≤ 2Cinit,2.

Thus

E

Gitf ′(rit)
∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
 ≤ LXC1/2

G,2

√
2Cinit,2

√
8

N

and likewise

E

Gitf ′(rit)
∣∣∣∣∣∣ 1

N

N∑
j=1

KC(Z̄it − Z̄
j
t )−KC ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
 ≤ LCC1/2

G,2

√
2Cinit,2

√
8

N
.
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3.4 Contraction in various regions of space

The goal of this section is to prove the Lemma 3.2 i.e show that for each i ≤ N , for all t > 0, we have the following
control

EK̃i
t ≤ ξ

(
2 + δγ + LX + δLC − LC −

1 + LX
δ

)
EGit.

Recall

K̃i
t =Git

[
2cf(rit) +

1

2
f ′′(rit)

(
2σ2

xϕrc

(
|Xi,N

t − X̄i
t |
)2
)

+ f ′(rit)
(

(1 + γδ + LX + δLC)|Xi,N
t − X̄i

t | − |(X
i,N
t )3 − (X̄i

t)
3|+ (1 + LX + δLC − δ)|Ci,Nt − C̄it |

+ (εCf,1 + Cf,2)σ2
xϕrc

(
|Xi,N

t − X̄i
t |
)2
rit

)]
+ εf(rit)

4B̃ − λ

16
H̃(Z̄it)−

λ

16
H̃(Zi,Nt )− λ

16N

N∑
j=1

H̃(Z̄jt )−
λ

16N

N∑
j=1

H̃(Zj,Nt )

 ,

which is a quantity that contains every term we have not yet dealt with. To prove Lemma 3.2, we divide for each
i ∈ {1, ..., N} the space into three regions

Regi1 =
{

(Z̄it , Z
i,N
t ) s.t. |X̄i

t −X
i,N
t | ≥ ξ and rit ≤ R

}
,

Regi2 =
{

(Z̄it , Z
i,N
t ) s.t. |X̄i

t −X
i,N
t | < ξ and rit ≤ R1

}
,

Regi3 =
{

(Z̄it , Z
i,N
t ) s.t. rit > R

}
,

where R was given in Lemma 2.1, and consider

1

N

N∑
i=1

EK̃i
t =

1

N

N∑
i=1

(
E
(
K̃i
t1Regi1

)
+ E

(
K̃i
t1Regi2

)
+ E

(
K̃i
t1Regi3

))
.

3.4.1 Region 1 : ξ ≤ |Xi,N
t − X̄i

t | and rit ≤ R.

In this region of space, since ϕrc(|Xi,N
t − X̄i

t |) = 1, we have

K̃i
t1Regi1

=1Regi1

(
Git

[
2cf(rit) + 2σ2

xf
′′(rit) + f ′(rit) (εCf,1 + Cf,2)σ2

xr
i
t

+ f ′(rit)(1 + γδ + LX + δLC)|Xi,N
t − X̄i

t |
]

−Gitf ′(rit)(δ − 1− LX − δLC)|Ci,Nt − C̄it | −Gitf ′(rit)|(X
i,N
t )3 − (X̄i

t)
3|

+εf(rit)4B̃ − εf(rit)

 λ

16
H̃(Z̄it) +

λ

16
H̃(Zi,Nt ) +

λ

16N

N∑
j=1

H̃(Z̄jt ) +
λ

16N

N∑
j=1

H̃(Zj,Nt )

 ,

and since H̃(z) ≥ 0, |Xi,N
t − X̄i

t | ≤ rit, δ > 1+LX
1−LC (by Assumption 2(iii)) and 1 ≤ Git we have

K̃i
t1Regi1

≤1Regi1
Git

[
(2c+ 4εB̃)f(rit) + 2σ2

xf
′′(rit) + f ′(rit)

(
1 + δγ + LX + δLC + (εCf,1 + Cf,2)σ2

x

)
rit

]
.

Using the definition f given in (2.21) we get

2σ2
xf
′′(rit) + f ′(rit)

(
1 + δγ + LX + LC + (εCf,1 + Cf,2)σ2

x

)
rit
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= 2σ2
xφ
′(rit)g(rit) + 2σ2

xφ(rit)g
′(rit) + φ(rit)g(rit)

(
1 + δγ + LX + δLC + (εCf,1 + Cf,2)σ2

x

)
rit

= 2σ2
xφ(rit)g

′(rit) = −(2c+ 4εB̃)Φ(rit).

Thus

(2c+ 4εB̃)f(rit) + 2σ2
xf
′′(rit) + f ′(rit)

(
1 + δγ + LX + δLC + (εCf,1 + Cf,2)σ2

x

)
rit

= (2c+ 4εB̃)f(rit)− (2c+ 4εB̃)Φ(rit) (3.12)

≤ 0.

Eventually, in this region of space

K̃i
t1Regi1

≤ 0.

3.4.2 Region 2 : |Xi,N
t − X̄i

t | < ξ and rit ≤ R.

In this region, we can write K̃i
t as

K̃i
t1Regi2

=1Regi2
Git

[
2cf(rit) + ϕrc

(
|Xi,N

t − X̄i
t |
)2 [

2σ2
xf
′′(rit) + (εCf,1 + Cf,2)σ2

xr
i
tf
′(rit)

]
+ f ′(rit)

(
(1 + γδ + LX + δLC)|Xi,N

t − X̄i
t | − (δ − 1− LX − δLC)|Ci,Nt − C̄it |

) ]
− 1Regi2

Gitf
′(rit)|(X

i,N
t )3 − (X̄i

t)
3|

+ 1Regi2
εf(rit)4B̃ − εf(rit)1Regi2

 λ

16
H̃(Z̄it) +

λ

16
H̃(Zi,Nt ) +

λ

16N

N∑
j=1

H̃(Z̄jt ) +
λ

16N

N∑
j=1

H̃(Zj,Nt )

 .

Since rit = |Xi,N
t − X̄i

t | + δ|Ci,Nt − C̄it | and |Xi,N
t − X̄i

t | < ξ, we have |Ci,Nt − C̄it | ≥ (rit − ξ)/δ. Since

δ >
1 + LX
1− LC

, we obtain

K̃i
t1Regi2

≤1Regi2
Git

[
2cf(rit) + ϕrc

(
|Xi,N

t − X̄i
t |
)2 [

2σ2
xf
′′(rit) + (εCf,1 + Cf,2)σ2

xr
i
tf
′(rit)

]
+ f ′(rit)

(
(1 + γδ + LX + δLC)ξ − (δ − δLC − 1− LX)

rit − ξ
δ

)]
+ εf(rit)1Regi2

4B̃

≤ϕrc

(
|Xi,N

t − X̄i
t |
)2
Git1Regi2

[
2σ2

xf
′′(rit) + (εCf,1 + Cf,2)σ2

xr
i
tf
′(rit)

]
+ 1Regi2

Gitf
′(rit)ξ

[
1 + γδ + LX + δLC + 1− LC −

1 + LX
δ

]
+ 1Regi2

Git

(
(2c+ 4εB̃)f(rit)− ritf ′(rit)

(
1− LC −

1 + LX
δ

))
.

By (3.12),

2σ2
xf
′′(rit) + (εCf,1 + Cf,2)σ2

xr
i
tf
′(rit) = −(2c+ 4εB̃)Φ(rit)− f ′(rit)rit (1 + δγ + LX + LC) ≤ 0,

and by Lemma 2.5

2c+ 4εB̃ ≤
(

1− LC −
1 + LX

δ

)
min
r∈]0,R]

f ′(r)r

f(r)
,
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we obtain

K̃i
t1Regi2

≤1Regi2
Gitf

′(rit)ξ

[
1 + γδ + LX + δLC + 1− LC −

1 + LX
δ

]
.

Finally, since f ′(r) ≤ 1,

EK̃i
t1Regi2

≤ ξ
(

2 + δγ + LX + δLC − LC −
1 + LX

δ

)
EGit.

3.4.3 Region 3 : rit ≥ R.

In this region of space f ′ = f ′′ = 0 and f is constant, and we therefore have

K̃i
t1Regi3

=f(rit)1Regi3

2cGit + 4εB̃ − λε

16

H̃(Z̄it) + H̃(Zi,Nt ) +
1

N

N∑
j=1

H̃(Z̄jt ) +
1

N

N∑
j=1

H̃(Zj,Nt )

 .
Since Git = 1 + εH̃(Z̄it) + εH̃(Zi,Nt ) + ε

N

∑N
j=1 H̃(Zj,Nt ) + ε

N

∑N
j=1 H̃(Z̄jt ) by definition (2.24), we can write

K̃i
t1Regi3

=f(rit)1Regi3

2c+ 4εB̃ + ε

(
2c− λ

16

)H̃(Z̄it) + H̃(Zi,Nt ) +
1

N

N∑
j=1

H̃(Z̄jt ) +
1

N

N∑
j=1

H̃(Zj,Nt )


Since c ≤ λ/32 from Assumption 2, we obtain

K̃i
t1Regi3

≤ f(rit)1Regi3

[
2c+ 4εB̃ − ε

(
λ

16
− 2c

)
(H(Z̄it) +H(Zi,Nt ))

]
.

We have chosen R such that, for z, z′ satisfying r ≥ R, we have H(z) + H(z′) ≥ 80 B̃λ by Lemma 2.1 (iv).
Therefore

K̃i
t1Regi3

≤f(rit)1Regi3

(
2c+ 4εB̃ − ε

(
λ

16
− 2c

)
80
B̃

λ

)

=f(rit)1Regi3

(
2c

(
1 + 80

εB̃

λ

)
− εB̃

)
Lemma 2.5 and more specifically the inequality

c ≤ 1

2

εB̃

1 + 80 εB̃λ

=
λ

160

80εB̃
λ

1 + 80εB̃
λ

yields the desired result: K̃i
t1Regi3

≤ 0.

A Various technical lemmas

A.1 On Lemma 2.1

Lemma A.1. For all z = (x, c), z′ = (x′, c′) ∈ Rd, denoting r(z, z′) = |x− x′|+ δ|c− c′|

r(z, z′)2 ≤ 16(1 + δ2)

min (γ, 1)

(
H(z) +H(z′)

)
, (A.1)
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so that, in particular, for any constant B > 0, if r(z, z′) ≥ R =

√
1280(1 + δ2)B

λmin(γ, 1)
, then

λH(z) + λH(z′) ≥ 80B.

Proof. We have H(z) ≥ γ
4x

2 + c2

4 ≥
1
4 min (γ, 1)

(
x2 + c2

)
. Thus

r(z, z′)2 =
(
|x− x′|+ δ|c− c′|

)2
≤2|x− x′|2 + 2δ2|c− c′|2

≤4x2 + 4x′2 + 4δ2c2 + 4δ2c′2

≤4(1 + δ2)(x2 + c2) + 4(1 + δ2)(x′2 + c′2)

≤16
(1 + δ2)

min (γ, 1)

(
H(z) +H(z′)

)

A.2 Proof of Lyapunov’s property of H and its consequences

Lyapunov’s property

Proof of Lemma 2.2. We write the proof for (2.3), as it also yields (2.4) by considering µ to be the empirical
measure. We notice

∂cH = c+ α and ∂xH = γx+ β,

so

LµH(z) =∂xH(z)(x− x3) + ∂xH(z)KX ∗ µ(z)− c∂cH(z) + ∂cH(z)KC ∗ µ(z) +
σ2
xγ

2
+
σ2
c

2

=(γx+ β)(x− x3)− c(c+ α) + (γx+ β)KX ∗ µ(z) + (c+ α)KC ∗ µ(z) +
σ2
xγ

2
+
σ2
c

2
.

First, we focus on interaction terms. We have

|KX ∗ µ(z)| ≤
∫
R2

|KX(z − z′)|µ(dz′)

≤
∫
R2

LX(‖z‖1 + ‖z′‖1)µ(dz′).

Hence,

(γx+ β)KX ∗ µ(z) ≤LX(γ|x|+ β)(|x|+ |c|+ Eµ(|X|) + Eµ(|C|))
≤LX

(
γ|x|2 + γ|x||c|+ γ|x|Eµ(|X|) + γ|x|Eµ(|C|) + β|x|+ β|c|+ βEµ(|X|) + βEµ(|C|)

)
,

and using Young’s inequality ab ≤ α
2 a

2 + 1
2αb

2 (α = 16 when we separate x term and c term, and α = 1 otherwise
on the various terms we get

(γx+ β)KX ∗ µ(z) ≤LX
(
γ|x|2 + 8γ2|x|2 +

|c|2

32
+
γ

2
|x|2 +

γ

2
Eµ(|X|)2 + 8γ2|x|2 +

Eµ(|C|)2

32
+
β2

2

+
|x|2

2
+ 8β2 +

|c|2

32
+
β2

2
+

1

2
Eµ(|X|)2 + 8β2 +

Eµ(|C|)2

32

)
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=LX

(
17β2 + |x|2

(
1

2
+

3

2
γ + 16γ2

)
+
|c|2

16
+ Eµ(|X|)2

(
γ

2
+

1

2

)
+

Eµ(|C|)2

16

)
.

Likewise

(c+ α)KC ∗ µ(z) ≤LC
(

17α2 +
17

2
|x|2 + |c|2

(
3

2
+

3

32

)
+ Eµ(|X|)2 17

2
+ Eµ(|C|)2

(
1

2
+

1

32

))
.

The idea is to bound λH(z) + LµH(z), by distinguishing 3 types of terms: we isolate terms in Eµ(|C|)2 − c2,
Eµ(|X|)2 − x2, and we group polynomials terms. Then, we notice the polynomial is upper bounded by a constant
A. Thus

λH(z) + LµH(z)− σ2
xγ

2
− σ2

c

2

=λ

(
1

2
γx2 + βx+

1

2
c2 + αc+H0

)
+ (γx+ β)(x− x3)− c(c+ α)

+ (γx+ β)KX ∗ µ(z) + (c+ α)KC ∗ µ(z)

≤
(
λH0 + 17β2LX + 17α2LC

)
− γx4 − βx3 + (1 + λ)βx

+

(
(1 +

λ

2
)γ + LX

(
1 + 2γ + 16γ2

)
+ 17LC

)
x2

+

(
LC
8

+ LC

(
2 +

1

8

)
−
(

1− λ

2

))
c2 − (1− λ)αc

+

(
LX
16

+
LC
2

+
LC
32

)(
Eµ(|C|)2 − c2

)
+

(
γ

2
LX +

1

2
LX +

17

2
LC

)(
Eµ(|X|)2 − x2

)
Provided

LX
8

+ LC

(
2 +

1

8

)
< 1− λ

2
,

there is A ≥ 0 such that

−γx4−βx3 + (1 + λ)βx+

(
(1 +

λ

2
)γ + LX

(
1 + 2γ + 16γ2

)
+ 17LC

)
x2

+

(
LC
8

+ LC

(
2 +

1

8

)
−
(

1− λ

2

))
c2 − (1− λ)αc ≤ A.

Hence the result:

LµH(z̄) ≤ B + (αXLX + βXLC)
(
Eµ(|X|)2 − x̄2

)
+ (αCLX + βCLC)

(
Eµ(|C|)2 − c̄2

)
− λH(z̄).

First consequences

Proof of Proposition 2.1. Inequality (2.5) simply relies on the sum of (2.4) for each i and the fact thatLj,N
(
H
(
Zi,Nt

))
=

0 for i 6= j:

1

N

N∑
i=1

LN
(
H
(
Zi,Nt

))
=

1

N

N∑
i=1

Li,N
(
H
(
Zi,Nt

))
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≤ 1

N

N∑
i=1

B + (αXLX + βXLC)

( 1

N

N∑
k=1

|Xk,N
t |

)2

− (Xi,N
t )2


+ (αCLX + βCLC)

( 1

N

N∑
k=1

|Ck,Nt |

)2

− (Ci,Nt )2

− λH (Zi,Nt )
≤B − λ 1

N

N∑
i=1

H
(
Zi,Nt

)
.

The last inequality uses the fact that
(

1
N

∑N
i=1 |yi|

)2
− 1

N

∑N
i=1(yi)

2 ≤ 0 for all (yi)1≤i≤N ∈ RN .

Bounds on the second moments of processes We can now prove the uniform in bounds on the second moments
of Xi,N

t , Ci,Nt , X̄i
t and C̄it from (2.3) and (2.4).

Proof of Proposition 1.2. KX and KC are Lipschitz with constants LX and LC respectively. We do not assume
any bound on these constants. We assume for each i ≤ N , E(|Xi,N

0 |2) < +∞ and E(|Ci,N0 |2) < +∞. We have

d

(
eλt

N

N∑
i=1

H
(
Zi,Nt

))
= λ

eλt

N

N∑
i=1

H
(
Zi,Nt

)
dt+ eλtLN

(
1

N

N∑
i=1

H
(
Zi,Nt

))
dt+ dMt,

where Mt is a local martingale. Using (2.4)

d

(
eλt

N

N∑
i=1

H
(
Zi,Nt

))
= Atdt+ dMt,

where At ≤ Beλt. Let τn be an increasing sequence of localizing stopping times converging to∞ for Mt

E

(
eλt∧τn

N

N∑
i=1

H
(
Zi,Nt∧τn

))
≤E

(
1

N

N∑
i=1

H
(
Zi,N0

))
+ E

(∫ t∧τn

0
Beλsds

)

≤E

(
1

N

N∑
i=1

H
(
Zi,N0

))
+B

E
(
eλt∧τn

)
− 1

λ

≤E

(
1

N

N∑
i=1

H
(
Zi,N0

))
+Bmax

(
eλt − 1

λ
,

1

|λ|

)
,

where the maximum on this last inequality depends on the sign of λ. By Fatou’s lemma, we obtain

eλtE

(
1

N

N∑
i=1

H
(
Zi,Nt

))
=E

(
lim inf
n→∞

eλt∧τn

N

N∑
i=1

H
(
Zi,Nt∧τn

))

≤ lim inf
n→∞

E

(
eλt∧τn

N

N∑
i=1

H
(
Zi,Nt∧τn

))

≤E

(
1

N

N∑
i=1

H
(
Zi,N0

))
+Bmax

(
eλt − 1

λ
,

1

|λ|

)
.

Hence the various bounds on E
(
|Xi,N

t |2
)

and E
(
|Ci,Nt |2

)
, since by Lemma 2.1 (i) we have

EH
(
Zi,Nt

)
≥ γ

4
E
(
|Xi,N

t |2
)

+
1

4
E
(
|Ci,Nt |2

)
and EH

(
Zi,N0

)
≤ γE

(
|Xi,N

0 |
2
)

+ E
(
|Ci,N0 |

2
)

+
3

2
H0.
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These bounds are uniform in time provided λ > 0, i.e LX
8 + LC

(
2 + 3

32

)
< 1.

Proof of Proposition 1.3 and Lemma 2.3. The proof are done in exactly the same fashion as the proof of Proposi-
tion 1.2 above using (2.3).

A.3 Proof of Lemma 2.5

We now prove that there are constants c, ε and δ such that

c+ 2εB̃ ≤σ
2
x

2

(∫ R

0
Φ(s)φ(s)−1ds

)−1

(A.2)

2c+ 4εB̃ ≤
(

1− LC −
1 + LX

δ

)
min
r∈]0,R]

f ′(r)r

f(r)
(A.3)

c ≤ λ

160

80εB̃
λ

1 + 80εB̃
λ

(A.4)

δ >
1 + LX
1− LC

(A.5)

• Since for all u ≥ 0, 0 < φ (u) ≤ 1, we have 0 < Φ (s) =
∫ s

0 φ (u) du ≤ s, i.e s/Φ (s) ≥ 1 . Therefore

inf
r∈]0,R]

rφ (r)

Φ (r)
≥ inf

r∈]0,R]
φ (r) = φ (R) .

It is thus sufficient for (A.3) to have

2c+ 4εB̃ ≤ 1

2

(
1− LC −

1 + LX
δ

)
φ (R) .

• We have

φ (r) ≤ exp

(
− 1

4σ2
x

r2

)
.

So

Φ (r) ≤
∫ ∞

0
exp

(
− r2

4σ2
x

)
dr = σx

√
π.

Then ∫ R

0

Φ (r)

φ (r)
dr ≤ σx

√
πR

1

φ (R)
.

It is thus sufficient for (A.2) that

c+ 2εB̃ ≤ σx
2
√
π

φ (R)

R
.

• The various conditions involving c invite us to consider 2εB̃ = ηc. Then

c ≤ λ

160

80εB̃
λ

1 + 80εB̃
λ

⇐⇒ c ≤ λ

160

40ηc

λ+ 40ηc

⇐⇒ 1 ≤ λ η

4λ+ 160ηc
(since c ≥ 0)

⇐⇒ c ≤ λ

160

η − 4

η
.
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• We choose to write
δ = (1 + δ̃)

1 + LX,max
1− LC,max

>
1 + LX
1− LC

• Let us assume, for simplicity, that ε ≤ 1. It is sufficient for this later condition to have

c ≤ 2B̃

η
.

• The appearance of φ (R) suggests we should try to minimize it. We recall

φ(r) = exp

(
− 1

4σ2
x

(
1 + δγ + LX + δLC + (εCf,1 + Cf,2)σ2

x

)
r2

)
≥ exp

(
− 1

4σ2
x

(
1 + δγ + LX + δLC + (Cf,1 + Cf,2)σ2

x

)
r2

)
.

It is therefore sufficient for (A.2) to have

c ≤ 1

1 + η

σx
2
√
π

1

R
exp

(
− 1

4σ2
x

(
1 + δγ + LX + δLC + (Cf,1 + Cf,2)σ2

x

)
R2

)
,

and for (A.3) to have

c ≤ 1

2(1 + η)

(
1− LC −

1 + LX
δ

)
exp

(
− 1

4σ2
x

(
1 + δγ + LX + δLC + (Cf,1 + Cf,2)σ2

x

)
R2

)
.

• Finally, we bound LX and LC by either 0 or LX,max and LC,max, to obtain bounds on c independent of LX
and LC .

A.4 Proof of Lemma 2.6

Let z, z′ ∈ R2.

Proof of control of the L1 distance : We have

‖z − z′‖1 = |x− x′|+ |c− c′| ≤ 1

min (δ, 1)

(
|x− x′|+ δ|c− c′|

)
=

1

min (δ, 1)
r(z, z′).

If r(z, z′) ≤ 1 ≤ R, we have, using Lemma 2.5

r(z, z′) ≤ f(r)

f ′−(R)
≤ f(r)

φ(R)g(R)

(
1 + εH̃(z) + εH̃(z′)

)
.

If r(z, z′) ≥ 1, we have, using (A.1)

r(z, z′) ≤r(z, z′)2

≤ 16(1 + δ2)

εmin (γ, 1)

(
εH(z) + εH(z′)

)
≤ 16(1 + δ2)

εmin (γ, 1)

f(r)

f(1)

(
1 + εH(z) + εH(z′)

)
≤ 16(1 + δ2)

εmin (γ, 1)

f(r)

φ(R)g(R)

(
1 + εH̃(z) + εH̃(z′)

)
.

Thus

‖z − z′‖1 ≤
1

min (δ, 1)

1

φ(R)g(R)
max

(
16(1 + δ2)

εmin (γ, 1)
, 1

)
f(r(z, z′))

(
1 + εH̃(z) + εH̃(z′)

)
.
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Proof of control of the L2 distance : We have

r(z, z′)2 =
(
|x− x′|+ δ|c− c′|

)2 ≥ |x− x′|2 + δ2|c− c′|2 ≥ min
(
1, δ2

) (
|x− x′|2 + |c− c′|2

)
.

If r(z, z′) ≥ 1, we have, using (A.1)

r(z, z′)2 ≤ 16(1 + δ2)

εmin (γ, 1)

(
εH(z) + εH(z′)

)
≤ 16(1 + δ2)

εmin (γ, 1)

f(r)

f(1)

(
1 + εH(z) + εH(z′)

)
≤ 16(1 + δ2)

εmin (γ, 1)

f(r)

φ(R)g(R)

(
1 + εH̃(z) + εH̃(z′)

)
.

If r(z, z′) ≤ 1 ≤ R, we have, using Lemma 2.5

r(z, z′)2 ≤ r(z, z′) ≤ f(r)

f ′−(R)
≤ f(r)

φ(R)g(R)

(
1 + εH̃(z) + εH̃(z′)

)
.

Thus

‖z − z′‖22 ≤
1

min (δ2, 1)

1

φ(R)g(R)
max

(
16(1 + δ2)

εmin (γ, 1)
, 1

)
f(r(z, z′))

(
1 + εH̃(z) + εH̃(z′)

)
.

Proof of the second control of the L1 distance : We have, if r(z, z′) ≤ 1 ≤ R

r(z, z′) ≤ f(r)

f ′−(R)
≤ f(r)

φ(R)g(R)

(
1 + ε

√
H(z) + ε

√
H(z′)

)
.

and, if r(z, z′) ≥ 1, recall Lemma 2.1.

‖z − z′‖1 ≤
√

4

γ
H(z) +

√
4

γ
H(z′) +

√
4H(z) +

√
4H(z′)

≤4 max

(√
1

γ
, 1

)(√
H(z) +

√
H(z′)

)
≤4

ε
max

(√
1

γ
, 1

)
f(r)

φ(R)g(R)

(
1 + ε

√
H(z) + ε

√
H(z′)

)
,

and thus

‖z − z′‖1 ≤
1

φ(R)g(R)
max

(
1,

4

ε
max

(√
1

γ
, 1

))
f(r(z, z′))

(
1 + ε

√
H(z) + ε

√
H(z′)

)
.

Independence with respect to LX and LC The a priori bounds LX ∈ [0, LX,max] and LC ∈ [0, LC,max] allow
us to bound φ(R) independently of LC and LX by φmin (and we also use g(R) ≥ 1

2 ), thus giving us constant C1,
C2 and Cz independent of LC and LX .

A.5 Proof of Lemmas 3.1 and 3.6

Proof of Lemma 3.1. Let’s prove there exists an uniform in time bound on E(Git) and E[(Git)
2]. First, let’s recall

the definition of G from(2.24):

Git = 1 + εH̃(Z̄it) + εH̃(Zi,Nt ) +
ε

N

N∑
j=1

H̃(Zj,Nt ) +
ε

N

N∑
j=1

H̃(Z̄jt ).
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The idea is to bound the different expectation in terms of the expectation at time t = 0. Since E(eã(|X0|+|C0|)) is
finite, we know that for each k ∈ N, E(|X0|k) and E(|C0|k) are also finite. We deduce that for each k ∈ N, for
each j ≤ N , E[H(Z̄j0)k] and E[H(Zj,N0 )k] are finite.

In fact, to bound uniformly in time the first moment, we only have to bound E(H̃(Zj,Nt )) and E(H̃(Z̄jt )) for
each j ≤ N . Let’s begin with Z̄j . By (2.15), we have

d

dt
E
[
H̃
(
Z̄jt

)]
≤B̃ − λ

4
E
[
H̃
(
Z̄jt

)]
.

By using Itô’s formula on eλt/4H̃
(
Z̄jt

)
and the bound above, we obtain

E
[
H̃
(
Z̄jt

)]
≤4B̃

λ
+ e−

λ
4
t

(
E
[
H̃
(
Z̄j0

)]
− 4B̃

λ

)

≤max

(
E
[
H̃
(
Z̄j0

)]
,
4B̃

λ

)
.

By (2.9), in Lemma 2.4, we deduce the following inequality and we apply Cauchy-Schwarz

E
[
H̃
(
Z̄j0

)]
≤E

[
H
(
Z̄j0

)
exp

(
a

√
H
(
Z̄j0

))]

≤E
[
H
(
Z̄j0

)2
]1/2

E

[
exp

(
2a

√
H
(
Z̄j0

))]1/2

(A.6)

We already know E
[
H
(
Z̄j0

)2
]

is bounded. Now, it is enough to prove that there exist C such that for all z ∈ R2

exp
(

2a
√
H (z)

)
≤ C × eã(|x|+|c|).

In fact, from the definition of H in (2.1), we have

2
√
H(z) =

√
2

√
γ

(
x+

β

γ

)2

+ (c+ α)2 +H0

≤
√

2γ

∣∣∣∣x+
β

γ

∣∣∣∣+
√

2 |c+ α|+
√
H0

≤
√

2γ|x|+
√

2|c|+ 1

a
lnC,

where C is a constant independent of z. Finally, since max (a
√

2γ, a
√

2) ≤ ã, we have

exp
(

2a
√
H (z)

)
≤ C × eã(|x|+|c|).

Then, E
[
exp

(
2a

√
H
(
Z̄j0

))]
is bounded and we deduce E(H̃(Z̄jt )) is bounded for each j ≤ N and all t ≥ 0.

The same calculations can be done for Zj,Nt . By (2.20), we have

LN
(

1

N

N∑
i=1

H̃(Zi,Nt )

)
≤ B̃ − λ

4

(
1

N

N∑
i=1

H̃(Zi,Nt )

)
.
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In particular,

d

dt

[
E

(
1

N

N∑
i=1

H̃(Zi,Nt )

)]
≤E

[
LN

(
1

N

N∑
i=1

H̃(Zi,Nt )

)]
≤ B̃ − λ

4
E

(
1

N

N∑
i=1

H̃(Zi,Nt )

)
,

and we can use the same method as above.

Finally, we have proved that for each j ≤ N , E(H̃(Zj,Nt )) and E(H̃(Z̄jt )) are bounded uniformly in time .
Thus, E(Git) is bounded uniformly in time (and in N ).

To bound the second moment ofGit, we have to bound each type of the following expectations: E[H̃(Zj1,Nt )H̃(Zj2,Nt )],
E[H̃(Zj1,Nt )H̃(Z̄j2t )], E[H̃(Z̄j1t )H̃(Z̄j2t )], E[H̃(Zj,Nt )2] and E[H̃(Z̄jt )

2]. By Cauchy-Schwarz, it is in fact enough
to bound E[H̃(Zj,Nt )2] and E[H̃(Z̄jt )

2].

First, by the definition of H̃ in (2.8),

H̃(z)2 =

(
2

a2
exp

(
a
√
H(z)

)(
a
√
H(z)− 1

)
+

2

a2

)2

≤2
22

a4
exp

(
2a
√
H(z)

)(
a
√
H(z)− 1

)2
+ 2

22

a4

≤ 8

a4
exp

(
2a
√
H(z)

) (
2a2H(z) + 2

)
+

8

a4
.

As for the first moment, the study of Zj,Nt is very similar to the one of Z̄jt . Here, we only focus on the second one.

To bound E[H̃(Z̄jt )
2], by Cauchy-Schwarz, it is sufficient to bound E

[
exp

(
4a

√
H(Z̄jt )

)]
and E

[
H(Z̄jt )

2
]
.

The latter has already been bounded uniformly in time, and the former can be obtained by the same calculations as
previously, replacing a by 4a (and thus assuming ã ≥ 4

√
2amax(

√
γ, 1), which we do).

Finally, we deduce E
(
(Git)

2
)

is bounded uniformly in time.

Proof of Lemma 3.6. Using ∂xH(z) = γx+ β, we have∣∣∣∂xH̃(Zi,Nt )− ∂xH̃(Z̄it)
∣∣∣ =

∣∣∣∣(γXi,N
t + β

)
exp

(
a

√
H(Zi,Nt )

)
−
(
γX̄i

t + β
)

exp

(
a
√
H(Z̄it)

)∣∣∣∣
≤
∣∣∣γXi,N

t − γX̄i
t

∣∣∣ (exp

(
a

√
H(Zi,Nt )

)
+ exp

(
a
√
H(Z̄it)

))
+
∣∣γX̄i

t + β
∣∣ ∣∣∣∣exp

(
a

√
H(Zi,Nt )

)
− exp

(
a
√
H(Z̄it)

)∣∣∣∣ .
Since

∣∣∣Xi,N
t − X̄i

t

∣∣∣ ≤ rit,∣∣∣γXi,N
t − γX̄i

t

∣∣∣ (exp

(
a

√
H(Zi,Nt )

)
+ exp

(
a
√
H(Z̄it)

))
≤ γrit

(
exp

(
a

√
H(Zi,Nt )

)
+ exp

(
a
√
H(Z̄it)

))
.

By Lemma 2.1 (ii), we have H(z) ≥ 1
2 min

(
1
γ , 1
)

(γx + β)2. By the mean value theorem, for all y1 ≤ y2 in R,
there exists y3 ∈ [y1, y2] such that: eay1−eay2 = a(y1−y2)eay3 . In particular, |eay1 − eay2 | ≤ a|y1 − y2|(eay1 + eay2).
Thus ∣∣γX̄i

t + β
∣∣ ∣∣∣∣exp

(
a

√
H(Zi,Nt )

)
− exp

(
a
√
H(Z̄it)

)∣∣∣∣
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≤a

√√√√ 2H(Z̄it)

min
(

1
γ , 1
) ∣∣∣∣√H(Zi,Nt )−

√
H(Z̄it)

∣∣∣∣ (exp

(
a

√
H(Zi,Nt )

)
+ exp

(
a
√
H(Z̄it)

))

≤a
√

2 max (γ, 1)
∣∣∣H(Zi,Nt )−H(Z̄it)

∣∣∣ (exp

(
a

√
H(Zi,Nt )

)
+ exp

(
a
√
H(Z̄it)

))
.

Then by the definition of H we get∣∣∣H(Zi,Nt )−H(Z̄it)
∣∣∣ =

∣∣∣∣12γ ((Xi,N
t )2 − (X̄i

t)
2
)

+ β(Xi,N
t − X̄i

t) +
1

2

(
(Ci,Nt )2 − (C̄it)

2
)

+ α(Ci,Nt − C̄it)
∣∣∣∣

≤1

2
γ
∣∣∣Xi,N

t − X̄i
t

∣∣∣ ∣∣∣Xi,N
t + X̄i

t

∣∣∣+ β
∣∣∣Xi,N

t − X̄i
t

∣∣∣+
1

2

∣∣∣Ci,Nt − C̄it
∣∣∣ ∣∣∣Ci,Nt + C̄it

∣∣∣+ α
∣∣∣Ci,Nt − C̄it

∣∣∣ .
Now, by Lemma 2.1 (i), we have H(z) ≥ γ

4x
2 + 1

4c
2 and since

∣∣∣Xi,N
t − X̄i

t

∣∣∣ ≤ rit and
∣∣∣Ci,Nt − C̄it

∣∣∣ ≤ rit/δ, we get

∣∣∣Xi,N
t − X̄i

t

∣∣∣ (1

2
γ
∣∣∣Xi,N

t + X̄i
t

∣∣∣+ β

)
≤ rit

(
√
γ

(√
H(Zi,Nt ) +

√
H(Z̄it)

)
+ β

)
and ∣∣∣Ci,Nt − C̄it

∣∣∣ (1

2

∣∣∣Ci,Nt + C̄it

∣∣∣+ α

)
≤ rit

δ

(√
H(Zi,Nt ) +

√
H(Z̄it) + α

)
.

Thus ∣∣∣H(Zi,Nt )−H(Z̄it)
∣∣∣ ≤(β +

α

δ

)
rit +

(
√
γ +

1

δ

)
rit

(√
H(Zi,Nt ) +

√
H(Z̄it)

)
.

Finally,

|∂xH̃(Zi,Nt )− ∂xH̃(Z̄it)|

≤γrit
(

exp

(
a

√
H(Zi,Nt )

)
+ exp

(
a
√
H(Z̄it)

))
+ a
√

2 max (γ, 1)
(
β +

α

δ

)
rit

(
exp

(
a

√
H(Zi,Nt )

)
+ exp

(
a
√
H(Z̄it)

))
+ a
√

2 max (γ, 1)

(
√
γ +

1

δ

)
rit

(√
H(Zi,Nt ) +

√
H(Z̄it)

)(
exp

(
a

√
H(Zi,Nt )

)
+ exp

(
a
√
H(Z̄it)

))
≤rit

(
γ + a

√
2 max (γ, 1)

(
β +

α

δ

))(
exp

(
a

√
H(Zi,Nt )

)
+ exp

(
a
√
H(Z̄it)

))
+ arit

√
2 max (γ, 1)

(
√
γ +

1

δ

)(
2

√
H(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

)
+ 2
√
H(Z̄it) exp

(
a
√
H(Z̄it)

))
.

Now, we can finally use Lemma 2.4, and more precisely (2.9) and (2.10), we obtain

|∂xH̃(Zi,Nt )− ∂xH̃(Z̄it)|

≤rit
(
γ + a

√
2 max (γ, 1)

(
β +

α

δ

))(
H̃(Zi,Nt ) + H̃(Z̄it) +

4

a2

(
exp

(
a2

2

)
− 1

))
+ arit

√
2 max (γ, 1)

(
√
γ +

1

δ

)(
2aH̃(Zi,Nt ) +

2

a
(e− 2) + 2aH̃(Z̄it) +

2

a
(e− 2)

)
≤rit

(
H̃(Zi,Nt ) + H̃(Z̄it)

)[
γ + a

√
2 max (γ, 1)

(
β +

α

δ

)
+ 2a2

√
2 max (γ, 1)

(
√
γ +

1

δ

)]
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+ rit

[(
γ + a

√
2 max (γ, 1)

(
β +

α

δ

)) 4

a2

(
exp

(
a2

2

)
− 1

)
+ 4
√

2 max (γ, 1)

(
√
γ +

1

δ

)
(e− 2)

]
.

We denote by Cf,1 and Cf,2 (given in Lemma 2.5) the following constants

Cf,1 = 4

[(
γ + a

√
2 max (γ, 1)

(
β +

α

δ

)) 4

a2

(
exp

(
a2

2

)
− 1

)
+ 4
√

2 max (γ, 1)

(
√
γ +

1

δ

)
(e− 2)

]
Cf,2 = 4

[
γ + a

√
2 max (γ, 1)

(
β +

α

δ

)
+ 2a2

√
2 max (γ, 1)

(
√
γ +

1

δ

)]
By the definition of Git and since Git ≥ 1, we obtain

|∂xH̃(Zi,Nt )− ∂xH̃(Z̄it)| ≤ rit
Git
ε

Cf,2
4

+ ritG
i
t

Cf,1
4
,

and eventually

2ε

(
1 +

1

N

)
σ2
xϕrc

(
|Xi,N

t − X̄i
t |
)2 ∣∣∣∂xH̃(Zi,Nt )− ∂xH̃(Z̄it)

∣∣∣
≤ (εCf,1 + Cf,2)σ2

xϕrc

(
|Xi,N

t − X̄i
t |
)2
ritG

i
t.

B Proof of Theorem 2 in the case σX = 0 and σC > 0

We quickly explain in this section how we may also deal with the case σX = 0 and σC > 0. Recall how the choice
of the coupling method was motivated by the observation in (1.8) that the difference of potentials

∣∣∣Ci,Nt − C̄it
∣∣∣ was

naturally contracting when
∣∣∣Xi,N

t − X̄i
t

∣∣∣ was close to 0. This lead us to using a reflection coupling on the Brownian
motions acting on the potential X , to bring the difference close to 0, and it was thus necessary for σX to be positive
(σC however did not hold any importance). In the case σX = 0, we then have to assume σC > 0, and we do a
change of variable, motivated by the following observation. We have, when σX = 0

d(Xi
t − X̄i

t) =
(
(Xi

t − X̄i
t)− ((Xi

t)
3 − (X̄i

t)
3)− (Cit − C̄it)

)
dt+

 1

N

N∑
j=1

KX(Zit − Z
j
t )−KX ∗ ρ̄(Z̄it)

 dt,

=
(
2(Xi

t − X̄i
t)− (Cit − C̄it)− (Xi

t − X̄i
t)− ((Xi

t)
3 − (X̄i

t)
3)
)
dt

+

 1

N

N∑
j=1

KX(Zit − Z
j
t )−KX ∗ ρ̄(Z̄it)

 dt.

Thus

d|Xi
t − X̄i

t | =
(
sign(Xi

t − X̄i
t)
(
2(Xi

t − X̄i
t)− (Cit − C̄it)

)
− |(Xi

t)
3 − (X̄i

t)
3| − |Xi

t − X̄i
t |
)
dt

+ sign(Xi
t − X̄i

t)

 1

N

N∑
j=1

KX(Zit − Z
j
t )−KX ∗ ρ̄(Z̄it)

 dt.

The quantity |Xi
t − X̄i

t | is therefore naturally contracting when |2(Xi
t − X̄i

t) − (Cit − C̄it)| is close to 0. Thanks
to the presence of a Brownian motion in the stochastic differential equations defining the potential C, we can now
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use a reflection coupling to have |2(Xi
t − X̄i

t)− (Cit − C̄it)| go to 0. Consider the following coupling
dXi

t = (Xi
t − (Xi

t)
3 − Cit − α)dt+ 1

N

∑N
j=1KX(Zit − Z

j
t )dt

dCit = (γXi
t − Cit + β)dt+ 1

N

∑N
j=1KC(Zit − Z

j
t )dt+ σcϕsc

(
|2(Xi

t − X̄i
t)− (Cit − C̄it)|

)
dBi,sc,C

t

+σcϕrc
(
|2(Xi

t − X̄i
t)− (Cit − C̄it)|

)
dBi,rc,C

t
(B.1)

and 
dX̄i

t = (X̄i
t − (X̄i

t)
3 − C̄it − α)dt+KX ∗ ρ̄(Z̄it)dt

dC̄it = (γX̄i
t − C̄it + β)dt+KC ∗ ρ̄(Z̄it)dt+ σcϕsc

(
|2(Xi

t − X̄i
t)− (Cit − C̄it)|

)
dBi,sc,C

t

−σcϕrc
(
|2(Xi

t − X̄i
t)− (Cit − C̄it)|

)
dBi,rc,C

t

ρ̄ = L((X̄1
t , C̄

1
t ))

, (B.2)

and for δ > 0, the following modified distance rit = δ|Xi
t − X̄i

t |+ |2(Xi
t − X̄i

t)− (Cit − C̄it)|. Like previously, we
consider a modified semimetric of the form 1

N

∑
f(rit)G

i
t, and similar calculations yield

d(ectf(rit)G
i
t) ≤ ectKi

tdt+ dM i
t ,

where M i
t is a continuous local martingale and

Ki
t = K̃i

t + I1,i
t + I2,i

t + I3,i
t .

We define K̃i
t , I

1,i
t , I2,i

t , I3,i
t and I4,i

t as follows:

K̃i
t =Git

[
2cf(rit) + 2f ′′(rit)σ

2
cϕrc

(
|2(Xi

t − X̄i
t)− (Cit − C̄it)|

)2
+f ′(rit)

(∣∣2(Xi
t − X̄i

t)− (Cit − C̄it)
∣∣ (δ + 1)− |(Xi

t)
3 − (X̄i

t)
3|(δ − 2)

+|Xi
t − X̄i

t | (−δ + γ + LX(δ + 2) + LC) + |Cit − C̄it |(LX(δ + 2) + LC)

+σ2
cϕrc

(
|2(Xi

t − X̄i
t)− (Cit − C̄it)|

)2
(εCf,1 + Cf,2) rit

)]
+ εf(rit)

4B̃ − λ

8
H̃(Z̄it)−

λ

8
H̃(Zi,Nt )− λ

8N

N∑
j=1

H̃(Z̄jt )−
λ

32N

N∑
j=1

H̃(Zj,Nt )

 ,

I1,i
t =Gitf

′(rit)

(δ + 2)

∣∣∣∣∣∣ 1

N

N∑
j=1

KX(Z̄it − Z̄
j
t )−KX ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

N

N∑
j=1

KC(Z̄it − Z̄
j
t )−KC ∗ µ̄t(Z̄it)

∣∣∣∣∣∣
 ,

I2,i
t =Gitf

′(rit)

(δ + 2)

LX
N

 N∑
j=1

|Xj,N
t − X̄j

t |+ |C
j,N
t − C̄jt |

+

LC
N

 N∑
j=1

|Xj,N
t − X̄j

t |+ |C
j,N
t − C̄jt |


− cf(rit)G

i
t − εf(rit)

[
λ

32
H(Z̄it) exp

(
a
√
H(Z̄it)

)
+

λ

32
H(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

)]

− εf(rit)

 λ

32N

N∑
j=1

H(Z̄jt ) exp

(
a

√
H(Z̄jt )

)
+

λ

32N

N∑
j=1

H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

) ,
I3,i
t =εf(rit)

(αXLX + βXLC)

(∑N
j=1 |X

j,N
t |

N

)2

exp

(
a

√
H(Zi,Nt )

)

+ (αCLX + βCLC)

(∑N
j=1 |C

j,N
t |

N

)2

exp

(
a

√
H(Zi,Nt )

)
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− λ

16
H(Zi,Nt ) exp

(
a

√
H(Zi,Nt )

)
− λ

16N

N∑
j=1

H(Zj,Nt ) exp

(
a

√
H(Zj,Nt )

) .

We then have the additional constraint of δ > 2 (so that the coefficient appearing in front of |(Xi
t)

3 − (X̄i
t)

3| in
the expression of K̃i

t is non positive). Otherwise, we deal with the various terms exactly as previously, through the
choice of a sufficiently concave function f and a law of large numbers, and by considering the regions of space

Regi1 =
{

(Z̄it , Z
i,N
t ) s.t. |2(Xi

t − X̄i
t)− (Cit − C̄it)| ≥ ξ and rit ≤ R

}
,

Regi2 =
{

(Z̄it , Z
i,N
t ) s.t. |2(Xi

t − X̄i
t)− (Cit − C̄it)| < ξ and rit ≤ R1

}
,

Regi3 =
{

(Z̄it , Z
i,N
t ) s.t. rit > R

}
.
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Index

Throughout this article, we define many parameters and constants. For the sake of clarity, we list the main ones
here so as to give the reader an index to refer to.

• X,C,Z : X and C are the processes we consider (see (1.1) and (1.2)) and we often refer to Z = (X,C),

• µ̄t = Law(Z̄t) : the density of the non linear limit (see (1.2)),

• α, β, γ, σX , σC : parameters of the problem (see (1.1)),

• KX ,KC , LX , LC , LX,max, LC,max : KX (resp. KC) is an Lipschitz continuous interaction kernel, with
Lipschitz constant LX ∈ [0, LX,max] (resp. LC ∈ [0, LC,max]), as given in Assumption 1. In the case of
uniform in time propagation of chaos, the inequalities LX and LC must satisfy are listed in Assumption 2,

• Wp : the usual Wasserstein distance associated to the Lp distance (see (1.3)),

• a, ã, Cinit,exp : constants used to give an exponential initial moment to the problem (see the assumptions
of Theorem 2 and Section 2.3),

• λ,B, B̃,H, H̃, αX , αC , βX , βC : H (resp. H̃) is a Lyapunov functions given in (2.1) (resp. (2.8)). Its
main property involves parameters λ andB (resp. λ and B̃), as can for instance be seen in (2.3) (resp. (2.13)).
αX , αC , βX and βC are intermediate constants given in Lemma 2.2,

• c : a contraction rate (see Assumption 2),

• r, f, g, φ,Φ, G, ρ, δ, R, ε, Cf,1, Cf,2 : f (see (2.21)) is a concave function, the definition of which involves
g, φ, Φ (see Assumption 2). Function G (see (2.24)) is then used to define ρ (see (2.23)), the semimetrics we
consider in the end. All those notations thus refer to the modified distance we consider. These functions will
be applied to r a modification of the usual L1 distance (see equation (2.22)). Then, parameters δ, R, ε, Cf,1,
and Cf,2 are used to define such functions (see Assumption 2 for some explicit values),
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• R0, φmin : intermediate constants (see Assumption 2),

• Cinit,2 : uniform in time bound on the second moment of the processes (see Lemma 2.3),

• C1, C2, Cz : constants used to quantify the control our modify distance has over the usual L1 and L2

distance (see Lemma 2.6 for the control and Assumption 2 for explicit values),

• φrc, φsc, ξ : φrc and φsc are two Lipschitz continuous functions used to define the coupling method, and
their definitions involve a parameter ξ which converges to 0 in the end (see the beginning of Section 3),

• Cr,H : used to explicit the control of the Lyapunov function H over the distance r (see Lemma 2.1),
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