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Abstract

Whereas Large Eddy Simulation (LES) of single-phase flows is already widely used in the CFD world,

even for industrial applications, LES of two-phase interfacial flows, i.e. two-phase flows where an interface

separates liquid and gas phases, still remains a challenging task. The main issue is the development of

subgrid scale models well suited for two-phase interfacial flows. The aim of this work is to generate

a detailed data base from Direct Numerical Simulation (DNS) of two-phase interfacial flows in order

to clearly understand interactions between small turbulent scales and the interface separating the two

phases. This work is a first contribution in the study of the interface/turbulence interaction in the

configuration where the interface is widely deformed and where both phases are resolved by DNS. To

do this, the interaction between an initially plane interface and a freely decaying homogeneous isotropic

turbulence (H.I.T.) is studied. The densities and viscosities are the same for both phases in order to focus

on the effect of the surface tension coefficient. Comparisons with existing theories built on wall-bounded

or free-surface turbulence are carried out. To understand energy transfers between the interfacial energy

and the turbulent one, PDFs of the droplet sizes distribution are calculated. An energy budget is carried

out and turbulent statistics are performed including the distance to the interface as a parameter. A

spectral analysis is achieved to highlight the energy transfer between turbulent scales of different sizes.

The originality of this work is the study of the interface/turbulence interactions in the case of a widely

deformed interface evolving in a turbulent flow.

1. Introduction

Direct numerical simulations (DNS) of interface/turbulence interaction are relatively recent (Lam and

Banerjee (1988, 1992)) and generally limited to plane free-surface configurations where the effect of the

gas phase on the liquid is neglected and replaced by the free plane surface approximation sometimes in

combination with an enforced shear force. Free surface turbulence in an open channel flow was first studied

by Lam and Banerjee (1988, 1992). Lombardi et al. (1996) performed a DNS of counter-current gas-liquid

flow in a channel using free-slip boundary conditions at both channel walls. The interface between the two

phases was maintained flat which corresponds to a very high surface tension. It was found that turbulence

characteristics on the gas side are similar to those at the near wall, and that the lighter phase might

seem like a solid surface at the interface. Later, Handler et al. (1993) conducted similar DNS In these

simulations, the free surface was supposed to be a rigid free-slip wall and the vertical movement of the free

surface was neglected. The full free surface boundary conditions were integrated in the work of Komori

et al. (1993). But this work was still restricted to small-amplitude surface deformations. A model of wind-

generated surface waves was proposed by Borue et al. (1995) by studying the influence of enforced stresses

at the free surface. Non-flat interfaces were investigated by Angelis (1998) by considering stratified flows

with a freely deformable interface in the capillary wave regime. Fulgosi et al. (2003) performed DNS

of turbulence in a countercurrent air-water flow configuration separated by a deformable interface. The

results of this work did not differ very much from the previous investigation (Lombardi et al. (1996)).
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Turbulence intensities, budgets for the Reynolds stresses and flow structures on the gas side showed

similarities with results issued from an open channel flow. In Banerjee et al. (2004), friction velocities

were considerably increased so as to generate surface deformations of higher waveslopes, without leading

to wave breaking. It was found (Banerjee et al. (2004)) that when the shear rate imposed by the gas is

high, turbulence is generated in the vicinity of the interface, like near solid boundaries. In Lakehal et al.

(2005), the DNS of the stratified gas-liquid flow over a sheared interface concluded in the necessity to

accomodate the asymptotic behavior of turbulence near interfaces (like in wall flows). The first damping

function for near-interface turbulence from the gas side was derived (Lakehal et al. (2005)). In all these

studies, the interface deformation is supposed to be moderated excluding strong topological changes such

as fragmentation or wave breaking.

More recently, work has been done taking into account fragmentation or break-up in the DNS context

of two-phase separated flows. Indeed, Bunner and Tryggvason (2003) have studied the effect of bubble

deformation on the properties of turbulent bubbly flows. In their simulations, turbulence was produced

by the wake of bubbles. The so-called pseudo-turbulence induced by a bubble swarm does not have the

same properties as a well developed turbulence whose energy spectrum contains an inertial zone. Few

DNS studies of deformable bubbles have been carried out in turbulent channel flows. Among them, in

Kawamura and Kodama (2002), DNS of a fully developed turbulent channel flow containing deformed

bubbles are performed. A front-tracking method is used to capture the interface. Modifications in the

profiles of turbulence intensities were observed. In Liovic and Lakehal (2007b) a LES formulation has

been applied to a turbulent bubbling process driven by a constant volume injection of air into a water

pool. A strong correlation between turbulence and interface deformations was found. In more recent

works, Toutant et al. (2007) investigated by DNS the motion of a strongly deformable bubble without

ruptures in a spatially decaying turbulence in order to perform a priori filtering for LES modelling of

interfacial two-phase flows. Liovic and Lakehal (2007a) develop a new strategy around the LES simulation

of interfacial flows based on a multi-physics treatment in the vicinity of deformable gas-liquid interfaces.

A reconstructed distance function is introduced, on which an interfacial shear velocity is defined to be

used in near-interface transport models. This methodology (Liovic and Lakehal (2007a)) has been applied

for the simulation of a wave breaking configuration.

The aim of the work presented in this paper is the study of the evolution of an interface separating

two immiscible fluids in a free decaying turbulence. The interface appears to be widely deformed. Both

liquid and gas phases will be resolved with DNS and turbulent statistics will be carried out on both

phases as well as a detailed spectrum analysis. In order to focus on interface-turbulence interactions,

it was decided to work with the same density and dynamic viscosity for both fluids. This work is a

first contribution in the study of the interaction between an interface and turbulence when the interface

is widely deformed. Because of the complexity in the topology of the interface (the aim is to mimic

atomization process), quantitative analysis is less obvious. This work is a first step in the understanding

of interface/turbulence interactions in complex situations (typically atomization) and not a global and

exhaustive study of interfacial multiphase flows.

In a first part governing equations are introduced. In a second part numerical methods are presented.

Then, in a third part, the numerical simulations are analyzed. This part is divided into two sections.

The first one is about the single-phase simulation and the validation of the DNS of the homogeneous

isotropic turbulence (H.I.T.) flow. The second section is dedicated to the H.I.T. flow in which a sheet

has been added. After having presented the numerical configuration, the interface/turbulence mechanism

is studied. Then 3D energy spectra are performed and finally 2D energy spectra are studied in planes

parallel to the initial sheet.

2. Governing equations

The simulation of liquid-gas flows at moderate velocities is under consideration assuming an isothermal

behaviour. The incompressible Navier-Stokes equations are used to model the resulting two phase flow
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(Scardovelli and Zaleski (1999))

ρ (ut + (u · ∇)u) = −∇p + ∇ · D

∇ · u = 0
(1)

where ρ is the density, p the pressure, u the velocity vector, D = µ(∇u + ∇T u) the viscous stress tensor

for a Newtonian fluid and µ the dynamic viscosity. The boundary conditions at the interface between

two immiscible fluids are the continuity of the velocity components

[u]Γ = 0 (2)

and the dynamic boundary conditions for the normal and tangential stresses (Delhaye (1974))

[p]Γ − n · [µD]Γ · n = σκ (3a)

t · [µD]Γ · n = 0 (3b)

where n and t are respectively the normal and the tangent vectors to the interface. σ is the surface

tension coefficient and κ the local curvature of the interface. The brackets [u]Γ for example stand for the

velocity jump across the interface.

3. Numerical methods

3.1. Navier-Stokes solver

Classical projection methods are performed to ensure the incompressibility constraint (Chorin (1968);

Temam (1969)). The spatial discretization is based on staggered MAC (Harlow and Welsh (1995)) uniform

Cartesian grids for the velocity components, all others quantities as density, pressure and level-set are

cell-centered. The convection terms in the momentum equations are approximated in a conservative way

with 5th order accurate WENO schemes (Shu (1997)). This particular choice has been motivated by

the robustness and low numerical dissipation of such schemes to perform direct numerical simulations

(Trontin et al. (2008)). Time integration is performed with a 3rd order accurate TVD Runge-Kutta

scheme. It should be pointed that the incompressibility constraint is enforced at each Runge-Kutta

sub-step. The Poisson equation for the pressure is solved by a fast multigrid preconditioned conjugate

gradient method (Tatebe (1996); Trottenberg and Schuller (2001)).

3.2. Interface-capturing method

A level-set method (Osher and Sethian (1988); Sussman et al. (1994)) is used to capture the interface,

which is implicitely given by the zero of the smooth function φ(x, t). By convention, the level-set function

φ will be taken positive in the liquid and negative in the gas and the normal n will point towards the

positive values of φ. Moreover, φ is imposed to be the signed distance function to the interface. This

particular property of the level-set function is of major importance. Indeed, this property ensures the

level-set to be well behaved at the interface between the two fluids. The evolution of the interface is

implicitely captured by the zero-level of φ which obeys the following equation

φt + (u · ∇)φ = 0 (4)

As for the momentum equation, the level-set equation is solved by a 5th order conservative WENO scheme

for spatial discretization and a 3rd order TVD Runge-Kutta scheme. While equation (4) will move the

level-set φ = 0 at the correct velocity, φ will no longer remain a distance function (|∇φ| 6= 1). This can

lead to large mass losses or gains as the interface will behave poorly. Consequently, the level-set must

be regularly reinitialized to overcome this drawback. This is achieved by solving to the steady state the

following Hamilton-Jacobi equation for φ (Sussman et al. (1994); Jiang and Peng (2000))

φt = S(φ0)(1 −
√

φ2
x + φ2

y)

φ(x, y, 0) = φ0(x, y)
(5)
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Equation (5) has the property that φ remains unchanged at the interface, then the zero of the level-set

φ0 and φ are the same and the steady state solution of (5) verifies |∇φ| = 1 . The equation (5) is solved

by a Godunov type scheme with a fifth order WENO scheme. As a distance level-set is sought only in

the vicinity of the interface, few pseudo time steps are needed to reach a distance level-set again.

3.3. Ghost fluid approach for the jump conditions

The jump conditions for pressure and pressure gradient in the Poisson pressure equation as well as

jump condition for the viscous terms are taken into account by the ghost fluid method (Fedkiw et al.

(2000)). The full mathematical details of this method can be found in Couderc (2007). The authors have

validated the numerical methods in Trontin et al. (2008).

4. Numerical simulation

To understand the interaction between small scales of turbulence and an interface, the classical con-

figuration of homogeneous isotropic turbulence (H.I.T.) is chosen. In any direct numerical simulation of

turbulent flows, adequate resolution of the smallest spatial scales is of primary importance. Here, different

length scales as well as statistical parameters are calculated to assess the reliability of the simulation.

4.1. Homogeneous isotropic turbulence simulation: single-phase case

The computational domain is a 2π square box with periodic boundary conditions on each side. The

spatial grid resolution is 5123. The time step corresponds to
1

50
of the Kolmogorov time scale. Simula-

tions are performed at low Reynolds numbers. Parameters given by Mansour and Wray (1994) are chosen

to initiate the H.I.T. field. This field is generated in Fourier space: it fulfills the constraint of incom-

pressibility and follows a prescribed energy spectrum. A complete description of the method to initiate

an H.I.T. field can be found in Rogallo (1981). The initial energy spectral density (energy spectrum) is

given by

E(k) =
r2

2A

1

kp
γ+1

kγ exp

(

−
γ

2

(
k

kp

)2
)

(6)

where kp is the wave number for which E(k) is maximum, γ and r are parameters, and

A =

∫ ∞

0

kγ exp(−γk2/2) dk

Here, r2 = 3, γ = 4 and kp = 9. All the parameters of the calculation are summarized in Tab. 1. The

turbulent kinetic energy (herein after T.K.E.) q

q =
1

N3

∑

i,j,k

0.5(u′
i,j,k

2
+ v′i,j,k

2
+ w′

i,j,k
2
)

is defined as the half trace of the Reynolds stress tensor. The turbulent velocity scale is then defined

by u′ ≡
√

u′2 =

√

2

3
q. The statistical averaging · is approximated here by volume averaging. Time

evolution of T.K.E. q is represented in Fig. 1. Comparisons are carried out between our 5123 DNS code

and a 1283 DNS spectral code. It can be seen that 5123 resolution gives the same accuracy than 1283

spectral DNS (which is already well resolved). It can be concluded that the 5123 simulation is a DNS.

In Fig. 2 the normalized T.K.E. dissipation rate ǫ increases at early stages from
t

Te
= 0 to 1. Te is the

Eulerian time scale or eddy turnover time based on large scales of turbulence. As observed by Yu et al.

(2005), this increase of
ǫ

ǫ0
is consistent with known turbulence physics: at early stages the energy spreads

to higher wave numbers due to the nonlinear cascade process. This phenomenon leads to the increase of

the dissipation rate in physical space, as shown in Fig. 2. For later times (after one eddy turnover time

here), the dissipation decays monotonically. Once again, a comparison between our 5123 DNS code and
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a 1283 DNS spectral code is performed showing an accuracy of the 5123 DNS comparable to the spectral

simulation. In Fig. 2, the budget ǫ = −
dq

dt
is satisfied indicating the good resolution of the computation.

In Fig. 3, the ratio dǫ
dt/( ǫ2

q ) is plotted and is −1.57. In the case of large Reynolds numbers simulation,

this constant is supposed to be −1.96. The difference is due to our direct simulations where Reynolds

numbers are moderate. Higher order moments can be calculated to measure the turbulence evolution

from t = 0. Skewness and flatness factors (Pope (2000)) are represented in Fig. 4. They respectively

represent 3th and 4th order moments of spatial derivatives of u′. S and F measure the gap between the

calculated spatial derivatives of u′ and a Gaussian repartition of these derivatives. S and F are given by

S = 1
3

(
∂ui

∂xi

)3

/
(

∂ui

∂xi

)2
3/2

F = 1
3

(
∂ui

∂xi

)4

/
(

∂ui

∂xi

)2
2 (7)

Several experimental studies (Mills et al. (1958); Smith and Reynolds (1992)) have shown that

−0.5 ≤ S ≤ −0.4

3.3 ≤ F ≤ 4
(8)

when turbulence is fully established. In this work, Fig. 4 shows that after three eddy turnover times, the

turbulence can be considered as fully established. If Rλ is referred to as the Reynolds number based on

λ, the Taylor micro-scale, Mansour and Wray (1994) have shown that the skewness factor collapses for

very small Rλ (about 5 for this configuration). To avoid this collapse, numerical simulations are stopped

in the rest of the work at a final time which ensures that Rλ ≥ 10.

Concerning the DNS spatial resolution, good resolution of the smallest scales is needed to avoid energy

pile-up at high wave numbers. Theoretically, the numerical cut-off wave number is given by kmaxηk = π

(
ηk

∆x
= 1) where ηk is the Kolmogorov length scale, kmax is the highest simulated wave number and ∆x

is the grid size. However, kmaxηk ≃ 1.5 is generally used as a necessary condition for DNS resolution

(Yeung and Pope (1988)). It could be shown that kmaxηk > π with 5123 grid points for initial conditions

given by (6). In Fig. 5, 3D energy spectra are plotted for two different times. Comparisons are made

between the 1283 spectral code and our 5123 DNS code. Every turbulent scale is accurately captured

by the 5123 DNS, even for the smallest scales (high wave numbers), showing 5123 resolution is accurate

enough for this simulation.

Figure 6 shows the time evolution of the turbulence length scales. Every length scale increases in time.

At the end of the simulation
Lb

Lf
= 7 where Lb and Lf are respectively the box size and the Eulerian

longitudinal integral length scale. According to Boughanem and Trouvé (1996),
Lb

Lf
≥ 8 is needed to

ensure the decorrelation of the velocity field with the box length scale. Such a condition is respected for
t

Te
≤ 32 as shown in Fig. 6. In this figure, the Howarth and Karman relation (Howarth and Karman

(1938)) between Lf and Lg is well observed (
Lf

Lg
= 2) where Lg is the Eulerian transversal integral length

scale.

4.2. Sheet in a H.I.T. flow: interface-turbulence interaction

4.2.1. Configuration

As shown in Fig. 7, a thin plane layer (or sheet hereafter) is added in the H.I.T. field generated from

the energy spectrum given by equation 6. The sheet is represented by the fluid 2 in Fig. 7. Its thickness

δ is 5 % of the box size and compared to the Kolmogorov spatial scale,
δ

ηk
= 24. The sheet is the set

of points x such as φ(x) < 0. Up and down the sheet, the fluid 1 is characterized by the set of points

x such as φ(x) > 0. The isosurface φ = 0 is the interface between the two fluids. Periodic boundary

conditions are enforced on the whole computational domain. Therefore, the initial configuration is a thin
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plane layer or sheet (such as φ(x) < 0, i.e. fluid 2) inside the fluid 1 (such as φ(x > 0). Turbulence

is generated is the whole computational domain, both in the fluid 1 and in the fluid 2. Initially plane,

the sheet follows the motion of the surrounding turbulent flow. The aim of this work is the study of the

interaction between turbulence and capillary forces without any other influence such as gravity forces or

other volumic forces. Indeed, the results presented here will be used to perform a priori filtering for LES

simulation of air-blasted atomization where gravity could be completely neglected. Moreover, viscous and

density jumps are not taken into account, so that
ρ(φ < 0)

ρ(φ > 0)
= 1 and

µ(φ < 0)

µ(φ > 0)
= 1. A parametric study is

performed on the surface tension coefficient σ. The dimensionless relevant number is the Weber number

comparing the fluid inertia to its surface tension force. It is given by We =
ρu

′2
0 δ

σ
where u′

0 ≡

√

u′2(t)
t=0

is the initial turbulent velocity and δ is the thickness of the sheet. The sheet in the H.I.T. field was

studied for different We values: 110, 63, 19, 2 and 0.2. The reference case is the H.I.T. flow with no

interface. It is equivalent to a sheet where σ = 0. In this configuration, the sheet just behaves like a

Lagrangian marker. That is why the reference case will be referred to as We = ∞.

4.2.2. Interaction mechanism and turbulent statistics

Qualitative overview. We first consider the interaction mechanism with respect to the topological changes

of the interface between the two phases. They are represented in Fig. 8 for four different initial We and at

three different times. For high We numbers (small surface tension forces) the interface is widely stretched

by the surrounding turbulence. Filaments and small structures appear. When time increases, these

structures become bigger and their shapes tend to be spherical. This is due to capillary forces which

become more important as time increases. Indeed, as local curvatures of the sheet increase (compared to

the initial flat configuration of the interface), surface tension forces increase as well. For the lowest We

number (high surface tension forces), however, the initial planar sheet is only slightly disturbed. In this

case, no tearing or stretching of the interface is observed. It could be thought that the interface behaves

as a solid wall. From these qualitative results, it can be shown that highest Weber numbers produce small

droplets, which is consistent with earlier formation of very thin ligaments whereas lowest ones keep the

sheet nearly plane, indicating some critical Weber number under which no fragmentation occurs. This

critical Weber numbers lies between 0.2 and 2.

PDF of droplets distribution. As the interface topology of the highest Weber numbers is finely grained,

one could ask if the simulation is real DNS with respect to the interface. To deal with, in Fig. 9, 10

and 11, the PDFs of the number of droplets vs. D/∆x are plotted for three different We numbers at

different times, where D is the diameter of the droplet and ∆x the spatial step. Practically, this diameter

is calculated by D = (6V
π )1/3 where V is the volume of each blob detected by a geodesic reconstruction

algorithm (Serra (1983)). In Fig. 9, 10 and 11, a zoom is performed for 50 ≤ D/∆x ≤ 250 and the result

is shown in the right up corner of the figure. For early times (t/Te ≤ 5) and for We = 110 and We = 19

(Fig. 9 and 10), the PDFs show a maximum for 1 ≤ D/∆x ≤ 20, indicating a strong fragmentation

of the sheet due to ligament break-up. However, as described in the zoom of Fig. 9 and 10, the single

path-connected component of the sheet is still present for this time. Its equivalent diameter decreases

from 234 to 230 for We = 110 and from 234 to 220 for We = 19. For later times, coalescence happens

as shown in Fig. 9 and 10. For these Weber numbers, the largest number of droplets is observed for

D/∆x = 10 at t/Te = 13, instead of D/∆x = 3 at t/Te = 5 for We = 110 and D/∆x = 7 at t/Te = 5

for We = 19. For t/Te > 13, PDFs do not evolve anymore. For smaller We (We = 2), the fragmentation

process occurs but it does not result in a large distribution of smaller droplets. On the contrary, the main

path-connected component is divided in large drops. For this case, coalescence appears later (t/Te = 27)

and is less significant. At this time, three main drops are present (D/∆x = 130, 160 and 180).

As can be seen in these figures (9, 10 and 11), two distinct behaviours are observed with a PDF

centered at D/∆x = 10 for larger We, whereas only three main drops are shown for We = 2. For the

larger Weber numbers (We ≥ 19) and from t/Te ≥ 13, we have D/∆x ≥ 5 for the wide majority of the
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droplets, indicating the good spatial resolution of the droplets and the reliability of the DNS simulations.

Energy budget. To understand the role played by surface tension forces in the TKE evolution, an energy

budget for TKE (written q in Eq. 9) is carried out. To do this, a new spatial average conditioned by

the level-set function φ is introduced. It will be noted · φ in reference to the conditioning parameter φ.

Details on the computation of · φ are given in Fig. 12. Let φ1 be an iso-surface. The points x of the

numerical domain D such as φ(x) ∈ [φ1; φ1 + dφ] (φ(x) is the level-set function at x) belong to a layer

C1 centered around φ1 whose width is dφ. The average · φ(φ1) is performed among the points which

belong to C1. In our computations, dφ is of the order of the spatial step.

Thus, using the · φ average, the equation for the energy budget can be written:

∂q

∂t

φ

︸︷︷︸

I

+ uj
∂q

∂xj

φ

︸ ︷︷ ︸

III

=
∂

∂xj
(2µuisij)

φ

︸ ︷︷ ︸

II

−
∂

∂xj
(puj)

φ

︸ ︷︷ ︸

IV

−2µsijsij
φ

︸ ︷︷ ︸

V

+ ρuiFi
φ

︸ ︷︷ ︸

V I

(9)

where term I is the time rate-of-change, term II is the power of viscous forces, term III is the transport

of q, term IV is the power of pressure forces, term V is the dissipation and term VI is the power of

interfacial forces F. Here, F is given by F = σκδ(φ)∇φ. In Fig. 13, the different terms of the equation 9

are represented vs. time. At each time, the budget is performed on the interface (φ = 0). For example,

term I in Fig. 13 is
∂q

∂t

φ=0

(t). Every term is normalized with ǫ(t). A comparison is performed for

different We numbers. Three kinds of behaviours can be seen in Fig. 13: the small interfacial scale cases

(We = 110, 63, 19), the large interfacial scale case (We = 0.2) and the transitional one (We = 2).

The small interfacial scale cases are related to We = 110, 63 and 19 (Fig. 13 (a), (b) and (c) respec-

tively) where the interfaces present large deformations with small interfacial scales. The predominant

scale is term V (dissipation) but
∂q

∂t

∣
∣
∣
∣
φ=0

6= − ǫ|φ=0 (or term I 6= term V), indicating a loss of isotropy at

the interface. In Fig. 14, the same budget is carried out for We = 110 far from the interface (φ/∆x = 5).

Far from the interface, the relation ∂q
∂t = −ǫ is verified. This result is the same for every We far from

the interface. The transport term (III) has a symmetric behaviour compared to the pressure term (IV).

The two terms are not exactely balanced but have similar behaviours. Back to Fig. 13 for We = 110,

63 and 19, term III and term IV have similar behaviours but the magnitude of term IV is stronger than

the magnitude of term III resulting in
∂q

∂t

∣
∣
∣
∣
φ=0

6= − ǫ|φ=0. The interfacial term (VI) is low. Term VI

≈ uiσκ||∇φ||. As can be seen in Fig. 8, κ can be very large. However, σWe=110,63,19 << 1 and therefore

the product σκ is low for We = 110, 63 and 19, which explains the low magnitude for term (VI). The

strength of interfacial forces is driven by the surface tension coefficient σ more than the curvature κ.

The large interfacial scale case is related to We = 0.2 (Fig. 13 (e) and (f)), where the interface remains

nearly flat. The previous similitude between the transport term (III) and the pressure term (IV) is not

true anymore for We = 0.2. For t/Te ≥ 15, the two predominent terms are the pressure term (IV) and the

interfacial term (VI). Their evolutions are comparable and oscillate under a frequency which is consistant

with analysis of surface waves given byLamb (1932):

flamb =
1

2π

√

σk3

2ρ
(10)

The frequency deduced from Fourier analysis of temporal signal of interfacial energy budget term of

equation 9, gives a wave length of interfacial instablity of roughly π/2 which seems to be in good agreement

with waves observed in Fig. 8. Therefore, waves observed for We = 0.2 in Fig. 8 are surface waves.

Pressure and interfacial terms (IV and V) oscillate with the same characteristic frequency given by

surface waves on the interface (We = 0.2). About the product σκ, σ is predominant on κ. Indeed,

κ << 1 (nearly flat interface) whereas σ >> 1 for We = 0.2. As can be seen in Fig. 13, the interfacial

term VI is high and this is due to high σ.
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The transitional case is We = 2 (Fig. 13 (d)). For small times, (t/Te ≤ 15), conclusions are the

same as for the small interfacial scale cases (We = 110, 63 and 19). For larger times (t/Te ≥ 15), the

interfacial term (VI) increases for 15 ≤ t/Te ≤ 30. Back to Fig. 8, the curvatures of the large drops

do not increase significantly enough from t/Te = 15 to t/Te = 30 to raise the term VI. The large drops

oscillate from t/Te = 15 to t/Te = 30 under the competition of two contributions: turbulence which

imposes deformations to the interface and surface tension forces which play the role of a restoring force.

These oscillations cause increases of local velocities near the interface inducing the increase of the term

VI on the interface. Viscosity damps oscillations: as turbulence intensity decays in time, the drops keep

their spherical shapes and local velocities in the neighbourhood of the interface decrease, which explains

the decrease of the term VI from t/Te = 30. Note that dissipation (term V) is larger than for other We.

Temporal evolution of T.K.E.: We influence. In Fig. 15, the time evolution of normalized T.K.E.

(q − q∞)/q∞ is represented for different We numbers. q∞ is the T.K.E. of the reference case (σ = 0).

At early stages of the simulations (t/Te < 6), (q − q∞)/q∞ < 0 for all Weber numbers showing

that T.K.E. decreases faster when We < ∞. This decrease is greater as the surface tension coefficient

increases. T.K.E. is transfered from the fluid flow to the interface. Energy is used to break the interface

into smaller pieces. For We = 0.2 where σ is high enough to prevent the interface from breaking, energy

is used from T.K.E. to cause deformations of the interface with surface waves.

For later times, (q−q∞)/q∞ increases for all We numbers. Three different behaviours can be observed:

small scale cases (We = 110, 63, 19), large scale scales (We = 0.2) and the transitional case (We = 2).

• For small scale cases (We = 110, 63, 19) (q− q∞)/q∞ increases but remains negative. The interface

is finely grained, consisting of small filaments and droplets (Fig. 8), where the interfacial energy is

used for coalescence and creation of larger interfacial structures. Even for later times, (q− q∞)/q∞

remains negative showing a loss for T.K.E. compared to single-phase case (We = ∞). In that cases,

at large times, coalescence and breakup are important (see Fig. 8), which explains T.K.E. loss for

two-phase interactions.

• For the transitional case (We = 2), q − q∞ becomes positive ( t
Te

≥ 7). Unlike previous cases, large

non spherical blobs are observed. Under surface tension forces these blobs keep oscillating without

merging throughout the simulation. In this case the distance in between is significantly larger than

for We ≥ 19. These oscillations explain the increase of (q−q∞)/q∞ as q∞ vanishes up to t/Te = 30.

For t/Te ≥ 30, (q− q∞)/q∞ decreases. It can be explained back to Fig. 13 where it was shown that

large drops stop oscillating from t/Te = 30.

• For the large scale case (We = 0.2), q − q∞ become positive ( t
Te

≥ 6). Due to high surface tension

coefficient, the sheet remains unbroken and is only disturbed by surface waves. These surface waves

are a gain for T.K.E. but are damped by viscosity. Therefore, for large times, q− q∞ decreases. As

q∞ decreases too, the ratio (q − q∞)/q∞ shows a stage for We = 0.2 at large times.

Turbulent statistics. In Fig. 16 and 17, normal and tangential Reynolds stress profiles are represented

vs.
φ

δ
where φ is the level-set function (signed distance function to the interface) and δ is the initial

thickness of the sheet. More precisely, if n and τ are respectively the local unit normal and tangential

vectors, and if u′
n and u′

τ are given by

u′
n = u′ · n

u′
τ = u′ · τ

(11)

then Fig. 16 and 17 represent respectively u′2
n

φ
(
φ

δ
) and u′2

τ

φ
(
φ

δ
). Using φ enables representing Reynolds

stress profiles in function of the signed distance to the interface. u′2
n

φ
(
φ

δ
) and u′2

τ

φ
(
φ

δ
) are normalized by

their respective averaged values far from the interface
φ

δ
>> 1. In Fig. 16 and 17 oscillations appear far

from the interface. A way to improve the resolution is the use of ensemble averaging in addition to the
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spatial averaging. To do this, each realization has to be produced by running the simulation under the

same flow parameters but with different initial conditions. Because of prohibitive CPU times with 5123

grids, such ensemble averagings have not been performed.

Figures 16 and 17 show two main trends. At short times (
t

Te
≤ 2) for 0 ≤

φ

δ
≤ 1 a loss for u′2

n

φ

can be seen near the interface whereas a gain for u′2
τ

φ
occurs. Every We number is concerned by this

phenomenon. Near the interface a transfer of energy happens from u′2
n

φ
to u′2

τ

φ
. Perot and Moin (1995)

study turbulence in the presence of different boundary conditions (idealized permeable wall, idealized

free surface, solid wall) to highlight the effects of wall blocking and the role of splat events. According

to Perot and Moin (1995), intercomponent energy transfers are due to an imbalance between splat and

antisplat events. For Perot and Moin (1995), this imbalance is controlled by viscosity. According to

Walker et al. (1996), this imbalance is the consequence of both the blocking effect of the interface and

a return-to-isotropy phenomenon to reduce anisotropy due to the interface. In the case of an ideal free

surface, Perot and Moin (1995) show a local increase for u′2
τ

φ
and a decrease for u′2

n

φ
near the free surface.

In Fig. 16 and 17 the same mechanism is observed for t
Te

≤ 2. Therefore for early times, anisotropy

spreads around the interface on a thickness of δ and the energy transfer from turbulence to the interface

induces anisotropy in the vicinity of the interface.

At larger times ( t
Te

≥ 5), except for We = 2 and We = 0.2, both u′2
n

φ
and u′2

τ

φ
decrease near

the interface. The previous intercomponent energy transfer from u′2
n

φ
to u′2

τ

φ
due to the presence of

the interface is not observed any more. We = 2 appears to be a transitional case from the previous

conclusions. Large spherical blobs keep oscillating under surface tension forces without merging. In

this case, for larger times (
t

Te
≥ 5), the interface behaves like a generator for turbulence imposing local

increase for both u′2
n

φ
and u′2

τ

φ
near the interface (Fig. 16 and 17). For We = 0.2, at larger times (

t

Te
≥ 5),

a decrease of u′2
n

φ
is observed near the interface (

φ

δ
≤ 2) whereas the tangential Reynolds stresses u′2

τ

φ

increase. Looking back at Fig. 8 the sheet remains unbroken and is only disturbed by surface waves for

We = 0.2. The topological configuration of the sheet is similar to a free plane surface. In Perot and

Moin (1995) the study of turbulence interacting with an ideal free plane surface concludes with the local

increase of u′2
τ

φ
and decrease of u′2

n

φ
near the free surface. Therefore an analogy between the sheet and

an ideal free plane surface can be done in the case of small We numbers at large times.

In Fig. 18, vorticity intensity Ωφ is represented as a function of φ, the signed distance function. Ωφ(φ)

have to be understood as follows:

Ωφ(φ) =

√

||Ω||2
φ

(12)

where Ω = ∇∧ u. Ωφ is normalized by its value far from the interface. In all cases vorticity is generated

near the interface (
φ

δ
≤ 1). Vorticity is generated quickly and its spreading remains close to the interface

(in a zone from 0 to δ around the interface) even for large times. The magnitude of the vorticity peak

increases in time and is maximum for We = 2 which corresponds to the transitional case (see Fig. 8).

This vorticity peak is the result of the interface/turbulence interaction.

In this study, it was shown that the interface/turbulence interaction causes anisotropy in the vicinity

of the interface. This anisotropy has a universal behaviour for every We number at early stages when

an energy transfer from turbulence to the interface occurs. Normal Reynolds stresses decrease whereas

tangential ones increase. At larger times, less obvious conclusions about the behaviour of both normal and

tangential Reynolds stresses can be drawn. This local anisotropy will have to be taken into consideration

when developing LES models for subgrid scale terms deriving from the interface/turbulence interaction.

For such models, the isotropy hypothesis cannot be assumed anymore.

4.2.3. 3D energy spectra

In this section, a spectral analysis is carried out to identify the scales where the interface/turbulence

coupling appears. 3D energy spectra are plotted and results are summarized in Fig. 19. For five We
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numbers, energy spectra are compared with the reference case We = ∞. Comparisons are performed

for different
t

Te
(from 3 to 30). In the dimensionless wavenumber kη, the Kolmogorov length scale η

is the one of the single-phase configuration chosen at t/Te = 3 for every time. At early stages, when
t

Te
< 3, spectral behaviours for single- and two-phase cases are nearly the same. However, for later

times, clear differences can be observed. Energy contained at small turbulent scales (high wave numbers

kη > 0.2) is higher than for We = ∞ (single-phase case). Therefore the interface appears to be an energy

generator for the small scales of turbulence. This energy gain which is spectrally limited to the highest

wavenumbers is the result of an energy transfer. To quantify this energy redistribution, a kinetic energy

budget is carried out. To set notations, a diagram is drawn in Fig. 20 to summarize configurations

shown in Fig. 19. In Fig. 20 two 3D energy spectra are plotted. The first one corresponds to the

reference case (We = ∞) whereas the other one is drawn for (We < ∞). kmax is the maximum wave

number simulated, while kc(We) is the wave number at which the intersection between the two spectra

occurs. Wave number kc depends on We. The energy contained in the large scales of turbulence is given

by calculating I1 =

∫ kc

0

E(k) dk. The energy contained in the small ones is given by I2 =

∫ kmax

kc

E(k) dk.

The total T.K.E. is given by I3 =

∫ kmax

0

E(k) dk. Results are given in Tab. 2. In this table ǫ means

that the magnitude was too low to be considered as significant. Symbol ∅ means it was not possible to

determine a single value for kc and then to perform an accurate budget between small and large scales.

For every time and for every We < ∞, energy I1 is lower than for We = ∞ (single-phase). Therefore

the interface damps T.K.E. deriving from the larger scales (low wavenumbers). The damping is stronger

as the surface tension coefficient is higher (low We number). Concerning small turbulent scales, energy

I2 is higher for every We < ∞ than for We = ∞, indicating the interface plays a generator role for the

smallest turbulent scales. Therefore there is an energy transfer from the turbulent largest scales to the

smallest ones for We < ∞. Except for We = 2 at large times, I3 is lower for We < ∞ than for We = ∞.

So the damping of the largest scales is more important than the increase of the smallest ones resulting

in a global decrease of the T.K.E. due to surface tension forces. For We = 2 at large times, the global

increase of the T.K.E. has been previously explained. Referring back to Fig. 19 the energy transfer

from the largest to the smallest turbulent scales is all the more significant as
t

Te
is high. The transfer is

effective from
t

Te
> 3 at a time when the interface/turbulence interaction is significant. For

t

Te
∈ [0; 3]

the interface has no impact on the spectral distribution of the turbulent energy.

In the case of large We where the interface is finely grained at large times (t/Te ≥ 13), the droplet

size distribution is correlated with the local T.K.E. increase for the small scales. Back to Fig 9 and 10 for

We = 110 and We = 19, the wide majority of droplets have their diameters D such as D/∆x ≤ 30, which

corresponds to 0.23 ≤ kη|t/Te=3 . In Fig. 19, it can be seen that scales for which T.K.E. increases are

such as kη|t/Te=3 ≥ 0.2. Therefore, for the cases where the interface is finely grained (We = 110, 63 and

19), the energy transfer occurs at the typical scales given by the droplets where the interface/turbulence

energy transfers are predominant.

The energy transfer has to be taken into consideration in the development of future LES models. The

subgrid contribution of the interface/turbulence coupling is an increase of the T.K.E. budget deriving

from the smallest scales. A first step is the validation of existing LES models concerning the treatment

of the subgrid contribution of interface/turbulence coupling.

4.2.4. Distance to the interface and 2D energy spectra

The energy transfer from the large turbulent scales to the small ones has been previously established

for the whole computational domain. Now the distance to the interface is taken into account. To do that,

the computational box is divided into 10 planes which are parallel to the initial sheet. ez is the normal

unit vector to the 10 planes. Let α(z̃) be the density function of the phase φ < 0 at z = z̃. if α(z̃) = 0

then the plane z = z̃ is totally outside the sheet. If α(z̃) = 1 then the plane z = z̃ is totally inside the
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sheet. And if 0 < α(z̃) < 1 then the plane z = z̃ crosses the interface. In Fig. 21, α(z) is represented vs.

z/Lb for different We numbers and at
t

Te
= 13. The initial sheet (at t = 0) spreads from z = −0.025Lb

to z = +0.025Lb. In Fig. 21, the positions of the 10 planes are represented too. Because of obvious

symmetries only the planes 1 to 5 will be studied. Conclusions are similar for planes from 6 to 10. The

plane 1 is the farthest plane from the interface. The plane 5 is the nearest one. As can be seen in Fig.

21, whatever the Weber number is, the two first planes (planes 1 and 2) never cross the interface. The

planes 3 and 4 cross the interface for We = 110, 63 and 19. For We = 2, the only plane which crosses

the interface is the plane 5 and the other planes are all out of the sheet. For W = 0.2 none of the planes

crosses the interface. Because of a strong surface tension coefficient, the sheet has little deformations and

the interface is parallel to every planes.

In Fig. 22, 2D energy spectra are plotted for different We at
t

Te
= 13. Two dimensional spectra are

performed in planes 1 to 5. The closer to the interface spectra are performed, the higher the energy of

small scales is. The energy transfer from the larger turbulent scales to the smaller ones is stronger as one

moves towards the interface. For We = 110, 63 and 19, planes 4 and 5 are the planes where the energy

transfer is the strongest. For these We numbers, α = 0.1 for plane 4 and α = 0.16 for plane 5 (Fig. 21).

Therefore, in these two planes, both phases φ < 0 and φ > 0 are found and interactions are strong via the

interface. In Fig. 22, for We = 2, the energy transfer between large and small scales is significant only in

the plane 5. Once again, this is consistent with Fig. 21 where the plane 5 is the only plane which crosses

the interface. In Fig. 22, the same conclusions can be drawn for We = 0.2: none of the planes crosses the

interface and therefore the energy transfer between large and small scales is not observed. For We = 0.2,

even plane 5 is too far from the interface, and the interface/turbulence interaction is really restricted to

a thin area around φ = 0. Fig. 22 shows that the energy transfer from the large to the small scales is

spatially limited to the vicinity of the interface.

The spectral spreading of the energy transfer is now investigated. To do so, the ratio
E(k, We = 19, t)

E(k, We = ∞, t)
is performed for several wave numbers k and different times. We = 19 is chosen to carry out the study and

similar conclusions could be drawn for the other We numbers. In Fig. 23, for
t

Te
= 5,

E(k)We=19

E(k)We=∞
>> 1 for

high wave numbers (for kηk > 1.5) and only the smallest scales of turbulence get energy from the energy

transfer previously explained. For later times (
t

Te
= 13 and26),

E(k)We=19

E(k)We=∞
>> 1 for kηk > 1. Therefore

larger and larger scales get energy in the transfer from large to small turbulent scales indicating a spectral

spreading of the energy transfer.

5. Conclusion

This work aimed at providing a first contribution to the understanding of the coupling between

turbulence and capillary effects. A decaying H.I.T. flow was chosen to carry out this study. A first

step was to calibrate the H.I.T. flow to get relevant statistics about isotropy, length scales and turbulent

parameters. Then, an initially plane sheet was added in the computational domain and a parametric

study on the surface tension coefficient (Weber number) was carried out. For the first time, DNS results

have been obtained to point out anisotropic interaction between turbulence and an interface with wide

deformations. From a qualitative point of view, two types of turbulence/interface interactions have been

observed with a transitional case. For large We numbers, the interface is torn off under inertial forces.

The interface is finely grained and in this case, the energy transfer from turbulence to the interface is

used for the coalescence of small droplets into larger drops under surface tension forces. For large We

at early times, an increase of the tangential Reynolds stresses is observed near the interface whereas the

normal ones decrease. For later times, both normal and tangential Reynolds stresses decrease. An energy

transfer from the large scales to the small ones is noticed. This transfer is predominant in the vicinity of

the interface and driven by the scales of the small droplets. As We decreases, a transitional case has been

observed which is still grained. Drops are large enough to be independant from the other neighbouring

11



droplets. In this case, the interfacial energy initially involved by the turbulent flow is given back to the

fluid surrounding the interface and amplified by the surface tension forces. For lower We numbers, the

interface remains flat and oscillates under surface waves. The characteristic frequency of surface waves is

observed in the T.K.E. budget. For every We number, anisotropy and vorticity appear in the vicinity of

the interface resulting from the turbulence/interface interaction. For the development of LES two-phase

flow models, this work will continue recent works of Labourasse et al. (2007); Liovic and Lakehal (2007a);

Vincent et al. (2008) and will allow the development of subgrid scale models which will take into account

the coupling between surface tension forces and turbulence.
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ν u′ ǫ Lf λ ηk Te RLf
Rλ

0.003 1.0 0.911 0.279 0.222 1.312 × 10−2 0.278 93 74

Table 1: Parameters of the initial turbulence.
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t
Te

We I1 =
∫ kc

0
E(k) dk I2 =

∫ kmax

kc
E(k) dk I3 =

∫ kmax

0
E(k) dk I1

I3
I2
I3

3

∞ 6.03 10−3 1.00 10−5 6.04 10−3 0.998 0.002

110 5.96 10−3 1.00 10−5 5.97 10−3 0.998 0.002

63 5.91 10−3 1.00 10−5 5.92 10−3 0.998 0.002

19 5.72 10−3 6.00 10−5 5.78 10−3 0.990 0.01

2 5.66 10−3 6.00 10−5 5.72 10−3 0.990 0.01

6

∞ 1.75 10−3 ǫ 1.75 10−3 1 − ǫ ǫ

110 1.70 10−3 1.00 10−5 1.71 10−3 0.994 0.006

63 1.67 10−3 1.00 10−5 1.68 10−3 0.994 0.006

19 1.61 10−3 4.00 10−5 1.65 10−3 0.976 0.024

2 1.65 10−3 8.00 10−5 1.73 10−3 0.954 0.046

13

∞ 4.75 10−4 3.00 10−6 4.78 10−4 0.994 0.006

110 4.54 10−4 4.00 10−6 4.58 10−4 0.991 0.009

63 4.48 10−4 6.00 10−6 4.54 10−4 0.987 0.013

19 4.36 10−4 1.8 10−5 4.54 10−4 0.960 0.04

2 ∅ ∅ 5.13 10−4 ∅ ∅

20

∞ 2.29 10−4 2.00 10−6 2.31 10−4 0.991 0.009

110 2.17 10−4 3.00 10−6 2.20 10−4 0.986 0.014

63 2.14 10−4 5.00 10−6 2.19 10−4 0.977 0.023

19 2.11 10−4 1.10 10−5 2.22 10−4 0.95 0.05

2 ∅ ∅ 2.85 10−4 ∅ ∅

Table 2: Energy repartition between small and large scales of turbulence for different We numbers at different times.
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Figure 1: Time evolution of turbulent kinetic energy.
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Figure 2: Time evolution of turbulent kinetic energy dissipation rate.

0 5 10 15 20 25 30 35 40
t/Te

-2

-1

0

1

2

3

dε
/d

t
__

__
__

ε2 /q

C=-1.57

Figure 3: q − ǫ model for turbulence. Plot of the ratio
∂ǫ
∂t

ǫ2/q
.

16



t/Te

S F
0 5 10 15 20

-0.6

-0.55

-0.5

-0.45

-0.4

3.6

3.8

4

4.2

4.4

Skewness (S). DNS 512^3
Flatness (F). DNS 512^3

Figure 4: Skewness and flatness numbers vs. t/Te

17



0.1 1
kη(t/Te)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

E
(k

)

t/Te=10 (spectral 128
3
)

t/Te=10 (DNS 512
3
)

t/Te=20 (spectral 128
3
)

t/Te=20 (DNS 512
3
)

Figure 5: 3D energy spectra at two different t
Te

. Comparison between 1283 spectral code and 5123 DNS.
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Figure 6: Time evolution of turbulent length scales.
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Figure 7: Layer (or sheet) in a H.I.T. flow:initial configuration. Periodic boundary conditions are enforced in the three

directions. Fluid 1 is represented by φ > 0 and fluid 2 by φ < 0. At t = 0, the two fluids 1 and 2 are separated by two

planar interfaces φ = 0.
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Figure 8: Liquid sheet represented for four different initial We numbers and at three different times
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Figure 9: PDF of the number of droplets vs. the diameter D/∆x. ∆x is the spatial step. We = 110. •: t/Te = 5 ; �:

t/Te = 13 ; N: t/Te = 27. Up-right corner:zoom of the PDF at large D/∆x (≥ 50).

21



Figure 10: PDF of the number of droplets vs. the diameter D/∆x. ∆x is the spatial step. We = 19. •: t/Te = 5 ; �:

t/Te = 13 ; N: t/Te = 27. Up-right corner:zoom of the PDF at large D/∆x (≥ 50).
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Figure 11: PDF of the number of droplets vs. the diameter D/∆x. ∆x is the spatial step. We = 2. •: t/Te = 5 ; �:

t/Te = 13 ; N: t/Te = 27. Up-right corner:zoom of the PDF at large D/∆x (≥ 50).
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Figure 12: Geometric layer used for the computation of · φ(φ1). The interface between the two fluids is represented by the

iso-surface φ = 0.
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Figure 13: Energy budget. ◦, time rate-of-change (term I); △, viscous terms (term II); ⊲, transport (term III); ⊳, pressure

terms (term IV); �, dissipation (term V); ∗, interfacial term (term VI); solid line, sum of terms II-VI. See Eq. (9) for the

different terms. Every term is normalized by ǫ(t).
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Figure 14: Energy budget far from the interface. We = 110. ◦, time rate-of-change (term I); △, viscous terms (term II); ⊲,

transport (term III); ⊳, pressure terms (term IV); �, dissipation (term V); ∗, interfacial term (term VI); solid line, sum of

terms II-VI. See Eq. (9) for the different terms. Every term is normalized by ǫ(t).
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Figure 15: Time evolution of turbulent kinetic energy (TKE) for different We. q∞ is TKE for We = ∞
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Figure 16: Normal Reynolds stresses vs. φ for different We at different t
Te
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Figure 17: Tangential Reynolds stresses vs. φ for different We at different t
Te
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Figure 18: Vorticity vs. φ for different We at different t
Te
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Figure 19: 3D energy spectra. Solid line: We = ∞. Dashed line: We < ∞. Black: t
Te

= 3. Red: t
Te

= 6. Blue: t
Te

= 13.

Green: t
Te

= 20. Orange: t
Te

= 30. 5123 grid. η is the Kolmogorov length scale at t/Te = 3.
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Figure 20: Synthesis scheme of the configurations in Fig. 19.
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Figure 21: α(z) vs. z/ Lb. Lb is the box size. t
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= 13
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Figure 22: 2D energy spectra. Planar splitting. t
Te

= 13
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