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ABSTRACT
In the present paper, we are concerned with a fractional wave equation of
Sturm–Liouville type in a general star graph. We first give several existence, unique-
ness and regularity results of weak solutions for the one-dimensional case using the
spectral theory; we prove the existence and uniqueness of solutions to a quadratic
boundary optimal control problem and provide a characterization of the optimal
control via the Euler–Lagrange first order optimality conditions. We then investi-
gate the analogous problems for a fractional Sturm–Liouville problem in a general
star graph with mixed Dirichlet and Neumann boundary conditions and controls
of the velocity. We show the existence and uniqueness of minimizers, and by using
the first order optimality conditions with the Lagrange multipliers, we are able to
characterize the optimal controls.
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1. Introduction and position of the problem

Classical Sturm–Liouville theory is the theory of real second-order linear ordinary
differential equations of the form:

(βy′)′ + qy = λωy

where y is the unknown physical quantity, β, q, ω are suitable functions, λ is a pa-
rameter and the function ω is called the weight function. With appropriate boundary
conditions, λ and y appear as eigenvalue and eigenfunction, respectively, of the adjoint
operator. There is an exhaustive literature corresponding to this type of equations: we
refer for instance to [2] and the references therein.

The last fourth decades, Many researchers have focused their attention on frac-
tional Sturm–Liouville problems which are obtained by replacing the ordinary deriva-
tives with fractional derivatives, and this follows from the fact that many phenomena
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which occur in various fields in science as well as in engineering can be more accu-
rately described by means of fractional order derivatives. For example, in [23], the
orthogonality of solutions to fractional Sturm-Liouville eigen-problems involving a
left-sided Riemann-Liouville fractional derivative and a right-sided Caputo fractional
derivative of the same order was proved. Using variational approach, the existence of
a countable set of orthogonal solutions and eigenvalues to a fractional Sturm-Liouville
eigen-problem involving left-sided and right-sided Caputo fractional derivative of the
same order was established. [38] studied a fractional Sturm-Liouville eigen-problem in-
volving a left-sided Caputo fractional derivative and a right-sided Riemann-Liouville
fractional derivative of the same order; They proved that analytical solutions are non
polynomial functions which are orthogonal with respect to the weighted function as-
sociated to the problem.

Over the past fifty years, hyperbolic partial differential equations have been studied
extensively [12,20,21]. In [21] for instance, the authors deal with a wave equation
with damping in which one of the boundary conditions is of a dynamic nature; they
consider damping effect of Kelvin-Voigt type in both the partial differential equation
and the dynamic boundary condition, studying the problem within the framework of B-
evolutions theories and fractional powers, they proved the existence of a strong unique
solution. In [32], the authors study the motion of a one-dimensional continuum whose
deformation is described by a strain measure of nonlocal type; They use the Caputo
fractional derivatives and a linear relation between stress and strain measure to obtain
an integro-differential equation of motion which is solved in the space of tempered
distributions by using the Fourier and Laplace transforms. In complex or viscoelastic
media [31], the time fractional derivative used to describe the wave equation for a
vibrating string is taken in the Caputo sense; the solution is obtained in terms of the
Mittag-Leffler type functions and complete set of eigenfunctions of the Sturm–Liouville
problem by using the method of separation of variables and the Laplace transform
method. A fractional generalization of the wave equation that describes propagation
of damped waves is considered in [33]; In contrast to the fractional diffusion-wave
equation, the fractional wave equation contains fractional derivatives of the same order
α, 1 ≤ α ≤ 2, both in space and in time; the authors show that this feature is a decisive
factor for inheriting some crucial characteristics of the wave equation like a constant
propagation velocity, its gravity and mass centers. The fundamental solution of the
fractional wave equation is determined and shown to be a spatial probability density
function evolving in time, all whose moments of order less than α are finite.

A lot has been achieved in the area of optimal control of evolution equations:
Agrawal detained the first record of the formulation of the fractional optimal con-
trol problem. He presented in [13] a general formulation and proposed a numerical
method to solve such problems. In his work, the fractional derivative was defined in
the Riemann–Liouville sense, and the formulation was obtained through the fractional
variation principle and the Lagrange multiplier technique. J. Lions in [41] has studied
several optimal control of system governed by hyperbolic equations. The author in
[35] applied the classical control theory to a fractional diffusion equation involving a
Riemann–Liouville fractional derivative in a bounded domain by interpreting the Eu-
ler–Lagrange first-order optimality condition with an adjoint problem defined through
a right fractional Caputo derivative. The author obtained an optimality system for
the optimal control. Control problems governed by a linear wave equation are ana-
lyzed in [34]; the space of vector measures M(Ωc, L

2(I)) is chosen as control space
and the support of the controls is time-independent which is desired in many applica-
tions, regularity results for the linear wave equation are proven and used to show the
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well-posedness of the control problem. Deriving first order optimality conditions, they
elaborate structural properties of the optimal control and finally the optimal control
problem is used to solve an inverse source problem.

In this paper, we are interested in solving the following fractional optimal control
problem on a star graph:

min
v∈Uad

n∑
i=1

(
1

2

∫ bi

a

∣∣∣yi(T )− z0,id

∣∣∣2 dx+
1

2

∫ bi

a

∣∣∣yit(T )− z1,id

∣∣∣2 dx+
N

2

∫ bi

a
|vi|2 dx

)
,

(1.1)

where z0d = (z0,id )i ∈ V, z1d = (z1,id )i ∈ L2, Uad is a closed and convex subset of L2, and
y = (yi)i satisfies the following wave equation involving a fractional Sturm-Liouville
operator on a star graph:



yitt +Dα
b−i
(βiDα

a+yi) + qiyi = f i, in (a, bi)× (0, T ), i = 1, . . . , n,

I1−α
a+ yi(a+, ·) = I1−α

a+ yj(a+, ·) in (0, T ), i ̸= j = 1, . . . , n,
n∑

i=1

βi(a)Dα
a+yi(a+, ·) = 0, in (0, T ),

I1−α
a+ y1(b−1 , ·) = 0, in (0, T ),

I1−α
a+ yi(b−i , ·) = hi, in (0, T ), i = 2, . . . ,m,

βi(bi)Dα
a+yi(b−i , ·) = gi, in (0, T ), i = m+ 1, . . . , n,

yi(·, 0) = y0,i, in (a, bi), i = 1, . . . , n,

yit(·, 0) = vi, in (a, bi), i = 1, . . . , n.

(1.2)
Here, T > 0, yitt denotes the second order derivative with respect to the time of yi, the
operators Dα

a+ , Dα
b−i
, i = 1, . . . , n, and Iαa+ (0 < α < 1) are respectively Left Riemann-

Liouville fractional derivative of order α, the right Caputo fractional derivative of order
α and the left Riemann-Liouville integral of order α, we refer to Section 2 for the precise
definitions. The real valued functions βi ∈ C1([a, bi]), q

i ∈ C([a, bi]), i = 1, . . . , n,
satisfy suitable conditions, f i belongs to L2((0, T )× L2(a, bi)), gi, hi ∈ H2(0, T ), i =
1, . . . , n the controls vi,∈ L2(a, bi), i = 1, . . . n. The setting should, therefore, indicate
that we are looking at a star graph, rooted at b−1 , where we have a fixed Dirichlet-type
boundary condition and controls via initial velocity. After deriving some well-posedness
results (existence and uniqueness of weak solutions) of the system (1.2) in the general
star graph, we show the existence and uniqueness of minimizers to the optimal control
problem (1.1)-(1.2), and give the associated optimality conditions by using the method
of Lagrange multipliers.
In order to study the general star graph, we shall first of all restraint our equation to
the one dimensional optimal control problem given below:

min
v∈Uad

(
1

2

∫ b

a

∣∣y(T )− z0d
∣∣2 dx+

1

2

∫ b

a

∣∣yt(T )− z1d
∣∣2 dx+

N

2

∫ b

a
|v|2 dx

)
, (1.3)

where z0d ∈ D(E), z1d ∈ L2(a, b), N > 0, Uad is a closed and convex subset of L2(a, b),
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and y = y(v) satisfies the following fractional Sturm–Liouville wave equation:
ytt +Dα

b− (β Dα
a+)(y) + q y = f in (a, b)× (0, T ),

(I1−α
a+ y)(a+, ·) = 0 in (0, T ),

(βDα
a+y)(b−, ·) = g in (0, T ),

y(·, 0) = y0 in (a, b),
yt(·, 0) = v in (a, b).

(1.4)

Where the real valued functions β ∈ C1([a, b]), q ∈ C([a, b]) satisfy suitable conditions,
f ∈ L2(Q), g ∈ H2(0, T ), y0 ∈ D(A) (see Remark 2.19) and the control v ∈ L2(a, b).
After proving existence, uniqueness and regularity results of the state equation (1.4)
and the associated dual system, we show the existence and uniqueness of minimizers
of the optimal control problem (1.3)-(1.4), and characterize the associated first or-
der optimality conditions by using the classical Euler-Lagrange first order optimality
conditions.

The rest of the paper is structured as follows. In Section 2, we give some preliminary
results that will be used in the proof of our main results. In Section 3, we show first
that the homogeneous and non-homogeneous fractional Sturm-Liouville equations on a
single edge have unique weak solutions using the spectral theory. These results are con-
tained in Theorems 3.2 and 3.9, respectively. The regularity of solutions has been also
investigated. We conclude this section by proving that the quadratic optimal control
problem associated to the evolution equation involving a fractional Sturm-Liouville on
one edge has a unique optimal control, and we give the associated optimality system
that characterizes this control (see Theorem 3.11). The same investigation is done for
the wave equation involving a fractional Sturm-Liouville on the graph in Section 4.
We study the existence and regularity of the weak solution. The mains results of this
section are contained in Theorems 4.6, 4.9, 4.10 and 4.11.

Figure 1. A star graph with n edges

2. Preliminaries

In this section, we introduce some notations, give the function spaces needed to study
our problems, recall some known results, and prove some intermediate results that
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are needed in the proofs of our main results. We start with fractional integrals and
derivatives.

Definition 2.1. [6,9] Let z a complex such thatRe(z) > 0. Then the Gamma function,
noted Γ, is given by

Γ(z) =

∫ ∞

0
tz−1e−tdt.

Definition 2.2. [6,9] Let x and y be two complexes such that Re(x) > 0 and Re(y) >
0. The Beta function is given by

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt.

Definition 2.3. [4] The left, and right Riemann–Liouville fractional integrals of order
α ∈ (0, 1) of f are defined, respectively, by:

(Iαa+f)(x) =
1

Γ(α)

∫ x

a
(x− t)α−1f(t), (x > a)

(Iαb−f)(x) =
1

Γ(α)

∫ b

x
(t− x)α−1f(t)dt, (x < b),

provided that the integrals exist.

Lemma 2.4. [5] Let 0 < α < 1, 1 < p < 1/α, q = p/(1− αp). Then, there is a
constant C = C(α, p, q, a, b) > 0 such that for any ρ ∈ Lp(a, b), we have

∥Iαa+ρ∥Lq(a,b) ≤C ∥ρ∥Lp(a,b) ,

∥Iαb−ρ∥Lq(a,b) ≤C ∥ρ∥Lp(a,b) .

Remark 2.5. Since the continuous embedding L2(a, b) ↪→ Lp(a, b) holds for every
1 ≤ p ≤ 2, it follows from Lemma 2.4 that for every 0 < α < 1 there is a constant
C > 0 such that for every ρ ∈ L2(a, b),

∥Iαa+ρ∥L2(a,b) ≤ C∥ρ∥L2(a,b). (2.1)

Definition 2.6. [4] The left, and right Riemann–Liouville fractional derivatives of
order α ∈ (0, 1) of f are defined, respectively, by:

(Dα
a+f)(x) = D(I1−α

a+ f)(x) =
1

Γ(1− α)

d

dx

∫ x

a
(x− t)−αf(t)dt, (x > a)

(Dα
b−f)(x) = −D(I1−α

b− f)(x) =
−1

Γ(1− α)

d

dx

∫ b

x
(t− x)−αf(t)dt, (x < b),

(2.2)
provided that the integrals exist.
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Definition 2.7. [1] The left, and right-sided Caputo fractional derivative of order
α ∈ (0, 1) of f are defined respectively, by:

(Dα
a+f)(x) = (I1−α

a+ Df)(x) =
1

Γ(1− α)

∫ x

a
(x− t)−αf ′(t)dt, (x > a)

(Dα
b−f)(x) = −(I1−α

b− Df)(x) =
−1

Γ(1− α)

∫ b

x
(t− x)−αf ′(t)dt (x < b)

(2.3)

provided that the integrals exist.

Noticing that the Caputo fractional derivative is too demanding, its existence re-
quires the function f to be absolutely continuous on [a, b] which is equivalent to
f ∈ W 1,1(a, b). We refer to the monograph [5] for the precise conditions on f for
which the integrals in (2.3) exist.

Definition 2.8. [40][Laplace Transform] Let f : R+ → R, the Laplace transform of
the function f is defined by

(Lf)(s) = L[f(t)](s) = f̂(s) :=

∫ ∞

0
e−tsf(t)dt s ∈ C.

Thus, the inverse Laplace transform of L−1[f̂(s)](t) = f(t).

We have the following observations that will be useful for the existence results.

Remark 2.9. In view of the Definition 2.8, we have the following results.

(1) If f : R+ → R is such that its second derivative f ′′ exists, then

L[f ′′(t)](s) = s2f̂(s)− s lim
t→0

f(t)− lim
t→0

f ′(t) s ∈ C. (2.4)

(2) Let s, t > 0 and w ∈ R. Then inverse Laplace transform of the real functions

s 7→ w

s2 + w2
and s 7→ s

s2 + w2
are

L−1

(
w

s2 + w2

)
= sin(wt). (2.5)

and

L−1

(
s

s2 + w2

)
= cos(wt). (2.6)

respectively.
(3) Let s, t > 0, and g, f : R+ → R. Then the inverse Laplace transform of f̂ × ĝ is

given by

L−1
(
f̂(s)× ĝ(s)

)
= (f ⋆ g)(t), (2.7)

where ⋆ denotes the convolution product.

We recall the Leibniz Integral Rule.

6



Lemma 2.10. [8][Leibniz Integral Rule], let a, b be two differentiable real functions
such that −∞ < a(x), b(x) < +∞, then

d

dx

(∫ b(x)

a(x)
f(x, t) dt

)
= b′(x)f(x, b(x))− a′(x)f(x, a(x)) +

∫ b(x)

a(x)

∂

∂x
f(x, t) dt (2.8)

provided that the integral is differentiable.

We have the following results; for the proof, we refer to the references [5,6]. Let
c0, d0 ∈ R. Let f : [a, b] → R have the representation

f(x) =
c0

Γ(α)
(x− a)α−1 + Iαa+φ(x) for a.e. x ∈ [a, b], (2.9)

and let also g : [a, b] → R have the representation

g(x) =
d0

Γ(α)
(b− x)α−1 + Iαb−ψ(x) ; for a.e. ∈ [a, b], (2.10)

where φ and ψ belong to L2(a, b). From now on, we denote by ACα,2
a+ and ACα,2

b− the
spaces of all functions f and g having the representations (2.9) and (2.10), respectively,
with φ,ψ ∈ L2(a, b).

Remark 2.11. We have the following:

Dα
a+f ∈ L2(a, b) ⇐⇒ f ∈ ACα,2

a+ , (2.11a)

Dα
b−f ∈ L2(a, b) ⇐⇒ f ∈ ACα,2

b− . (2.11b)

For more details on these spaces, and the proof of (2.11a)-(2.11b), we refer to [10].
We set

Hα
a+(a, b) =AC

α,2
a+ ∩ L2(a, b), (2.12a)

Hα
b−(a, b) =AC

α,2
b− ∩ L2(a, b). (2.12b)

It follows from the definitions of ACα,2
a+ and ACα,2

b− that,

ρ ∈ Hα
a+(a, b) ⇔ ρ ∈ L2(a, b) and Dα

a+ρ ∈ L2(a, b), (2.13a)

ρ ∈ Hα
b−(a, b) ⇔ ρ ∈ L2(a, b) and Dα

b−ρ ∈ L2(a, b). (2.13b)

For any 0 < α < 1, we endow Hα
a+(a, b) with the inner product:

(φ,ψ)Hα
a+ (a,b) =

∫ b

a
φψdx+

∫ b

a
Dα
a+φDα

a+ψdx. (2.14)

Then, Hα
a+(a, b) endowed with the norm

∥φ∥2Hα
a+ (a,b) = ∥φ∥2L2(a,b) + ∥Dα

a+φ∥2L2(a,b) , (2.15)
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is a Hilbert space (see e.g. [10]). Moreover, the norm on Hα
a+(a, b) given by (2.15) is

equivalent to the norm given by

|∥φ∥|2Hα
a+ (a,b) =

∣∣I1−α
a+ φ(a+, ·)

∣∣2 + ∥Dα
a+φ∥2L2(a,b) . (2.16)

In other words, there are two constants 0 < C1 ≤ C2 such that

C1 |∥φ∥|Hα
a+ (a,b) ≤ ∥φ∥Hα

a+ (a,b) ≤ C2 |∥φ∥|Hα
a+ (a,b) ∀φ ∈ Hα

a+(a, b). (2.17)

Lemma 2.12. [10, corollary 32] Let 1/2 < α < 1 . Then, the following continuous
embedding is compact

Hα
a+(a, b) ↪→ L2(a, b). (2.18)

In order to assure the well posedness of the boundary value problems considered in
this paper, we introduce the space V defined as follows:

V =
{
y ∈ Hα

a+(a, b) : Dα
b−(βD

α
a+y) ∈ H1−α

b− (a, b)
}
, (2.19)

with H1−α
b− (a, b) defined as in (2.12b). Then, V is a closed subspace of Hα

a+(a, b). The
space V defined in (2.19) endowed with the norm

∥y∥V :=
(
∥y∥2Hα

a+ (a,b) + ∥Dα
b−(βD

α
a+y)∥2H1−α

b−
(a,b)

)1/2
=
(
∥y∥2Hα

a+ (a,b) + ∥I1−α
b− (βDα

a+y)′)∥2L2(a,b) + ∥(βDα
a+ρ)′∥2L2(a,b)

)1/2
, (2.20)

and the associated scalar product

(ϕ, ψ)V :=

∫ b

a
ϕψ dx+

∫ b

a
Dα
a+ϕDα

a+ψ dx+

∫ b

a
I1−α
b− (βDα

a+ϕ)′I1−α
b− (βDα

a+ψ)′ dx

+

∫ b

a
(βDα

a+ϕ)′(βDα
a+ψ)′ dx, (2.21)

is a Hilbert space [39].
The following trace results are useful for some calculations in the upcoming sections.

Lemma 2.13. Let 1/2 < α < 1, γ = 1 − α, β ∈ C1([a, b]) and T > 0; for every
x0 ∈ [a, b], the followings assertions holds:

(1) Let ρ ∈ L2((0, T );Hα
a+(a, b)). Then the function I1−α

a+ ρ(x0, ·) exists and belong to
L2(0, T ). Moreover, there is a constant C = C(a, b) > 0 such that

∥I1−α
a+ (ρ)(x0, ·)∥2L2(0,T ) ≤ C∥ρ∥2L2((0,T );Hα

a+ (a,b)). (2.22)

(2) Let ρ ∈ L2((0, T );V). Then, the function Dα
a+ρ(xo, ·) exists and belongs to

L2(0, T ). Moreover there is a constant C = C(a, b, α) > 0 such that

∥Dα
a+ρ(xo, ·)∥L2(0,T ) ≤ C∥ρ∥L2((0,T );V). (2.23)
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Proof. We proceed exactly as for the proof of Lemma 2.3 in [29].

Remark 2.14. Notice that if ρ ∈ L2((0, T );V), then from Lemma 2.13 we have that
the traces I1−α

a+ ρ(a+, ·), I1−α
a+ ρ(b−, ·), βDα

a+ρ(a+, ·) and βDα
a+ρ(b−, ·), exist, and belong

to L2(0, T ).

Next, we introduce the following integration by parts formulas.

Lemma 2.15. [13,14] Let β ∈ C([a, b]). Let also y, ϕ : [a, b] → R be such that y, ϕ ∈ V.
Then∫ b

a
Dα

b−(βD
α
a+y)(s)ϕ(s)ds =−

[
(βDα

a+y)(s)I1−α
a+ (ϕ)(s)

]s=b

s=a
+
[
I1−α
a+ (y)(s)β(s)Dα

a+(ϕ)(s)
]s=b

s=a

+

∫ b

a
y(s)Dα

b−(βD
α
a+(ϕ))(s)ds. (2.24)

Assumption 2.16. We assume that the functions β ∈ C1([a, b]) and q ∈ C([a, b])
are such that ∥β∥∞ := max

x∈[a,b]
|β(x)| ≥ β0 and ∥q∥∞ := max

x∈(a,b)
|q(x)| ≥ q0, for some

β0 > 0, q0 > 0.

Lemma 2.17. Let 0 < α < 1, and β, q satisfy Assumption 2.16, we define the space
D(E) as

D(E) = {ϕ ∈ Hα
a+(a, b) : I1−α

a+ ϕ(a+, ·) = 0}.

D(E) is a closed subspace of Hα
a+(a, b), and the bilinear form E(·, ·) defined on D(E)×

D(E) by:

E(ϕ, φ) =
∫ b

a
β(x)Dα

a+ϕ(x)Dα
a+φ(x) dx+

∫ b

a
q(x)ϕ(x)φ(x) dx,

is continuous and coercive on D(E)×D(E).

Proof. We proceed as in [29], using on D(E) the norm induced by that on Hα
a+(a, b)

given by (2.15).

Remark 2.18. Note that D(E) endowed with the norm

∥ϕ∥D(E) = (E(ϕ, ϕ))1/2 , ∀ϕ ∈ D(E) (2.25)

is a Hilbert space.

Remark 2.19. Let A be the self-adjoint operator in L2(a, b) associated with the form
E(·, ·) in the sense that{

D(A) =
{
u ∈ D(E) : Dα

b−(βD
α
a+u) ∈ L2(a, b) : (I1−α

a+ u)(a) = (βDα
a+u)(b) = 0

}
Au = Dα

b−(βD
α
a+u) + qu.

(2.26)
and

(Au, v)L2(Ω) = E(u, v) ∀u, v ∈ D(A). (2.27)
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It follows from the embedding (2.18) that for 1/2 < α < 1, the operator A has a com-
pact resolvent. Let (λn)n be the eigenvalues of A with associated eigenfunctions (φn).
Considering Assumption 2.16, It follows from the coercivity and the nonnegativity of
E(·, ·) that

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · with lim
n→∞

λn = +∞.

Moreover, as we can assume without lost of generality that the eigenfunctions (φn)
∞
n=1

is an orthonormal basis of L2(Ω), we have that
(

φn√
λn

)∞
n=1

is also an orthonormal basis

of D(A) for the scalar product E . Hence, we obtain that

∥ϕ∥2D(A) = ∥ϕ∥2D(E) = E(ϕ, ϕ) =
∞∑
n=1

λn(ϕ, φn)
2
L2(Ω) ∀ϕ ∈ D(A). (2.28)

3. Boundary optimal control problems on a single edge

In this section, we consider the following initial-boundary value fractional
Sturm–Liouville parabolic equation:

ytt +Dα
b− (β Dα

a+y) + q y = f in Q = (a, b)× (0, T ),
(I1−α

a+ y)(a+, ·) = 0 in (0, T ),
(βDα

a+y)(b−, ·) = g in (0, T ),
y(·, 0) = y0 in (a, b),
yt(·, 0) = v in (a, b),

(3.1)

where f ∈ L2((0, T );D(E)⋆) and y0 ∈ D(A), g ∈ L2(0, T ) and v ∈ L2(a, b). The
function β and q satisfy Assumption 2.16.

We are concerned with the following optimal control problem:

min
v∈Uad

J(v), (3.2)

where the functional J is given by

J(v) :=
1

2

∥∥y(T )− z0d
∥∥2
L2(a,b)

+
1

2

∥∥yt(T )− z1d
∥∥2
L2(a,b)

+
N

2
∥v∥2L2(0,T ) . (3.3)

Here, z0d ∈ D(E), z1d ∈ L2(a, b), N > 0, Uad is a closed and convex subspace of L2(a, b)
and y = y(v) satisfies (3.1).

Before going further, we need some existence results.
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3.1. Homogeneous fractional Sturm–Liouville parabolic equations in a
single edge

Let us consider the following homogeneous fractional Sturm–Liouville parabolic equa-
tions: 

ytt +Dα
b− (β Dα

a+y) + q y = f in Q,
(I1−α

a+ y)(a+, ·) = 0 in (0, T ),
(βDα

a+y)(b−, ·) = 0 in (0, T ),
y(·, 0) = y0 in (a, b),
yt(·, 0) = v in (a, b),

(3.4)

where 1/2 < α < 1, f ∈ L2((0, T );D(E)⋆) and y0 ∈ D(A) and v ∈ L2(a, b). The
function β and q satisfy Assumption 2.16.

From the characterization (2.26) of the operator A, the Cauchy problem (3.4) can
be rewritten as the following abstract Cauchy problem: ytt +Ay = f in Q,

y(·, 0) = y0 in (a, b),
yt(·, 0) = v in (a, b).

(3.5)

Next, we give our notion of solutions to the system (3.4), hence to the problem (3.5).

Definition 3.1. Let f ∈ L2((0, T );D(E)⋆), y0 ∈ D(A), v ∈ L2(a, b). A function y is
said to be a weak solution of (3.4) in (0, T ), T > 0, if the following assertions hold.

• Regularity: y ∈ C([0, T ], D(A)) ∩ C1([0, T ];L2(a, b)).

• Initial condition:
y(·, 0) = y0 in (a, b),
yt(·, 0) = v in (a, b).

• Variational identity: ⟨∂
2y

∂t2
, φ⟩D(E)⋆,D(E) + E(y(t, ·), φ) = ⟨f(t, ·), φ)D(E)⋆,D(E), for

every φ ∈ D(A), and a.e. t ∈ (0, T ).

We have the following existence result.

Theorem 3.2. Let 1/2 < α < 1. Assume that Assumption 2.16 holds. Then
for every f ∈ L2((0, T );D(E)⋆), y0 ∈ D(A) and v ∈ L2(a, b), the system (3.4)
(Hence, the Cauchy problem (3.5)) has a unique weak solution y ∈ C([0, T ], D(A)) ∩
C1([0, T ], L2(a, b)) given by

y(t, ·) =
∞∑
n=1

{
1√
λn

⟨v, φn⟩L2(a,b) sin(
√
λnt) + ⟨y0, φn⟩L2(a,b) cos(

√
λnt)

+
1√
λn

∫ t

0
sin(

√
λn(t− s))⟨f(s), φn⟩D(E)⋆,D(E) ds

}
φn. (3.6)

Moreover, there exists C1 > 0 and C2 > 0 such that,

∥y∥C([0,T ];D(E)) ≤C1

(
∥v∥L2(a,b) +

∥∥y0∥∥
D(E) + ∥f∥L2(Q)

)
, (3.7a)∥∥y′∥∥

C([0,T ],L2(a,b))
≤C2

(
∥v∥L2(a,b) +

∥∥y0∥∥
D(E) + ∥f∥L2(Q)

)
. (3.7b)

11



Proof. Let φn ∈ D(A) be the sequence of eigenfunctions defined in Remark 2.19.
Then, from the abstract Cauchy problem (3.5) and (2.27), we have that

∂2

∂t2
(y(t), φn)L2(Ω) + E(y(t), φn) = ⟨f(t), φn⟩D(E)⋆,D(E) for t ∈ (0, T ),

(y(0), φn)L2(Ω) = (y0, φn)L2(Ω),
∂t(y(0), φn)L2(Ω) = (v, φn)L2(Ω),

(3.8)

which can be rewritten as
∂2

∂t2
yn(t) + λnyn(t) = fn(t) for t ∈ (0, T ),

yn(0) = y0n,
y′n(0) = vn,

(3.9)

where yn(t) = (y(t), φn)L2(Ω), fn(t) = ⟨f(t), φn⟩D(E)⋆,D(E), y
0
n = (y0, φn)L2(Ω), and

vn = (v, φn)L2(Ω).

Remark 3.3. Note that f and y0 being respectively in L2(Q) and D(A), we have

∥y0∥2D(E) =

∞∑
n=1

λn|y0n|2 and ∥f∥2L2((0,T );D(E) =

∫ T

0
|fn(t)|2dt.

If we take the Laplace transform (3.9)1 and use (2.4), we have that

ŷn(s) =
vn

s2 + λn
+

sy0n
s2 + λn

+
f̂n(s)

s2 + λn
.

Therefore, if we take the inverse Laplace transform of this latter identity while using
(2.5)-(2.7), we obtain that

yn(t) =
vn√
λn

sin(
√
λnt) + y0n cos(

√
λnt) +

1√
λn

∫ t

0
sin(

√
λn(t− s))fn(s) ds. (3.10)

In other to prove that the series

y(t) =

∞∑
n=1

yn(t)φn =

∞∑
n=1

{
vn√
λn

sin(
√
λnt) + y0n cos(

√
λnt) +

1√
λn

∫ t

0
sin(

√
λn(t− s))fn(s) ds

}
φn

(3.11)
converges, we proceed in several steps.
Step 1. We approached problem (3.8).

Let Vm be the subspace of D(A) generated by φ1, · · · , φm, we set y0m =

m∑
n=1

y0nφn

and vm =

m∑
n=1

vnφn, we consider the following approached problem:
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find ym(t) =

m∑
n=1

ynφn ∈ Vm solution of


∂2

∂t2
(ym(t), φk)L2(Ω) + E(ym(t), φk) = ⟨f(t), φk⟩D(E)⋆,D(E) for t ∈ (0, T ), 1 ≤ k ≤ m,

(ym(0), φk)L2(Ω) = (y0m, φk)L2(Ω), 1 ≤ k ≤ m,
∂t(ym(0), φk)L2(Ω) = (vm, φk)L2(Ω), 1 ≤ k ≤ m.

(3.12)

Using the fact that {φk}∞k=1 is an orthonormal basis of L2(Ω) and
{

φk√
λk

}∞

k=1
is an

orthonormal basis of D(A), we obtain from (3.12) that yn is solution of (3.9) for
1 ≤ n ≤ m. It then follows from (3.10) that ym is given by

ym(t) =

m∑
n=1

{
vn√
λn

sin(
√
λnt) + y0n cos(

√
λnt) +

1√
λn

∫ t

0
sin(

√
λn(t− s))fn(s) ds

}
φn.

(3.13)
Step 2. We show that (ym) and (y′m) are Cauchy sequences respectively in
C([0, T ];D(A)) and C([0, T ];L2(a, b)).

Let m and p be two entire numbers such that 1 ≤ m ≤ p. Then we have,

yp(t)− ym(t) =

p∑
i=m+1

yi(t)φi, ∀ t ∈ [0, T ].

Therefore, E(yp(t)− ym(t), yp(t)− ym(t)) =

p∑
i=m+1

λi |yi(t)|2

≤ 2

p∑
i=m+1

λi

(
vi√
λi

sin(
√
λit) + y0i cos(

√
λit)

)2

+2

p∑
i=m+1

(∫ t

0
sin(

√
λi(t− s))fi(s) ds

)2

,

which applying Cauchy-Schwarz inequality gives

E(yp(t)− ym(t), yp(t)− ym(t)) ≤ 2

p∑
i=m+1

λi

(
|vi|2

λi
+
∣∣y0i ∣∣2

)

+2

p∑
i=m+1

(∫ t

0
sin2(

√
λi(t− s)) ds

)(∫ t

0
|fi(s)|2 ds

)
≤ 2

p∑
i=m+1

(
|vi|2 + λi

∣∣y0i ∣∣2)+ 2t

p∑
i=m+1

(∫ t

0
|fi(s)|2 ds

)
.
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Hence, ∥yp − ym∥2C([0,T ];D(E)) = sup
t∈[0,T ]

|E(yp(t)− ym(t), yp(t)− ym(t))|

≤ 2

p∑
i=m+1

(
|vi|2 + λi

∣∣y0i ∣∣2)+ 2T

p∑
i=m+1

(∫ T

0
|fi(s)|2 ds

)
.

(3.14)
On the other hand, using Lemma 2.10 we have

y′p(t)− y′m(t) =

p∑
i=m+1

{
vi cos(

√
λit)−

√
λiy

0
i sin(

√
λit) +

∫ t

0
cos(

√
λi(t− s))fi(s) ds

}
φi.

Thus,
∥∥y′p(t)− y′m(t)

∥∥2
L2(a,b)

≤ 2

p∑
i=m+1

(
vi cos(

√
λit)−

√
λiy

0
i sin(

√
λit)

)2
+2

p∑
i=m+1

(∫ t

0
cos(

√
λi(t− s))fi(s) ds

)2

.

Applying again Cauchy-Schwarz and Young inequalities, we obtain that

∥∥y′p − y′m
∥∥2
C([0,T ],L2(a,b))

≤ 2

p∑
i=m+1

(
|vi|2 + λi

∣∣y0i ∣∣2)+ 2T

p∑
i=m+1

∫ T

0
|fi(s)|2 ds. (3.15)

It follows from (3.14), (3.15) and Remark 3.3 that, (ym) and (y′m) are Cauchy se-
quences respectively in C([0, T ];D(A)) and C([0, T ];L2(a, b)) thus there exists y ∈
C([0, T ];D(A)) ∩ C1([0, T ];L2(a, b)) such that

ym → y in C([0, T ];D(A)) and y′m → y′ in C([0, T ];L2(a, b)). (3.16)

Remark 3.4. Since (ym) and (y′m) are Cauchy sequences respectively in
C([0, T ];D(A)) and C([0, T ], L2(a, b)), we have that they are bounded in C([0, T ];D(A))
and C([0, T ], L2(a, b)) respectively. Therefore, (0, T ) being bounded, we have that (ym)
and (y′m) are bounded in L2((0, T );D(A)) and L2(Q) and we can write:

ym → y weakly in L2((0, T );D(A)), (3.17a)

y′m →y′ weakly in L2(Q). (3.17b)

Step 3. We prove that y is solution of (3.5)(or equivalently (3.4).
Let C∞

c (0, T ) be the space of C∞ function in (0, T ) with compact support and let
µ ≥ 1. If we multiply the first equation in (3.12) by ρ ∈ C∞

c (0, T ) and integrate by
part over (0, T ), we have for all m > ν∫ T

0
⟨f(t), φ⟩D(E)⋆,D(E)ρ(t)dt =

∫ T

0

∂2

∂t2
(ym(t), φ)L2(Ω)ρ(t)dt+

∫ T

0
E(ym(t), φ)ρ(t)dt

=

∫ T

0
(ym(t), φ)L2(Ω)

∂2

∂t2
ρ(t)dt

∫ T

0
E(ym(t), φ)ρ(t) dt ∀φ ∈ Vµ.

Passing this latter identity through the limit while using (3.17a), we get ∀φ ∈
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Vµ, ∀ρ ∈ C∞
c (0, T )∫ T

0
⟨f(t), φ⟩D(E)⋆,D(E)ρ(t)dt =

∫ T

0
(y(t), φ)L2(Ω)

∂2

∂t2
ρ(t)dt+

∫ T

0
E(y(t), φ)ρ(t) dt,

which after an integration by parts, gives ∀ρ ∈ C∞
c (0, T ), ∀φ ∈ Vµ,∫ T

0
⟨f(t), φ⟩D(E)⋆,D(E)ρ(t)dt =

∫ T

0

∂2

∂t2
(y(t), φ)L2(Ω)ρ(t)dt+

∫ T

0
E(y(t), φ)ρ(t)dt, .

And since ∪µ≥1Vµ is dense in D(A), we can write ∀φ ∈ D(A), ∀ρ ∈ C∞
c (0, T ),∫ T

0
⟨f(t), φ⟩D(E)⋆,D(E)ρ(t)dt =

∫ T

0

∂2

∂t2
(y(t), φ)L2(Ω)ρ(t)dt+

∫ T

0
E(y(t), φ)ρ(t)dt,

therefore, ∀ϕ ∈ D(A),

∂2

∂t2
(y(t), ϕ)L2(Ω) + E(y(t), ϕ) = ⟨f(t), ϕ⟩D(E)⋆,D(E) , ∀t ∈ (0, T ). (3.18)

And from (3.16), we have that

ym(0) → y(0) in D(A) and y′m(0) → y′(0) in L2(a, b).

But ym(0) =

m∑
i=1

y0i φi →
∞∑
i=1

y0i φi = y0, and y′m(0) =

m∑
i=1

viφi →
∞∑
i=1

viφi = v we

therefore deduce from the uniqueness of the limit that

y(0) = y0 in (a, b) and y′(0) = v in (a, b). (3.19)

It follows from (3.18) and (3.19) that y is solution of (3.4) in the sense of Definition
3.1.
Step 4. We show estimations (3.7a) and (3.7b).

Using (3.13) and proceeding exactly as in (3.14) and (3.15), we obtain that

∥ym∥2C([0,T ];D(E)) = sup
t∈[0,T ]

|E(ym(t), ym(t))|

≤ 2

m∑
i=1

(
|vi|2 + λi

∣∣y0i ∣∣2)+ 2T

m∑
i=1

(∫ T

0
|fi(s)|2 ds

)
≤ 2 ∥v∥2L2(Ω) + 2

∥∥y0∥∥2
D(E) + 2T ∥f∥2L2(Q) .

and ∥y′m∥2C([0,T ],L2(a,b)) ≤ 2

m∑
i=1

(
|vi|2 + λi

∣∣y0i ∣∣2)+ 2T

m∑
i=1

∫ T

0
|fi(s)|2 ds

≤ 2 ∥v∥2L2(Ω) + 2
∥∥y0∥∥2

D(E) + 2T ∥f∥2L2(Q) .

Because of Remark 3.3. Therefore, using (3.16) while passing these latter estimations
to the limit when m→ +∞, we have (3.7a) and (3.7b).
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We have the following result which proves that the energy does not vary with respect
to the time.

Proposition 3.5. Let f ≡ 0, y0 ∈ D(A), v ∈ L2(a, b). The energy of a weak solution
y of (3.4) is the continuous function defined by

Ey(t) =
1

2

∫ b

a
(yt(t, x))

2 + β(x)(Dα
a+y(x, t))2 + q(y2(x, t)) dx,

which satisfies the following so called energy estimate,

Ey(t) = Ey(0). (3.20)

Proof. If we multiply (3.4) by yt and integrate by parts over (0, s)× (a, b), we obtain

0 =

∫ s

0

∫ b

a
yttyt dxdt+

∫ t

0

∫ b

a
Dα

b−(βD
α
a+y)yt dxdt+

∫ t

0

∫ b

a
qyyt dxdt

=
1

2

∫ s

0

∫ b

a
∂t |yt(t)|2 dxdt+

1

2

∫ s

0

∫ b

a
∂t

∣∣∣√βDα
a+y(t)

∣∣∣2 dxdt+ 1

2

∫ s

0

∫ b

a
∂t(

√
qy(t))2 dxdt

=
1

2

∫ b

a
y2t (s)− y2t (0) dx+

1

2

∫ b

a

∣∣∣√βDα
a+y(s)

∣∣∣2 − ∣∣∣√βDα
a+y(0)

∣∣∣2 dx
+
1

2

∫ b

a
|√qy(s)|2 −

∣∣√qy0∣∣2 dx
= Ey(s)− Ey(0).

Remark 3.6. Note that, we can prove the uniqueness of the weak solution to (3.4)
by using the non variation of the energy.

Remark 3.7. Note that if y0 belongs to L2(a, b), then the homogeneous problem (3.4)
admits a unique weak solution y ∈ L2((0, T );D(E)) ∩ C1([0, T ], L2(a, b)).

3.2. Non Homogeneous wave equation

Now we consider the non-homogeneous problem given in (3.1).

Lemma 3.8. Let β, q satisfy Assumption 2.16, let g ∈ H2(0, T ), with g(0) = 0, we
consider the function w defined by

w(x, t) =
g(t)

β(b)Γ(α+ 1)
(x− a)α,

then the functions w,wtt and Dα
b−βD

α
a+w belong to L2(Q) and the function wt belongs

to C([0, T ];L2(a, b)), furthermore, w ∈ C([0, T ], D(E)).

Proof. Since g ∈ L2(0, T ) and (x − a)α ∈ L2(a, b), while using Dα
a+w(x, t) =

g(t)
β(b) , it
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follows that

∥w∥L2(Q) ≤ C(α, β0) ∥g∥L2(0,T ) , ∥w∥C([0,T ];D(E)) ≤ C(α, β0) ∥g∥C([0,T ])

∥wt∥C([0,T ];L2(a,b)) ≤ C(α, β0) ∥gt∥C([0,T ]) , ∥wtt∥L2(Q) ≤ C(α, β0) ∥gtt∥L2(0,T )

(3.21)
. and

∥∥Dα
b−βD

α
a+w

∥∥
L2(Q)

=
∥∥I1−α

b− ∂x
(
βDα

a+w
)∥∥

L2(Q)
≤ C(α, β0, ∥β′∥∞) ∥g∥L2(0,T ) .

If we set z(x, t) = y(x, t)− w(x, t), then z satisfies the homogeneous system
ztt +Dα

b−βD
α
a+z + qz = f − wtt −Dα

b−βD
α
a+w − qw in Q,

I1−α
a+ z(a+, ·) = 0 in (0, T ),
β(b)Dα

a+z(b−, ·) = 0 in (0, T ),
z(·, 0) = y0 in (a, b),
zt(., 0) = v − wt(·, 0) in (a, b).

(3.22)

Theorem 3.9. Let 1/2 < α < 1, f ∈ L2(Q), g ∈ H2(0, T ) with g(0) = 0, y0 ∈
D(A) and v ∈ L2(a, b), then the problem (3.1) admits a unique weak solution y ∈
C([0, T ], D(E)) ∩ C1([0, T ], L2(a, b)). Moreover, the following estimates hold true

∥y∥C([0,T ];D(E)) ≤ C(α, β0,
∥∥β′∥∥∞ , q)

(
∥v∥L2(a,b) +

∥∥y0∥∥
D(E) + ∥g∥H2(0,T ) + ∥f∥L2(Q)

)
(3.23a)∥∥y′∥∥

C([0,T ],L2(a,b))
≤C(α, β0,

∥∥β′∥∥∞ , q)
(
∥v∥L2(a,b) +

∥∥y0∥∥
D(E) + ∥g∥H2(0,T ) + ∥f∥L2(Q)

)
,

(3.23b)

Proof. From Theorem 3.2, we have that the homogeneous problem (3.22) admits a
unique weak solution z ∈ C([0, T ], D(A)) ∩ C1([0, T ], L2(a, b)) given by

z(x, t) =

∞∑
n=1

{
ṽn√
λn

sin(
√
λnt) + y0n cos(

√
λnt) +

1√
λn

∫ t

0
sin(

√
λn(t− s))f̃n(s) ds

}
φn,

(3.24)
where f̃ = f − wtt −Dα

b−βD
α
a+w − qw and ṽ = v − wt(·, 0).

Since w ∈ C1([0, T ], D(E)), using the fact that the function y can be uniquely
determined by the equality y(x, t) = z(x, t)+w(x, t), we have that y ∈ C([0, T ], D(E))∩
C1([0, T ], L2(a, b)).

Thus, according to estimates (3.7a) and (3.7b), and using (3.21), it follows that

∥y∥C([0,T ];D(E)) ≤ ∥z∥C([0,T ];D(E)) + ∥w∥C([0,T ];D(E))

≤ C1

(
∥ṽ∥L2(a,b) +

∥∥y0∥∥
D(E) +

∥∥∥f̃∥∥∥
L2(Q)

)
+ C(α, β0) ∥g∥L2(0,T )

≤ C(α, β0,
∥∥β′∥∥∞ , q)

(
∥v∥L2(a,b) +

∥∥y0∥∥
D(E) + ∥f∥L2(Q) + ∥g∥H2(0,T )

)
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and

∥y∥C1([0,T ];L2(a,b)) ≤ ∥z∥C1([0,T ];L2(a,b)) + ∥w∥C1([0,T ];L2(a,b))

≤ C2

(
∥ṽ∥L2(a,b) +

∥∥y0∥∥
D(E) +

∥∥∥f̃∥∥∥
L2(Q)

)
+ C(α, β0) ∥gt∥C([0,T ])

≤ C(α, β0,
∥∥β′∥∥∞ , q)

(
∥v∥L2(a,b) +

∥∥y0∥∥
D(E) + ∥f∥L2(Q) + ∥g∥H2(0,T )

)
.

The proof is concluded.

3.3. Study of the optimal control problem on one edge

We are concerned with optimal control problem (3.1)-(3.3). Note that, y solution to
(3.1) being in C([0, T ], D(E)) ∩ C1([0, T ], L2(a, b)), the cost function J in (3.3) is well
defined.

Theorem 3.10. Assume that Assumption 2.16 holds. Let 1/2 < α < 1. Then, there
exists a unique solution u ∈ Uad of the optimal control problem (3.1)-(3.3).

Proof. From (3.3), we have We have that:

J(v) =
1

2

∥∥y(v;T )− z0d
∥∥2
L2(a,b)

+
1

2

∥∥yt(v;T )− z1d
∥∥2
L2(a,b)

+
N

2
∥v∥2L2(a,b)

=
1

2
π(v, v)− L(v) +

1

2

∥∥y(0;T )− z0d
∥∥2
L2(a,b)

+
1

2

∥∥yt(0;T )− z1d
∥∥2
L2(a,b)

(3.25)
where the symmetric bilinear functional π(·, ·) and the linear functional L(·) defined
on Uad is given by

π(v, u) = ⟨ψ(v;T ), ψ(u;T )⟩L2(a,b) + ⟨ψt(v;T ), ψt(u;T )⟩L2(a,b) +N⟨u, v⟩L2(a,b)

and L(u) = ⟨ψ(u;T ), z0d − y(0;T )⟩L2(a,b) + ⟨ψt(u;T ), z
1
d − yt(0;T )⟩L2(a,b)

where ψ(v) = y(v)− y(0) satisfies the system
ψtt +Dα

b− (β Dα
a+ψ) + q ψ = 0 in (a, b)× (0, T ),

(I1−α
a+ ψ)(a+, ·) = 0 in (0, T ),

(βDα
a+ψ)(b−, ·) = 0 in (0, T ),

ψ(·, 0) = 0 in (a, b).
ψt(·, 0) = v in (a, b).

(3.26)

It follow from Theorem 3.2 that ψ ∈ C([0, T ], D(A)) ∩ C1([0, T ], L2(a, b)) and there
exist ∆1 > 0 and ∆2 > 0 such that

∥ψ∥C([0,T ];D(E)) ≤ ∆1 ∥v∥L2(a,b) (3.27a)

∥ψt∥C([0,T ],L2(a,b)) ≤∆2 ∥v∥L2(a,b) . (3.27b)
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Using Cauchy-Schwartz inequality, we obtain for all u, v ∈ Uad that,

|π(u, v)| ≤ ∥ψ(v;T )∥L2(a,b) ∥ψ(u;T )∥L2(a,b) + ∥ψt(v;T )∥L2(a,b) ∥ψt(u;T )∥L2(a,b)

+N ∥u∥L2(a,b) ∥v∥L2(a,b)

≤
(
∆2

1 +∆2
2 +N

)
∥u∥L2(a,b) ∥v∥L2(a,b) .

This means that π(·, ·) is continuous on Uad ×Uad. On the other hand, we have for all
v ∈ Uad,

π(v, v) = ∥ψ(v;T )∥2L2(a,b) + ∥ψt(v;T )∥2L2(a,b) +N ∥v∥2L2(a,b) ≥ N ∥v∥2L2(a,b) .

And using Cauchy-Schwartz inequality,

|L(v)| ≤ ∥ψ(v;T )∥L2(a,b)

∥∥z0d − y(0;T )
∥∥
L2(a,b)

+ ∥ψt(v;T )∥L2(a,b)

∥∥z1d − yt(0;T )
∥∥
L2(a,b)

≤ C(∆1 +∆2) ∥v∥L2(a,b) .

This prove that π(·, ·) is coercive on Uad and the functional L(.) is continuous on Uad.
In short we have proved that the symmetric bilinear functional π(·, ·) is continuous

and coercive on Uad×Uad and the linear functional L(.) is continuous on Uad. Therefore,
the Lax-Milgram allows to say that there exists a unique u ∈ Uad such that

1

2
π(u, u)− L(u) = inf

v∈Uad

1

2
π(v, v)− L(v),

which in view of the expression of J given by (3.25) implies that

J(u) = inf
v∈Uad

J(v)

because 1
2

∥∥y(0;T )− z0d
∥∥2
L2(a,b)

+ 1
2

∥∥yt(0;T )− z1d
∥∥2
L2(a,b)

does not depend on v.

Theorem 3.11. Let 1/2 < α < 1. Let β, q satisfy Assumption 2.16. Let u ∈ Uad

be the optimal control for the problem (3.1)-(3.3). Then, there exists a unique p ∈
C1([0, T ];L2(a, b)) such that the triple (y = y(u), u, p) satisfies

ytt +Dα
b− (β Dα

a+y) + q y = f in Q,
I1−α
a+ y(a+, ·) = 0 in (0, T ),
βDα

a+y(b−, ·) = g in (0, T ),
y(·, 0) = y0 in (a, b),
yt(·, 0) = u in (a, b),

(3.28)


ptt +Dα

b− (β Dα
a+p) + q p = 0 in Q,

I1−α
a+ p(a+, ·) = 0 in (0, T ),
βDα

a+p(b−, ·) = 0 in (0, T ),
p(·, T ) = yt(·, T )− z1d in (a, b),
pt(·, T ) = −(y(·, T )− z0d) in (a, b)

(3.29)
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and ∫ b

a

(
Nu+ p(·, 0)

)
(v − u) dx ≥ 0 ∀v ∈ Uad. (3.30)

Proof. Since u ∈ Uad is the optimal control for the problem (3.1)-(3.3), we have that
y = y(u) is solution of (3.28). To complete the proof of the theorem, we write the
Euler-Lagrange first order optimality condition that characterizes the optimal control
u. That is,

lim
θ→0

J(u+ θ(v − u))− J(u)

θ
≥ 0, ∀v ∈ Uad, (3.31)

which after some straightforward calculations gives

⟨z(v − u;T ), y(u;T )− z0d⟩L2(a,b) + ⟨zt(v − u;T ), yt(u;T )− z1d⟩L2(a,b)+

N

∫ b

a
u (v − u)dx ≥ 0, ∀v ∈ Uad,

(3.32)

where z = z(v − u) ∈ C([0, T ], D(A)) ∩ C1([0, T ], L2(a, b)) is the solution of
ztt +Dα

b− (β Dα
a+z) + q z = 0 in Q,

I1−α
a+ z(a+, ·) = 0 in (0, T ),
βDα

a+z(b−, ·) = 0 in (0, T ),
z(·, 0) = 0 in (a, b),
zt(·, 0) = v − u in (a, b).

(3.33)

To interpret (3.32), we use the adjoint state given by (3.29). Since y(T )−z0d ∈ L2(a, b)
and z1d − yt(T ) ∈ L2(a, b), we have from Remark 3.7 that there exists a unique adjoint
state p ∈ L2((0, T );D(E)) ∩ C1([0, T ], L2(a, b)) solution to (3.29). So, by multiplying
the first equation in (3.33) by p solution of (3.29), and integrate by parts over Q, we
get

⟨zt(v−u;T ), yt(u;T )−z1d⟩L2(a,b)+⟨z(v−u;T ), y(u;T )−z0d⟩L2(a,b)−
∫ b

a
(v−u)p(·, 0)dx = 0.

(3.34)
Combining (3.32)-(3.34), we get (3.30). The proof is complete.
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4. Boundary optimal control problems on general star graphs

For this section, we generalize the wave equation on a general star graph. For every
real number T > 0, we consider the following fractional Sturm-Liouville problem:

yitt +Dα
b−i
(βiDα

a+yi) + qiyi = f i in Qi, i = 1, . . . , n,

I1−α
a+ yi(a+, ·) = I1−α

a+ yj(a+, ·) in (0, T ), i ̸= j = 1, . . . , n,
n∑

i=1

βi(a)Dα
a+yi(a+, ·) = 0 in (0, T ),

I1−α
a+ y1(b−1 , ·) = 0 in (0, T ),

I1−α
a+ yi(b−i , ·) = gi in (0, T ), i = 2, . . . ,m,

βi(bi)Dα
a+yi(b−i , ·) = hi in (0, T ), i = m+ 1, . . . , n,

yi(0) = y0,i in (a, bi), i = 1, . . . , n,

yit(0) = vi in (a, bi), i = 1, . . . , n,

(4.1)
where a ∈ R and bi ∈ R, i = 1, · · · , n, Qi = (a, bi)× (0, T ), 1/2 < α < 1, fi ∈ L2(Qi),
gi, hi ∈ H2(0, T ), i = 1, · · ·n and the control functions vi ∈ L2(a, bi), i = 1, · · ·n..
From now on, we set

L2 :=

n∏
i=1

L2(a, bi) and Hα
a :=

n∏
i=1

Hα
a+(a, bi).

Then, we respectively endow L2 and Hα
a with the norms

∥ρ∥2L2 =

n∑
i=1

∥ρi∥2L2(a,bi)
, ρ = (ρi)i ∈ L2 (4.2)

and

∥ρ∥2Hα
a
=

n∑
i=1

∥ρi∥2Hα
a+ (a,bi)

=

n∑
i=1

(∥∥ρi∥∥2
L2(a,bi)

+
∥∥Dα

a+ρi
∥∥2
L2(a,bi)

)
, ρ = (ρi)i ∈ Hα

a .

(4.3)
We define the space Vi by

Vi :=
{
ρi ∈ Hα

a+(a, bi) : Dα
b−(β

iDα
a+ρi) ∈ H1−α

b− (a, bi)
}

(4.4)

and we set

V =

{
(ρi)i ∈

n∏
i=1

Vi :

n∑
i=1

βi(a)Dα
a+ρi(a+, ·) = 0, I1−α

a+ ρi(a+, ·) = I1−α
a+ ρj(a+, ·), i ̸= j, i, j = 1, . . . , n.

}
.

(4.5)

Remark 4.1. Note that V ⊂ Hα
a . Therefore, we endow V with norm on Hα

a given by
(4.3), i.e.:

∥ρ∥V = ∥ρ∥Hα
a

∀ρ = (ρi) ∈ V.
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As for the case of a single edge studied in the previous section, to investigate the
minimization problem (4.1)-(4.27), we need some preliminary results. We start with
some existence and regularity results.

We make the following assumption.

Assumption 4.2. We assume that the functions βi ∈ C1([a, bi]), i = 1, · · · , n and
qi ∈ C([a, bi]), i = 1, · · · , n are such that

q0 := min
1≤i≤n

qi, β0 := min
1≤i≤n

βi, (4.6a)

q := max
1≤i≤n

∥qi∥∞, β := max
1≤i≤n

∥βi∥∞, (4.6b)

where ∥βi∥∞ := max
x∈[a,bi]

|βi(x)| and ∥qi∥∞ := sup
x∈(a,bi)

|qi(x)|.

Then, we define the self adjoint operator A as follows: For ρ = (ρi)i, we let

Aρ = ((Aρ)i)i, i = 1, . . . , n, (4.7)

where each component is given by

(Aρ)i = Dα
b−(β

iDα
a+ρi) + qiρi, i = 1, · · · , n, (4.8)

with

D(A) :=

{
(ρi)i ∈

n∏
i=1

Vi :

n∑
i=1

βi(a)Dα
a+ρi(a+, ·) = 0,

I1−α
a+ ρi(a+, ·) = I1−α

a+ ρj(a+, ·), i ̸= j, i, j = 1, . . . , n,

I1−α
a+ ρi(b−i , ·) = 0, i = 1, . . . ,m, βi(bi)Dα

a+ρi(b
−
i , ·) = 0, i = m+ 1, . . . , n

}
.

(4.9)
We endowed D(A) with the norm:

∥ϕ∥2D(A) :=

n∑
i=1

∥ϕi∥2Hα
a+ (a,bi)

= ∥ϕ∥2Hα
a
. (4.10)

It is clear that D(A) is a closed subspace of Hα
a . For any ρ, ϕ ∈ D(A), we define the

bilinear functional F(·, ·) : D(A)×D(A) → R by:

F(ρ, ϕ) =

n∑
i=1

∫
Qi

βi(x)Dα
a+ϕi(x, t)Dα

a+ρi(x, t)dxdt

+

n∑
i=1

∫
Qi

qi(x)ϕi(x, t)ρi(x, t)dx dt.

(4.11)

Lemma 4.3. under the Assumption 4.2, the symmetric bilinear form F(·, ·) given by
(4.11) is continuous and coercive on D(A)×D(A).

Proof. For every ρ, ϕ ∈ D(A), we have
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|F(ρ, ϕ)| ≤
n∑

i=1

∫ T

0
∥βi∥∞∥Dα

a+ϕi(t)∥L2(a,bi)∥D
α
a+ρi(t)∥L2(a,bi)dt

+

n∑
i=1

∫ T

0
∥qi∥∞∥ϕi(t)∥L2(a,bi)∥ρ

i(t)∥L2(a,bi) dt

≤
(
max
1≤i≤n

∥βi∥∞ + max
1≤i≤n

∥qi∥∞
)
∥ϕ∥L2((0,T );Hα

a )
∥ρ∥L2((0,T );Hα

a )

≤
(
q + β

)
∥ϕ∥L2((0,T );Hα

a )
∥ρ∥L2((0,T );Hα

a )
.

Thus F(·, ·) is continuous on D(A)×D(A).
Now For every ϕ ∈ D(A),

F(ϕ, ϕ) ≥
n∑

i=1

∫ T

0
min
1≥i≥n

βi∥Dα
a+ϕi(t)∥2L2(a,bi)

dxdt+

n∑
i=1

∫ T

0
min
1≥i≥n

qi∥ϕi(t)∥2L2(a,bi)
dt

≥
(

min
1≥i≥n

βi + min
1≥i≥n

qi
)
∥ϕ∥2L2((0,T );Hα

a )

≥
(
q0 + β0

)
∥ϕ∥2L2((0,T );Hα

a )
.

This means that F(·, ·) is coercive on D(A).

Remark 4.4. In view of Lemma 4.3 and the embedding (2.18), the operator A has
a compact resolvent. Let (µk)k be the eigenvalues of A with associated eigenfunctions
(ζk) = (ζik)1≤i≤n. It follows from the coercivity and the nonnegativity of F(·, ·) that

0 < µ1 ≤ µ2 ≤ · · · ≤ µk ≤ · · · with lim
k→∞

µk = +∞.

4.1. Homogeneous boundary fractional Sturm–Liouville parabolic
equations in a star graph

We consider the following fractional Sturm-Liouville boundary value problem on a
general star graph:

yitt +Dα
b−i
(βiDα

a+yi) + qiyi = f i in Qi, i = 1, . . . , n,

I1−α
a+ yi(a+, ·) = I1−α

a+ yj(a+, ·) in (0, T ), i ̸= j = 1, . . . , n,
n∑

i=1

βi(a)Dα
a+yi(a+, ·) = 0 in (0, T ),

I1−α
a+ yi(b−i , ·) = 0 in (0, T ), i = 1, . . . ,m

βi(bi)Dα
a+yi(b−i , ·) = 0 in (0, T ), i = m+ 1, . . . , n,

yi(0) = y0,i in (a, bi), i = 1, . . . , n,

yit(0) = vi in (a, bi), i = 1, . . . , n,
(4.12)

where f = (f i) ∈ L2((0, T );V⋆), y0 = (y0,i ∈ D(A), v = (vi) ∈ L2.
Using the definition of the operator A above, we have that the Cauchy problem

(4.12) can be rewritten as the following abstract Cauchy problem ytt +Ay = f(t) for t ∈ (0, T ),
y(·, 0) = y0,
yt(·, 0) = v,

(4.13)

where y = (yi)i=1,··· ,n, f = (f i)i=1,··· ,n, y
0 = (y0,i)i=1,··· ,n, v = (vi)i=1,··· ,n.
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Definition 4.5. A function y = (yi) is said to be a weak solution of (4.12) in (0, T ),
T > 0, if the following assertions hold.

• Regularity: y ∈ C1([0, T ];L2) ∩ C([0, T ];D(A))

• Initial condition:
yi(·, 0) = yi,0 in (a, bi), i = 1, · · · , n
yit(·, 0) = vi in (a, bi), i = 1, · · · , n

• Variational identity: ⟨ytt, ζ⟩V⋆,V + F(y(t, ·), ζ) = ⟨f(t, ·), φ)V⋆,V for every φ ∈
D(A), and a.e. t ∈ (0, T ).

Theorem 4.6. Assume that Assumption 4.2 holds. Let 1/2 < α < 1, f ∈
L2((0, T );V⋆) and y0 ∈ D(A), v ∈ L2, the system (4.12) has a unique weak solution
y = (yi) given by

y(t, ·) =
∞∑
n=1

{
1

√
µn

⟨v, ζn⟩L2 sin(
√
µnt) + ⟨y0, ζn⟩L2 cos(

√
µnt)

+
1

√
µn

∫ t

0
sin(

√
µn(t− s))⟨f(s), ζn⟩V⋆,V ds

}
ζn. (4.14)

Moreover,

1

2
∥yt∥2C([0,T ];L2) ≤ 2T∥f∥2L2((0,T );L2) + ∥v∥2L2 +max

(
β, q
)
∥y0∥2Hα

a

(4.15a)

∥y∥2C([0,T ];Hα
a ))

≤ 2

min
(
β0, q0

) (2T∥f∥2L2((0,T );L2) + ∥v∥2L2 +max
(
β, q
)
∥y0∥2Hα

a

)
(4.15b)

Proof. For the existence, we proceed exactly as for the one edge case. Let us prove
(4.15).
If we multiply equation (4.12) by yt and integrate by parts over (a, bi), we obtain for
all t ∈ [0, T ] that

n∑
i=1

∫ bi

a
f i(t)yit(t) dx =

n∑
i=1

∫ bi

a
yitt(t)y

i
t(t) dx+

n∑
i=1

∫ bi

a
Dα

b−i
(βiDα

a+yi)yit(t) dx

+

n∑
i=1

∫ bi

a
qiyi(t)yit(t) dx

=
1

2

n∑
i=1

d

dt

∫ bi

a

∣∣yit(t)∣∣2 dx+
1

2

n∑
i=1

d

dt

∫ bi

a
βi
∣∣Dα

a+yi(t)
∣∣2 dx

+
1

2

n∑
i=1

d

dt

∫ bi

a
qi
∣∣yi(t)∣∣2 dx.

Using Young inequality, we have that

1

2

d

dt
∥yt(t)∥2L2 +

1

2

n∑
i=1

d

dt

∫ bi

a
βi
∣∣Dα

a+yi(t)
∣∣2 dx+

1

2

n∑
i=1

d

dt

∫ bi

a
qi
∣∣yi(t)∣∣2 dx

≤ 1

2δ
∥f(t)∥2L2 +

δ

2
sup

t∈[0,T ]
∥yt(t)∥2L2 ,
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for some δ > 0. Integrating each term of this latter inequality over (0,s,) for s ∈ [0, T ]
yields,

∥yt(s)∥2L2 +min
(
β0, q0

) (
∥Dα

a+y(s)∥2L2 + ∥y(s)∥2L2

)
≤ 1

δ
∥f∥2L2((0,T );L2) + δT∥yt∥2C([0,T ];L2) + ∥v∥2L2 +max

(
β, q
) (

∥Dα
a+y0∥2L2 + ∥y0∥2L2

)
.

because Assumption 4.2 holds true. We deduce that,

∥yt(s)∥2L2 ≤ 1

δ
∥f∥2L2((0,T );L2) + δT∥yt∥2C([0,T ];L2) + ∥v∥2L2

+ max
(
β, q
)
∥y0∥2Hα

a

min
(
β0, q0

)
∥y(s)∥2Hα

a
≤ 1

δ
∥f∥2L2((0,T );L2) + δT∥yt∥2C([0,T ];L2) + ∥v∥2L2

+ max
(
β, q
)
∥y0∥2Hα

a
.

Choosing δ =
1

2T
, we obtain that

1

2
∥yt∥2C([0,T ];L2) ≤ 2T∥f∥2L2((0,T );L2) + ∥v∥2L2 +max

(
β, q
)
∥y0∥2Hα

a

∥y∥2C([0,T ];Hα
a )

≤ 2

min
(
β0, q0

) (2T∥f∥2L2((0,T );L2) + ∥v∥2L2 +max
(
β, q
)
∥y0∥2Hα

a

)
.

4.2. Non-Homogeneous boundary fractional Sturm–Liouville parabolic
equations in a star graph

So let us consider the non-homogeneous problem given by (4.1); In what follows, we
shall transform that problem into an homogeneous type problem.

Let (gi)i=2···m ∈
(
H2(0, T )

)m−1
and (hi)i=m+1···n ∈

(
H2(0, T )

)n−m
be such that

hi(0) = gi(0) = 0, i = 1, · · · , n, we set

∥g∥C([0,T ]) = max
2≤i≤m

∥gi∥C([0,T ]), ∥h∥C([0,T ]) = max
m+1≤i≤n

∥hi∥C([0,T ]) (4.16a)

∥gt∥C([0,T ]) = max
2≤i≤m

∥g′i∥C([0,T ]), ∥ht∥C([0,T ]) = max
m+1≤i≤n

∥h′i∥C([0,T ]) (4.16b)

We consider the function w = (wi)i=1,··· ,n, where w
i are giving by :

wi(x, t) =


0 i = 1

2gi(t)

Γ(α+ 2)(bi − a)2
(x− a)α+1 i = 2, · · · ,m

hi(t)

Γ(α+ 2)βi(bi)(bi − a)
(x− a)α+1 i = m+ 1, · · · , n.

(4.17)

Lemma 4.7. Assume that Assumption 4.2 holds. Let (gi)i=2···m ∈
(
H2(0, T )

)m−1
and

(hi)i=m+1···n ∈
(
H2(0, T )

)n−m
be such that (4.16) holds. Let also w = (wi) be defined

as in (4.17). Then we have that wi, Dα
b−i
(βiDα

a+wi) ∈ L2(Qi), w
i
t ∈ C([0, T ];L2(a, bi))

and wi
tt ∈ L2(Qi).
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Moreover,

sup
t∈[0,T ]

∥w(t)∥2Hα
a
≤ C(α, b, b, β0, n)

(
∥g∥2C([0,T ]) + ∥h∥2C([0,T ])

)
, (4.18a)

∥wt(0)∥2L2 ≤ sup
t∈[0,T ]

∥wt(t)∥2L2 ≤ C(α, b, β0, n)
(
∥gt∥2C([0,T ]) + ∥ht∥2C([0,T ])

)
, (4.18b)

where b = max1≤i≤n(bi) and b = min1≤i≤n(bi).

Proof. As in Lemma 3.8 we have that wi ∈ L2(Qi) and Dα
b−i
(βiDα

a+wi) ∈ L2(Qi).

Moreover, gi, hi, i = 2, · · · ,m being in H2(0, T ), we deduce that wi
t and wi

tt are
in H1((0, T ), L2(a, bi)) and L2(Qi) respectively. Using the continuous embedding of
H1(0, T ) into C([0, T ]) that wi

t ∈ C([0, T ];L2(a, bi)).
Now, let ψ(x) = (x− a)α+1 for all x ∈ (a, b). Then, we prove that

∥ψ∥2Hα
a+ (a,bi)

=
1

2α+ 3
(bi − a)2α+3 +

Γ2(α+ 2)

3
(bi − a)3.

We have for all t ∈ [0, T ] that,∥∥∥Dα
b−i

(
βiDα

a+wi(t)
)∥∥∥2

L2(a,bi)
≤ C(α)2

(∥∥β′iDα
a+wi(t)

∥∥2
L2(a,bi)

+
∥∥βi∂x (Dα

a+wi(t)
)∥∥2

L2(a,bi)

)
,

the latter implies that

n∑
i=1

∥∥∥Dα
b−i

(
βiDα

a+wi
)∥∥∥2

L2(Qi)
≤ C(α, β, β′, b, b)

(
∥g∥2L2(0,T ) + ∥h∥2L2(0,T )

)
. (4.19)

and we also have that for all t ∈ (0, T )

∥w(t)∥2Hα
a
=

m∑
i=2

4g2i (t)

Γ2(α+ 2)(bi − a)4
∥ψ∥2Hα

a+ (a,bi)
+

n∑
i=m+1

h2i (t)

Γ2(α+ 2)βi(bi)2(bi − a)2
∥ψ∥2Hα

a+ (a,bi)
.

∥wt(t)∥2L2 =

m∑
i=2

4(g′i(t))
2

Γ2(α+ 2)(bi − a)4
∥ψ∥2L2(a,bi)

+

n∑
i=m+1

(h′i(t))
2

Γ2(α+ 2)βi(bi)2(bi − a)2
∥ψ∥2L2(a,bi)

.

(4.20)
Then using (4.16), we obtain from (4.20) the estimates (4.18a) and (4.18b).

Observing that

I1−α
a+ wi(a+, t) = I1−α

a+ wj(a+, t), i, j = 1, · · · , n,
n∑

i=1

βi(a)Dα
a+wi(x, t) = 0,

I1−α
a+ wi(b−i , t) = gi(t), i = 2, · · ·m,
βi(bi)Dα

a+wi(b−i , t) = hi(t), i = m+ 1, . . . , n,

wi(x, 0) = 0, i = 1, · · · , n,

and setting z = (zi)i=1,··· ,n where zi(x, t) = yi(x, t)−wi(x, t), it follows that z satisfies
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the homogeneous system

zitt +Dα
b−i
(βiDα

a+zi) + qizi = f̃ i in Qi, i = 1, . . . , n,

I1−α
a+ zi(a+, ·) = I1−α

a+ zj(a+, ·) in (0, T ), i ̸= j = 1, . . . , n,
n∑

i=1

βi(a)Dα
a+zi(a+, ·) = 0 in (0, T ),

I1−α
a+ z1(b−1 , ·) = 0 in (0, T ),

I1−α
a+ zi(b−i , ·) = 0 in (0, T ), i = 2, . . . ,m

βi(bi)Dα
a+zi(b−i , ·) = 0 in (0, T ), i = m+ 1, . . . , n,

zi(·, 0) = y0,i in (a, bi), i = 1, . . . , n

zit(·, 0) = ṽi in (a, bi), i = 1, . . . , n,
(4.21)

where f̃ i ∈ L2(Qi) and ṽi ∈ L2(a, bi) are given by

f̃ i = f i − wi
tt −Dα

b−i
(βiDα

a+wi)− qiwi,i = 1, · · · , n, (4.22a)

ṽi = vi − wi
t(·, 0), i = 1, · · · , n. (4.22b)

Lemma 4.8. Assume that Assumption 4.2 holds. Let f = (f i), v = (vi) ∈
L2((0, T );L2). Let also (gi)i=2···m ∈

(
H2(0, T )

)m−1
and (hi)i=m+1···n ∈

(
H2(0, T )

)n−m

be such that (4.16) holds. Then the functions f̃ = (f̃ i) and ṽ = (ṽi) defined by (4.22)
satisfies∥∥∥f̃∥∥∥

L2((0,T );L2)
≤ C

(
α, b, b, β, q

) (
∥f∥L2((0,T );L2) + ∥g∥H2(0,T ) + ∥h∥H2(0,T )

)
(4.23a)

∥ṽ∥L2 ≤ C(α, b, β0, n)
(
∥v∥L2 + ∥gt∥C([0,T ]) +

∥∥ht∥∥C([0,T ])

)
, (4.23b)

wherew = (wi) be defined as in (4.17), b = max1≤i≤n(bi) and b = min1≤i≤n(bi) .

Proof. We have that

∥wtt(t)∥L2 =

m∑
i=2

4(g′′i (t))
2

Γ2(α+ 2)(bi − a)4
∥ψ∥2L2(a,bi)

+

n∑
i=m+1

(h′′i (t))
2

Γ2(α+ 2)βi(bi)2(bi − a)2
∥ψ∥2L2(a,bi)

.

Consequently, ∥wtt∥2L2((0,T );L2) ≤ C
(
α, β0, b

) (∥∥g′′∥∥2
L2(0,T )

+
∥∥h′′∥∥2

L2(0,T )

)
. (4.24)

Combining (4.19) and (4.24), we obtain (4.23a), moreover using (4.18b), we obtain
(4.23b).

Theorem 4.9. Assume that Assumption 4.2 holds. Let 1/2 < α < 1, f ∈ L2(0, T ;L2),

(gi)i=2···m ∈
(
H2(0, T )

)m−1
and (hi)i=m+1···n ∈

(
H2(0, T )

)n−m
be such that gi(0) =

hi(0) = 0, i = 1, · · · , n, y0 = (y0,i) ∈ D(A) and v = (vi) ∈ L2, then the problem (4.1)
admit a unique weak solution y = (yi) ∈ C([0, T ],V) ∩ C1([0, T ],L2) given by

y(x, t) =

∞∑
n=1

{
ṽn√
µn

sin(
√
µnt) + y0n cos(

√
µnt) +

1
√
µn

∫ t

0
sin(

√
µn(t− s))f̃n(s) ds

}
ζn+w(x, t),
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where f̃ i ∈ L2(Qi) and ṽi ∈ L2(a, bi) are defined as in (4.22). Moreover, there exist
∆1,∆2 = C

(
α, b, b, β, q, β0, n

)
> 0 such that

∥y∥C([0,T ];Hα
a )

≤ ∆1

(
∥f∥2L2((0,T );L2) + ∥v∥2L2 + ∥y0∥2Hα

a
+ ∥g∥2C([0,T ])

+∥h∥2C([0,T ]) + ∥gt∥2C([0,T ]) + ∥ht∥2C([0,T ])

) (4.25a)

∥y′∥C([0,T ],L2) ≤ ∆2

(
∥f∥2L2((0,T );L2) + ∥v∥2L2 + ∥y0∥2Hα

a
+ ∥g∥2C([0,T ])

+∥h∥2C([0,T ]) + ∥gt∥2C([0,T ]) + ∥ht∥2C([0,T ])

) (4.25b)

.

Proof. From Theorem 4.6, we have that the homogeneous problem (4.21) admits a
unique weak solution z ∈ C([0, T ];D(A)) ∩ C1([0, T ];L2).

Since w ∈ C1([0, T ];V), using the fact that the function y can be uniquely determined
by the equality y(x, t) = z(x, t)+w(x, t), we have that y ∈ C([0, T ];V)∩C1([0, T ];L2).

Since z ∈ C([0, T ];D(A)) ∩ C1([0, T ];L2) is solution of (4.21) and w ∈ C1([0, T ];V),
using (4.15), (4.18) and Remark 4.1, we have that,

∥y∥C([0,T ];Hα
a ))

≤ ∥z∥C([0,T ];Hα
a )

+ ∥w∥C([0,T ];Hα
a ))

≤ 2

min
(
β0, q0

) (2T∥f̃∥2L2((0,T );L2) + ∥ṽ∥2L2 +max
(
β, q
)
∥y0∥2Hα

a

)
+ C(α, b, b, β0, n)

(
∥g∥2C([0,T ]) + ∥h∥2C([0,T ])

)
≤ C

(
α, b, b, β, q, β0, n

) (
∥f∥2L2((0,T );L2) + ∥v∥2L2 + ∥y0∥2Hα

a
+ ∥g∥2C([0,T ])

+∥h∥2C([0,T ]) + ∥gt∥2C([0,T ]) + ∥ht∥2C([0,T ])

)
and

∥yt∥C([0,T ];L2) ≤ ∥zt∥C([0,T ];L2) + ∥wt∥C([0,T ];L2)

≤ 2T∥f̃∥2L2((0,T );L2) + ∥ṽ∥2L2 +max
(
β, q
)
∥y0∥2Hα

a

+ C(α, b, β0, n)
(
∥gt∥2C([0,T ]) + ∥ht∥2C([0,T ])

)
≤ C

(
α, b, b, β, q, β0, n

) (
∥f∥2L2((0,T );L2) + ∥v∥2L2 + ∥y0∥2Hα

a
+ ∥g∥2C([0,T ])

+∥h∥2C([0,T ]) + ∥gt∥2C([0,T ]) + ∥ht∥2C([0,T ])

)
.

The proof is concluded.

4.3. Existence of minimizers and optimality conditions in a general star
graph

We are interested in solving the following optimal control problem:

min
v∈Uad

J (v), (4.26)
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where

J (v) :=
1

2

∥∥y(v;T )− z0d
∥∥2
L2 +

1

2

∥∥yt(v;T )− z1d
∥∥2
L2 +

N

2
∥v∥2L2 . (4.27)

and y = (yi)i satisfies (4.1), z
o
d = (zo,id )i ∈ V, z1d = (z1,id )i ∈ L2 and Uad is a closed and

convex subset of L2.
We have the following existence result of optimal controls.

Theorem 4.10. Let 1/2 < α < 1. Let qi ∈ C(a, bi) and βi ∈ C1([a, bi]) satisfy As-
sumption 4.2. Then, there exists a unique solution û ∈ Uad of the optimal control
problem (4.26)-(4.27).

Proof. We have that:

J (v) =
1

2
π(v, v)− L(v) +

1

2

∥∥y(0;T )− z0d
∥∥2
L2 +

1

2

∥∥yt(0;T )− z1d
∥∥2
L2

where π(v, u) = ⟨y(v;T )− y(0;T ), y(u;T )− y(0;T )⟩L2

+⟨yt(v;T )− yt(0;T ), yt(u;T )− yt(0;T )⟩L2 +
N

2
⟨u, v⟩L2

and L(u) = ⟨y(u;T )− y(0;T ), z0d − y(0;T )⟩L2 + ⟨yt(u;T )− yt(0;T ), z
1
d − yt(0;T )⟩L2

Proceeding as in the one edge case, we prove that π is a bilinear, symmetric, continue
and coercive form on Uad, and that L is a linear continue form on Uad, thus using the
Lax-Milgram theorem, we conclude that

∃!u ∈ Uad; such that J (u) = inf
v∈Uad

J (v).

Next, we characterize the optimality conditions.

Theorem 4.11. Let 1/2 < α < 1. Let qi ∈ C([a, bi]) and βi ∈ C1([a, bi]) satisfy
Assumption 4.2. Let u = (ui)i ∈ Uad be the optimal control for the minimization
problem (4.26)-(4.27). Then, there exists a unique p ∈ L2((0, T );V) ∩ C1([0, T ];L2)
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such that the triple (ŷ, u, p) satisfies

ŷitt +Dα
b−i
(βiDα

a+ ŷi) + qiŷi = f i, in Qi, i = 1, . . . , n,

I1−α
a+ ŷi(a+, ·) = I1−α

a+ ŷj(a+, ·) in (0, T ), i ̸= j = 1, . . . , n,
n∑

i=1

βi(a)Dα
a+ ŷi(a+, ·) = 0, in (0, T ),

I1−α
a+ ŷ1(b−1 , ·) = 0, in (0, T ),

I1−α
a+ ŷi(b−i , ·) = gi, in (0, T ), i = 2, . . . ,m

βi(bi)Dα
a+ ŷi(b−i , ·) = hi, in (0, T ), i = m+ 1, . . . , n,

ŷi(·, 0) = y0,i, in (a, bi), i = 1, . . . , n,

ŷit(·, 0) = ui, in (a, bi), i = 1, . . . , n,

(4.28)
and

pitt +Dα
b−i
(βiDα

a+pi) + qipi = 0, in Qi, i = 1, . . . , n,

I1−α
a+ pi(a+, ·) = I1−α

a+ pj(a+, ·) in (0, T ), i ̸= j = 1, . . . , n,
n∑

i=1

βi(a)Dα
a+pi(a+, ·) = 0, in (0, T ),

I1−α
a+ pi(b−i , ·) = 0, in (0, T ), i = 1, . . . ,m

βi(bi)Dα
a+pi(b−i , ·) = 0, in (0, T ), i = m+ 1, . . . , n,

pi(·, T ) = ŷit(·, T )− z1,id in (a, b), i = 1, . . . , n

pt(·, T ) = −(ŷi(·, T )− z0,id ) in (a, bi), i = 1, . . . , n
(4.29)

and

n∑
i=1

∫ bi

a

(
ui + pi(·, 0)

)
(vi − ui) dx ≥ 0 (4.30)

for all v = (vi)i ∈ Uad.

Proof. We have already proved (4.28). To complete the proof of the theorem, we
introduce for every p ∈ L2((0, T );V)) ∩ C1([0, T ],L2) the Lagrangian

L(y, v, p) = J (v)−
n∑

i=1

∫
Qi

(yitt +Dα
b− (βiDα

a+yi) + qi yi)pi dx dt+

n∑
i=1

∫
Qi

f i pi dx dt

= J (v) +

n∑
i=1

∫
Qi

f i pi dx dt+

n∑
i=1

∫ bi

a
yit(·, T )pi(·, T ) dx−

n∑
i=1

∫ bi

a
vip

i(·, 0) dx

+

n∑
i=m+1

∫ T

0
hi(t)I1−α

a+ pi(b−i , t) dt−
m∑
i=2

∫ T

0
gi(t)(b

−
i , t)(β

iDα
a+pi)(b−i , t) dt

−
n∑

i=1

∫ bi

a
yi(·, T )pit(·, T ) dx+

n∑
i=1

∫ bi

a
yi0pit(·, 0) dx.

In order to derive the optimality conditions, we compute

lim
λ→0

L(ŷ + λ(y − ŷ), u+ λ(v − u), p)− L(ŷ, u, p)
λ

≥ 0 ∀v = (vi)i ∈ Uad,
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where p solves (4.29) and ŷ is the unique weak solution of (4.28). After some calcula-
tions, we obtain that for all v = (vi)i ∈ Uad,

n∑
i=1

∫ bi

a

(
ui + pi(·, 0)

)
(vi − ui) dx ≥ 0

which gives (4.30). The proof is finished.

5. Conclusion and open problems

We investigated an optimal control problem of a fractional hyperbolic type partial dif-
ferential equation involving a fractional Sturm-Liouville operator in a space interval,
and in a general star graph, where the Sturm-Liouville operator is obtained as a com-
position of a left fractional Caputo derivative, and a right fractional Riemann–Liouville
derivative. Using the spectral theory, we proved that the considered fractional optimal
control in an interval as well as in the graph has a unique weak solution. We then
derived the optimality system that characterizes the control in an edge by means of
the Euler-Lagrange optimality conditions, and those in the graph by using the method
of Lagrange multipliers.

Among open questions for further research, there is, investigation on the case where
the controls are taking at the boundaries. It would also be interesting to see what hap-
pen when we take α ∈ (1, 2]. Another potentially interesting research direction would
be to employ the fractional wave equation by replacing the second order derivative in
time by the Caputo derivative or the Riemann-Liouville derivative.
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