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3)Centre de Physique Théorique(CPHT), CNRS, Ecole Polytechnique, IP Paris, 91128 Palaiseau,
France
4)Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240,
China

Previous studies have shown that the use of laser bandwidth may mitigate the growth of stimulated Raman
scattering (SRS) in laser plasma interaction experiments, in particular when the spectrum of the driving (or
pump) laser is composed of uniformly distributed frequency components with a well-chosen bandwidth [for
example, M. Luo et al, Phys. Plasmas 29, 032102 (2022); H. Wen et al, Phys. Plasmas 28, 042109 (2021); R.
K. Follett et al, Phys. Plasmas 26, 062111 (2019)]. Here, we investigate the effects of frequency chirp in the
pump laser on backward SRS in inhomogeneous plasmas, taking into account kinetic effects associated with
the nonlinear detuning of the parametric resonance due to high-amplitude electron plasma waves (EPW). Via
theoretical considerations and numerical simulations, using a multi-dimensional particle-in-cell (PIC) code,
it is shown that positive frequency chirp rates lead to a displacement of the resonance in the plasma profile.
For a sufficiently strong positive chirp rate, such that the resonance displacement is faster than the EPW
group velocity, the EPWs prove to remain limited in amplitude such that SRS is suppressed. The required
frequency chirp rate corresponds to a laser bandwidth of about 1-2%.

I. INTRODUCTION

Stimulated Raman scattering (SRS) in plasmas is a
parametric resonant three-wave interaction process, in
which the laser light (the pump wave) scatters off an
electron plasma wave (EPW), leading to a second elec-
tromagnetic wave (the scattered light wave). In the con-
text of Inertial Confinement Fusion (ICF) with lasers,
SRS may considerably reduce the coupling efficiency of
the laser light to the plasma corona of the target through
backscattering of the laser light and the generation of hot
electrons. For this reason, it is essential to get a profound
understanding of this SRS instability process and to find
a way to get control over it. SRS occurs in coronal plas-
mas with electron densities ne below the quarter-critical
density (ne<ncr/4). Those plasmas are mostly inhomo-
geneous in ICF experiments. In typical experiments re-
lated to direct-drive ICF and shock ignition, SRS excita-
tion has been reported mostly for plasma densities in the
range from 4% to 10% ncr with gradient scale lengths of
several hundred laser wave lengths and at temperatures
of a few keV1,2. In the presence of a density gradient, the
amplification of the scattered light may be limited by the
mismatch of the resonance condition. The spatial ampli-
fication over a spatially limited region in a linear profile
can be described, following Rosenbluth’s work3, by ex-
ponential growth, ∼ exp(GR) with the gain coefficient
GR which depends on laser intensity and the gradient.
However, increasing amplitudes of the driven EPWs may
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destabilize this type of solution due to the generation of
trapped particles and thus lead to the inflationary regime
of SRS4–7. In parabolic profiles with particular threshold
conditions, SRS may be absolutely unstable.

Sufficiently large bandwidth, introducing temporal in-
coherence into the pump laser wave, may suppress the
SRS instability. Previous theoretical studies8,9 have
shown that the frequency bandwidth, ∆ω0, of the pump
laser can effectively reduce the instability growth rate of
SRS by a factor of γ0/∆ω0, provided that γ0 < ∆ω0,
where γ0 denotes the SRS standard growth rate in a
homogeneous plasma10. There are currently promis-
ing technological efforts to improve the efficiency of
laser bandwidth in major laser facilities, like, e.g., the
‘StarDriver’ and ‘spectral distribution’ concepts11,12. Re-
cently, simulations by use of the LPSE code have proven
that the multi-mode bandwidth can increase the thresh-
old of absolute instability growth of SRS13,14. Zhao et al.
have found that a decoupled broadband laser (DBL) with
10% bandwidth can completely suppress SRS15. Spatio-
temporal optical smoothing techniques using spectral dis-
persion (SSD)16–18 have been developed to introduce in-
coherence into laser beams, and can be combined with
polarisation smoothing19–21. SSD, however, needs to be
operated at large bandwidth to achieve a mitigating effect
on SRS. Meanwhile, the idea of sunlight-like lasers with
both random phase and polarization has been proposed22

to suppress the SRS. In the work by H. Wen et al.23, it
is suggested that inflationary SRS can be mitigated by
tuning the modulation frequency of the pump laser. On
the other hand, although bandwidth generally reduces
the growth rate, the interaction region around the exact
resonance point in the plasma is broadened24. The EPW
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then stays inside the interaction region for a longer time
interval before leaving. Consequently, the scattered light
can still be amplified to a high level. This effect is more
significant in multi-dimensional geometry, in particular
for optically smoothed laser beams with speckles25. The
EPW driven by intense speckles can be continuously am-
plified until leaving the speckles unless other nonlinear
saturation mechanisms come into play, mostly due to ki-
netic effects1,26–28. Generally, the time the EPW wave
trains stay inside a speckle, ∆t ∼ πλ0F

2/vL, could be
longer than the time for e-fold growth, 1/γ0, associated
with the SRS instability growth rate γ0, where λ0 is the
laser wavelength, vL is the group velocity of the EPW,
and F is the f-number of the laser.

Moreover, the previous studies on the mitigation of the
SRS with broadband lasers usually assume that the dif-
ferent frequency components are distributed randomly
or uniformly in the time domain within the laser du-
ration. An interesting alternative to broadband lasers
obtained via the random overlap of modes is the use of
laser light fields modified by a chirp in the frequency.
The frequency chirp has been found to be an impor-
tant laser parameter for many applications in differ-
ent areas, such as the technique of chirped pulse am-
plification (CPA)29, optimizing/quenching the amplifi-
cation and compression of short pulses by SRS30–33,
as well as in the strong-coupling regime of stimulated
Brillouin scattering34–36. It is also possible to drive
nonlinear ion-acoustic waves37,38 and Bernstein-Greene-
Kruskal (BGK) modes39,40 through frequency chirp. The
effect of chirped pulses in the context of SRS has been
studied experimentally and theoretically with priority in
the moderately relativistic regime41–43, for which growth
of forward and side scattering has still been seen at the
back of the pulse.

In this work, we investigate the effect of frequency
chirp on SRS, in particular its potential for mitigation on
the SRS growth. It is shown that the resonant excitation
of the EPW is governed by propagation in the presence
of a chirp. This propagation velocity results from the
cancellation between the chirp phase and the resonance
mismatch due to the density gradient. Since it can be
faster than the group velocity of the EPW for a partic-
ular chirp rate regime, the EPW can leave the interac-
tion region quickly before being amplified to a noticeable
level. Notably, in the presence of trapped-particle effects,
which are responsible for the kinetic inflation observed in
simulations6,26–28 and experiments44,45, the cancellation
between the chirp phase and the resonance mismatch for
the resonant EPW excitation is adjusted by the kinetic
effects, or the nonlinear frequency downshift of the EPW.
In this kinetic regime, the effects due to frequency chirp
should therefore be significant, because they can result in
both enhancement or reduction of SRS. Compared with
previous work on SRS mitigation with broadband lasers,
our theory and our results will show that a pump fre-
quency chirp may be an effective alternative approach to
control the structure of the excited EPW.

This paper is organized as follows. Section II presents
the theory model of EPW excitation by the pump laser
with frequency chirp. Based on this model, the spatio-
temporal evolution of EPWs is studied in section III. The
criterion for a critical frequency chirp value required to
mitigate the EPW or SRS growth is derived, which is
validated by numerical evaluation of the EPW equation.
Particle-in-cell (PIC) simulation results are presented to
validate our theory model in Sec. IV. The conclusions
and discussions are given in Sec. V.

II. MODEL FOR THE PONDEROMOTIVELY DRIVEN
PLASMA WAVE WITH LASER CHIRP

The evolution of the complex-valued amplitude f of the
EPW, associated with the EPW’s longitudinal electric
field Ex in an underdense plasma can be written as46[

∂

∂t
+ vL

∂

∂x
+ iσ(x, xr) + iδωnl

]
f = Peiψ, (1)

wherein P exp(iψ) is the driving term, σ stands for the
frequency mismatch due to plasma inhomogeneity, vL for
the EPW’s group velocity, and δωnl for the nonlinear fre-
quency shift, respectively. The temporal and spatial co-
ordinates are normalized by 1/ω0 and 1/k0, where ω0 and
k0 are the laser frequency and wave number, respectively.
The EPW amplitude f and the electric field Ex relate to
each other as eEx/(mecωpe) ≡ f exp(−iωLt+ikLx)+c.c.,
with ωL and kL standing for the EPW’s frequency and
wave number, respectively, ωpe = (nee

2/ε0me)
1/2 for

the electron plasma frequency with the electron den-
sity ne, the electron mass me and charge e, as well
as the vacuum dielectric constant ε0. As the driving
term, we consider the ponderomotive force due to stim-
ulated scattering via the coupling to the laser and the
scattered electromagnetic fields, E0 and E1, respectively,
with P exp(iψ) ∝ E0E1. In the frame of this model de-
scription, we consider a prescribed driver, and we take
into account, via the phase ψ, the phase mismatch with
respect to the resonance of stimulated scattering, as ex-
plained later on, induced by a laser chirp.

In Eq. (1), σ(x, xr) is the deviation from the resonance
condition with respect to the resonance point xr in an in-
homogeneous plasma3. For a given linear plasma density
profile ne = ne0[1 + (x − xr)/L] with L the gradient of
the density profile, σ(x, xr) = vLk

′x by taking xr = 04,5,
with k′ = ω2

pe(x=xr)/(6k
2
0v

2
thkLL). Herein the EPW’s

group velocity vL is normalized by the light velocity c
in vacuum, vL ≡ 3v2

thkL/(cωL) with vth = (kBTe/me)
1/2

being the thermal electron speed, kB the Boltzmann con-
stant, and Te the electron temperature.

The nonlinear frequency shift δωnl generally depends
on the amplitude of the EPW. A key parameter to distin-
guish the nonlinear regimes of the EPW is the product
between the EPW wave number kL and the Debye length
λD

47.
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The regime with kLλD . 0.15 is generally called the
fluid regime, where the harmonics of the fundamental
frequency ωL of EPW lead to a frequency shift given by

δωnl(kLλD . 0.15) = ζ|f |2, (2)

to the lowest order. The factor ζ48 describes the strength
of the nonlinear fluid frequency shift, and it depends on
plasma density and temperature49–51.

In contrast to this, the regime with kLλD & 0.25, is
called kinetic regime, in which the dominant nonlinearity
comes from trapped particles, which can create a plateau
in the electron velocity distribution function (VDF). This
result in reduced nonlinear Landau damping and in a
modification of the EPW dispersion relation, that can
be expressed again via a frequency shift. This ‘kinetic’
frequency shift can be written as

δωnl(kLλD & 0.25) = −ηωL
∣∣∣∣δnen0

∣∣∣∣1/2 = −β|f |1/2, (3)

with β = ηωL[(kL/k0)
√
n0/ne]

1/2 and with |δne/n0|
as the relative density perturbation. The amplitude-
dependent frequency shift has been derived in the seminal
work by Morales and O’Neil52, with η as the kinetic factor
depending on the second derivative of the electron distri-
bution function evaluated at the phase velocity ωL/kL.

The two regimes, the so-called fluid regime and kinetic
regime, can be distinguished from each other in the dy-
namics of the propagating EPW, due to the different
power dependence of δωnl on the EPW amplitude |f |,
namely |f |2 and |f |1/2, respectively.
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FIG. 1. (a) Behaviour of the phase of the chirped laser field
as function of time and (b) the corresponding instantaneous
departure of the laser frequency from its central frequency ω0,
here evaluated in ω0t = 1.88t/(fs · λ0/µm) for two different
values of the chirp parameter α = ±4×10−6 by setting x = x0
and t0 = 0.

For the phase of the prescribed drive, ψ, we consider
here the phase of a chirped pump laser field, which can

be approximated by34,35

ψ = −α
2

[(x− x0)− (t− t0)]2, (4)

where α is the chirp rate. One can define the instan-
taneous frequency and wave number of the pump laser
as

ω = 1− ∂tψ = 1− α[(x− x0)− (t− t0)], (5)

k = 1 + ∂xψ = 1− α[(x− x0)− (t− t0)]. (6)

The instantaneous frequency depends on the position and
is linear in time at a given position or linear in space at a
given time. An example of the chirp phase and frequency
via time ω0t = 1.88t/(fs · λ0/µm) is shown in Fig. 1, by
setting x = x0 and t0 = 0.

III. ANALYSIS AND NUMERICAL SOLUTIONS

A. Threshold of frequency chirp for SRS mitigation

In recent work6,53, the inflationary growth of SRS
and hot electron generation in the kinetic regime has
been studied with kinetic simulation codes. Also in ex-
periments, the signatures of kinetic inflation have been
observed44,45. We, therefore, concentrate in the follow-
ing on the impact of a chirped pump laser pulse in the
kinetic regime of SRS. As reference parameters, in con-
sistency with plasma parameters for the kinetic regime in
the experimental studies, we refer to an electron temper-
ature of 1keV and an electron density of ne0 = 0.05ncr
in the center of the inhomogeneous plasma profile, where
ncr is the critical density corresponding to a laser fre-
quency ω0. At the plasma center, these parameters yield
hence kLλD = 0.34, so that kinetic effects are expected
to occur47. The model equation for the EPW reads in
this regime(

∂

∂t
+ vL

∂

∂x
+ ivLk

′
x− iβ|f |1/2

)
f = Peiψ. (7)

Replacing f by f̂ = f exp(−iψ) with ψ defined in Eq.
(4), and setting x0 = t0 = 0, Eq. (7) can be reduced to(

∂

∂t
+ vL

∂

∂x
+ iδω

)
f̂ = P, (8)

where δω = α(x − t)(1 − vL) + vLk
′
x − β|f̂ |1/2 is the

total frequency shift of the EPW contributed by the fre-
quency chirp, the resonance mismatch due to density in-
homogeneity, and the nonlinear frequency shift due to
the kinetic effect.

Following Chapman et al.4 and Yaakobi et al.54, we
look for solutions that can be a guide line to describe the
spatial-temporal evolution of the EPW amplitude. In
analogy to Chapman and Yaakobi, that kind of solution
is obtained by the mutual cancellation of several terms
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of mismatch. Here we have resonance mismatch from
the inhomogeneity, from the nonlinear kinetic frequency
shift, and from the chirp phase. These three terms could
dominate the EPW’s evolution and adjust each other,

resulting via δω ≡ 0 in the solution of |f̂ | that reads

|f̂ | =

[
α(x− t)(1− vL) + vLk

′
x

β

]2

. (9)

This behavior of |f̂ | neglects the influence of the right-
hand side of the equation involving the ponderomotive
drive along the characteristics s = x − vLt running at a
slower speed than the light velocity, namely vL < 1.

Before proceeding to numerical integration of Eq. (7),
we assume for the following discussion that the nonlin-

ear evolution of f̂ is dominated by the solution Eq. (9).
Note that Eq. (9) reduces to the solution discussed in
Ref. 4 by neglecting the frequency chirp, i.e. α = 0.
The involvement of the frequency chirp introduces the
time-dependence via a displacement to the shape of the
solution governed by Eq. (9), while the shape of the
solution in Ref. 4 is stationary. The displacement of
the parabolic shape in space obtained from the solu-

tion Eq. (9) can be obtained by setting |f̂ | = const
and, subsequently, by differentiating in time, which yields
α(dx/dt− 1)(1− vL) + vLk

′
dx/dt = 0, and the ‘resonant

velocity’ we can call is given by

vre =
dx

dt
=

α(1− vL)

α(1− vL) + vLk
′ , (10)

which describes the propagation of the resonant excita-
tion of the EPW. From this expression, it results that in
a plasma with a positive gradient density, vre can be neg-
ative for negative chirp α < 0, while it is positive for posi-
tive α > 0. It is important to note that vre can exceed the
group velocity vL for α > v2

Lk
′
/(1−vL)2. Under the con-

dition for a strong enough chirp with α > v2
Lk

′
/(1−vL)2,

the EPW is hence able to leave the interaction region
quickly before being further amplified to a noticeable
level. Consequently, via an adequate choice of α, the
chirp can be used to mitigate the growth of EPW. For
this reason, we define αc as the critical chirp rate,

αc = v2
Lk

′
/(1− vL)2. (11)

We will see in the following that expression Eq. (11) in-
dicates indeed the threshold of frequency chirp for SRS
mitigation in a positive gradient density plasma. Under
the given plasma and laser parameters, the resonant ve-
locity vre, as a function of α, is shown in Fig. 2. The
gradient of the density profile here is k0L = 1790. The
horizontal red and blue lines are the particular cases with
α = 0 and α = αc, resulting in vre = 0 and vre = vL,
respectively.

It should be noted that Eq. (9) has been obtained
by setting x0 = t0 = 0, for simplicity. In particular, the
choice of a non-zero value of t0 means that the interaction
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FIG. 2. Resonant velocity vre defined by Eq. (10) in the unit
of the group velocity vL of EPW, as function of the chirp rate
α. The horizontal red and blue lines are the particular cases
when α = 0 and α = αc, resulting in vre = 0 and vre = vL,
respectively.

to excite the EPW is not synchronized with the onset
of the chirp, such that it starts with a chirp phase of
ψ = −αt20/2, or an initial frequency shift −αt0 to the
central laser frequency ω0. See Appendix for a further
discussion of a non-zero value of t0 effect on the EPW
excitation.

B. Dependence of EPW saturation amplitude on
frequency chirp

By setting x0 = t0 = 0, we numerically solve Eq. (7)
with a constant amplitude P = 2.1 × 10−6 and with
the kinetic factor η=0.25, such that β =0.18. For this
choice of η, we refer to Refs. 5 and 55. The evolution
of the EPW in the form of |δne/n0| is shown in Fig. 3,
where |δne/n0| = (kL/ωpe)|f |. The color lines in Figs.
3(a)(c)(e) and (g) represent the spatial profiles of the en-
velope of the EPW at a series of 4 time instants, from
ω0t =2683 to 10733, while Figs. 3(b)(d)(f) and (h) show
its spatio-temporal evolution. As one can see, the differ-
ent chirp values, from negative α = −10−6 to positive
+4× 10−6, alter considerably the evolution of the EPW
envelope. In the subplots (a) and (b) of Fig. 3, where
the chirp rate is negative with α = −10−6, also the reso-
nant velocity vre is negative. The rear edge of the EPW
envelope closely follows the curve governed by Eq. (9)
(indicated by the black dashed line), and it propagates
in the backward direction with velocity vre (indicated by
the black solid arrow in Fig. 3(b)); still, the front edge
propagates in the forward direction with the group ve-
locity vL of the EPW as indicated by the black dashed
arrow in Fig. 3(b). In Figs. 3(c) and (d) when no chirp
is applied, one encounters the situation as obtained in
the study by Chapman et al.4. By increasing the chirp
rate to positive values, as shown in Figs. 3(e) and (f)
where α = 10−6, the resonant velocity vre becomes pos-
itive, while it is still smaller than the group velocity vL.
The rear edge of the EPW is still well described by Eq.
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FIG. 3. Numerical solutions to the prescribed EPW Eq. (7),
showing the growth and propagation of EPW in plasma with
a positive density gradient. The spatial growth of the EPW
at different instants with different chirp rates are shown in (a)
α = −10−6, (c) α = 0, (e) α = 10−6 and (g) α = 4 × 10−6.
The black dashed lines mark the curve Eq. (9); (b)(d)(f)
and (h) show the spatial-temporal evolution of EPW with
the corresponding chirp rates in (a)(c)(e) and (g), where the
black solid arrow represents vre defined via Eq. (10), and the
black dashed arrow represents the group velocity vL of EPW.

(9), and it propagates at velocity vre, which is slower
than the front edge, propagating at group velocity vL.
Note that for this case, the maximum EPW amplitude
attained is still high, as for the case without a chirp, of
the order of 0.1. Now, increasing the chirp rate to a value
above the critical chirp value, namely αc = 2.3 × 10−6,
as illustrated in Figs. 3(g) and (h) where α = 4× 10−6,
the resonant velocity vre then is higher than the group
velocity vL. In this case, the front edge of the EPW
propagates at the resonant velocity vre, while, now, the
rear edge propagates at group velocity vL. This has the
consequence that the EPW can no longer follow the solu-
tion associated with Eq. (9), which is clearly observable
in inspecting the no longer parabolic shape of the EPW
rear edge and the much smaller amplitudes attained with
respect to the cases with a smaller chirp. The four cases
mentioned above show that the choice of an adequate fre-
quency chirp yields the potential to detune the resonance
or break the phase-locking during the interaction, which
provides a new route to suppress SRS.

It is worth noting that the formalism of Eq. (10) is in-
dependent of the kinetic factor η or β. Indeed by setting
η = 0, we have seen a similar feature, i.e., the excitation
of EPW happens inside the domain, whose one boundary
propagates with vL and another one propagates with vre.
This results naturally from the cancellation between the
detuning brought by frequency chirp and the resonance
mismatch due to density inhomogeneity. The participa-
tion of the nonlinear frequency shift could adjust this
cancellation, and the adjustment makes the EPW profile
be well predicted by Eq. (9).
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FIG. 4. Numerical solutions of the prescribed EPW Eq. (7),
showing the spatial variation of the phase Ψ in the complex
envelope of EPW at one instant, where Ψ = Arg(f ) − ψ.
The chirp rates α in (a)(b)(c) and (d) are smaller than αc.
An apparent phase-locking region is shown, where phase Ψ is
locked at around π/2. The shadows mark the growing region
of EPW. In (e) and (f) with α larger than αc, no obvious
phase-locking region is observed inside the shadow.

To further understand the physics of the EPW exci-
tation governed by the frequency chirp, the mismatch
from resonance, and the frequency shift due to nonlin-
ear kinetic EPW, we extract the phase Arg(f ) from the
complex amplitude of the EPW, and calculate its differ-
ence to the chirp phase ψ, namely, Ψ = Arg(f )−ψ. The
snapshots of sin(Ψ)-value of the phase Ψ at one time in-
stant, but for different chirp rates, are shown in Fig. 4
(blue solid lines). The shadows mark the areas where
EPWs are driven. The chirp rate α ranges from −10−6

to 4 × 10−6, and the resonant velocity vre varies from
negative to positive values, up to the range when the
resonance point moves faster than the group velocity,
i.e., vre > vL. For the choice of chirp rates α < αc
in Figs. 4(a-d), the corresponding velocity vre is slower
than the group velocity vL. The quantity Ψ is locked
around π/2, yielding sin(Ψ) ≈ 1 within the shadow. This
phase-locking promotes the growth of the EPW. While
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in Figs. 4(e) and (f), the chirp rate α exceeds αc, leading
to vre > vL, for which a stable phase-locking area cannot
be established. The breaking of phase locking suppresses
the growth of the EPW, as one sees in Fig. 3(g) or (h).

The spatio-temporal evolution of sin(Ψ) is shown in
Fig. 5 for the two cases with α = 2 × 10−6 in (a) and
3 × 10−6 in (b). These two values of α are respectively
located at two sides of the critical value αc. Obviously,
a stable phase-locking area is established in Fig. 5(a),
where the black ellipse marks the region in which the
EPW is excited. On the contrary, the phase-locking is
destroyed for the larger positive chirp rate in Fig. 5(b).
Both Fig. 4 and Fig. 5 suggest that the choice of the
chirp rate can determine whether an apparent phase-
locking exists or not, and this can lead to enhancement
or mitigation of the SRS.

FIG. 5. Spatio-temporal evolution of the phase Ψ for different
chirp rates, where Ψ = Arg(f )−ψ. The black ellipses indicate
the area where the EPW is excited. The critical value αc is
located between α = 2× 10−6 (a) to α = 3× 10−6 (b).

Considering the existence of the phase-locking for α <
αc, it allows us to develop a model to estimate the limit
of the EPW amplitude, as it is driven when the phase-
locking can be maintained. Our model is based upon the
variational approach, which is analogous to that in Refs.

4, 56, and 57. By substituting f̂ = |f̂ |eiΨ into Eq. (8),
one obtains

∂tJ

vL
+ ∂xJ=

2P

vL
J1/2 cos(Ψ), (12)

∂tΨ

vL
+ ∂xΨ= − P

vLJ1/2
sin(Ψ)− δω/vL, (13)

where J = |f̂ |2 is the action of the system. Within the
phase-locking area, the phase is locked at Ψ ≈ π/2, and
the action J can be divided into a slowly varying average
action J̄ and a perturbation Σ, such that J = J̄ + Σ.
Following the variational process similar to Ref. 4, a
Hamiltonian system H = H(x,Ψ,Σ) can be established,

H =
1

2M
(MΣ)2 + Vl + Vo, (14)

which describes a pseudo-particle with the effective
pseudo-mass M moving in a pseudo-potential. The
pseudo-potential can be divided into the linear part Vl

and the oscillatory part Vo, given by

Vl= Ψ
[α(1− vL) + vLk

′
]/vL − [α(1− vL)]/v2

L

M
, (15)

Vo= −
2P

vL
J̄1/2 sin(Ψ), (16)

and M = β/(4vLJ̄
3/4) + P/(2vLJ̄

3/2). Clearly, if
the pseudo-particle remains trapped inside the pseudo-
potential, keeping a small oscillation around a locked
value of Ψ, the force coming from Vo should be strong
enough as compared to the force coming from Vl, result-
ing in a local minimum in the pseudo-potential. Then
the condition is given by∣∣∣∣dVodΨ

∣∣∣∣
max

>

∣∣∣∣dVldΨ

∣∣∣∣ , (17)

which yields

J̄1/4 <
Pβ

2[α(1− vL) + vLk
′ ](vL − vre)

. (18)

Here we takeM≈ β/(4vLJ̄3/4), which is a good approx-
imation for the parameters given earlier. In absence of
chirp, inequality (18) returns back to the one mentioned
in Ref. 4. In the particular case, when increasing α to
approach αc, i.e., vre approaching vL, the right-hand-
side of inequality (18) diverges, indicating that there is
no limitation on the EPW’s growth. Moreover, when α
exceeds αc, i.e., vre exceeding vL, the right-hand-side
term of (18) becomes negative. Both situations make no
physical sense. These non-physical situations exactly in-
validate the assumption of phase-locking. Namely, this
illustrates that the frequency chirp can destroy the phase-
locking provided the chirp rate α approaches or exceeds
αc. In this case, the resonant velocity vre becomes faster
than the group velocity vL, and under which the mitiga-
tion of the EPW amplitude is expected. This is what we
see in Figs. 3(g)(h) and Figs. 4(e)(f).

In Fig. 6 we have plotted the squares of the right-
hand-side values of inequality (18) as a function of α for
α < αc. In the same plot, we also show the numerically
determined maximum EPW amplitude |δne/n0|m, either
with or without kinetic effects included. Typically, the
maximum amplitude |δne/n0|m in the absence of kinetic
effects shown by the blue diamond line is smaller, where
the dominant detuning mechanisms are density inhomo-
geneity and frequency chirp. Only when these two terms
cancel each other, a peak value appears. Namely, vLk

′
x

cancels α(x− t)(1− vL) by replacing t by x/vre, and vre
equals to vL with α = αc.

However, by taking into account the kinetic frequency
shift, the value of |δne/n0|m shown by the red circular
line is higher than that in the former case with α < αc.
This is due to the broadened phase-locking area discussed
above, which promotes the growth of the EPW. Mean-
while, the tendency of this part in the red circular line is
well described by the black dashed line, the upper limit
of inequality (18). For α > αc, the frequency chirp is
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FIG. 6. The maximum |δne/n0|m found from the numerical
computation is shown as a function of the chirp rate α either
with or without considering the kinetic frequency shift by
setting η = 0.25 or η = 0. The black dashed line is the upper
limit in inequality (18) for α < αc.

able to break the phase-locking. Subsequently, the value
of |δne/n0|m returns to that shown by the blue line. In
addition, the interval α ∈ (0, αc] marked by the shadow
is regarded as the transition region.

IV. PARTICLE-IN-CELL SIMULATIONS

A. Simulation setup

Kinetic simulations, by using the one (1D) and two-
dimensional (2D) version of the electromagnetic PIC
code EPOCH58, have been performed to investigate the
effects of frequency chirp in SRS. All the simulations
presented here have been carried out in the same ge-
ometry. The plasma parameters are the same as that
mentioned in Sec. III, with the plasma density profile
ne = 0.05ncr(1 +x/1790), and with the electron temper-
ature Te = 1keV. Ions are set to be fixed as a neutral
background. In the 1D case, the simulation window has a
length of k0Lx = 2864, and a k0Lp = 2685 plasma slab is
chosen with approximately k0Lv = 90 vacuum space on
either side of the plasma region. In the 2D case, to limit
the computational expense, the longitudinal and trans-
verse sizes of the simulation window are k0Lx = 1970 and
k0Ly = 215, respectively, with a k0Lp = 1790 plasma
slab. The laser used in the 2D case is a Gaussian beam
injected from the left side with F = 5, the f-number of
the laser, and focused at k0x = −180 in the longitudinal
direction and at the middle of the transverse direction.
This 2D configuration is motivated by finding a path to
decrease the coupling between the incident pump laser
and EPW through frequency chirp, thereby mitigating
the SRS.

-1000 -500 0    500  

0

0.1

0.2

FIG. 7. Snapshots of the EPW amplitude, taken at time
ω0t = 4830, for different chirp rates obtained from 1D PIC
simulation. The EPW is driven by two counter-propagating
electromagnetic fields (pump and seed) in a plasma profile
with a positive density gradient. The black dashed lines rep-
resent the curve of Eq. (9).

B. 1D PIC simulation results

Firstly, to validate the above theory and Eq. (9)
and Eq. (10), a single-mode of EPW is driven by two
counter-propagating electromagnetic fields. The incident
pump laser field is injected from the left side with an
intensity of I0λ

2
0 = 6.16 × 1014W/cm2µm2, while the

seed light is injected from the right side with I1λ
2
1 =

2.24×1012W/cm2µm2. The choice of wavelengths should
satisfy the matching condition at one reference point.
Here this reference point is taken at k0x = 0 with density
ne0 = 0.05ncr.

The EPW amplitudes corresponding to the different
choices of the chirp rate α at one time instant are shown
in Fig. 7, accompanied by the curves that correspond
to Eq. (9). The density perturbation |δne/n0| have been
deduced from the longitudinal electrical field Ex via Pois-
son’s equation |δne/n0| = |Ex|ε0kL/(nee). The compari-
son illustrates that the key features showing the influence
of the frequency chirp on the EPW evolution, indicated
in Sec. III, are reproduced. As stated above, the three
detuning mechanisms including the frequency chirp, the
resonance mismatch from density inhomogeneity, and the
non-negligible kinetic effects together lead to the evolu-
tion of EPW, which is described by Eq. (9). Specifically,
the rear or front edge of the EPW with the choice of the
chirp value α < αc or α > αc closely follows the parabola
curve of Eq. (9). Noting that the critical value αc de-
fined by Eq. (11) equals to 2.3 × 10−6 under the given
parameters. One can also see that the maximum EPW
amplitude as a function of α displays a similar tendency
to the red line in Fig. 6.

The spatio-temporal evolution of the EPW is shown
in Fig. 8. To highlight the effect of frequency chirp,
relatively large chirp rates have been selected with α =
±8 × 10−6. These choices can lead to quite large reso-
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FIG. 8. PIC simulation results of the evolution of the EPW
amplitude for different values of the frequency chirp. (a), (c),
and (e) show the spatial growth of EPW at a series of instants
with the corresponding chirp rates α = −8× 10−6 (a), α = 0
(c), and α = 8 × 10−6 (e). The black dashed lines mark the
curve of Eq. (9); (b), (d), and (f) show the spatio-temporal
evolution of EPW with the corresponding chirp rates in (a),
(c), and (e), the black solid arrow represents resonant velocity
vre defined via Eq. (10), and the black dashed arrow repre-
sents the group velocity vL of EPW.

nant velocities vre, such that the front or rear parts of the
EPW can propagate over a long distance within a short
time window. The EPW amplitudes taken from PIC sim-
ulations in a series of moments are shown in Figs. 8(a),
(c), and (e), and their spatio-temporal evolution is shown
in Figs. 8(b), (d), and (f), with α = −8×10−6 in (a) and
(b), α = 0 in (c) and (d), and α = 8 × 10−6 in (e) and
(f). In Figs. 8(a), (c), and (e), the black dashed line is
the curve of Eq. (9), and in Figs. 8(b), (d), and (f), the
black dashed and solid arrows represent the group veloc-
ity vL and the resonant velocity vre calculated from Eq.
(10), respectively. Again for α < αc in Figs. 8(a) and
(b), the rear part of the EPW amplitude is well described
by Eq. (9), and propagates backward at velocity vre. In
contrast to the latter, for α > αc in Figs. 8(e) and (f),
the front part of the EPW amplitude follows only roughly
the curve of Eq. (9), propagating at velocity vre.

Analogous to Sec. III, the phase-locking area ex-
tracted from the PIC simulation is shown in Fig. 9. The
phases have been extracted from PIC simulations via the
method explained in Ref. 5, using Fourier transforms
in kx-space. It deserves attention that in Fig. 4, where
a constant ponderomotive force is applied, the locking-

phase shown there is Ψ = Arg (f̂) = Arg(f ) − ψ, with
Arg(f ) being the phase carried by the complex envelope
of EPW and ψ the chirp phase. In the PIC simulation,
however, the ponderomotive force from the beating be-

FIG. 9. Spatio-temporal evolution of sin(Φ) for different fre-
quency chirp rates, with the phase defined as Φ = ϕ0−ϕ1−ϕL,
and ϕ0,1 =Arg(E0,1), E0,1 from the complex-valued envelopes
of pump laser and scattered light. The chirp phase ψ is
already introduced into ϕ0, and ϕL =Arg(f) is the phase
of the complex phase of EPW. The dark blue region with
sin(Φ) = −1 is the phase-locking area. The green solid line
represents the trajectory of spatial maximum EPW ampli-
tude.

tween the pump laser and the scattered light is not a
constant, hence the concerned locking-phase should be
Φ = ϕ0−ϕ1−ϕL, where ϕ0,1 = Arg(E0,1) with E0,1 the
complex-valued envelopes of the pump laser and scat-
tered light, ϕ0 already contains the chirp phase ψ. Here,
ϕL = Arg(f ) is still the phase of the complex-valued en-
velope of plasma waves36,59,60. Figure 9 shows the spatio-
temporal behaviour of sin(Φ), where the dark blue area
with sin(Φ) = −1 indicates the phase-locking, and the
green line is the trajectory of the spatial maximum EPW
amplitude.

For Fig. 9(a) to (d), where the frequency chirp values
are non-positive, the broad phase-locking area is estab-
lished and mainly located at the left side. This is consis-
tent with the direction of the resonant velocity vre, which
points in the opposite direction to the group velocity vL.
This phase-locking area becomes narrower as the chirp
rate α increases according to Fig. 9(a) to (d). The ten-
dency to a more limited area is related to the decreasing
absolute value of vre. This guarantees that the backward-
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FIG. 10. Reflectivity from PIC simulations under differ-
ent chirp rates. where the EPW is driven by two counter-
propagating fields, the pump laser and the seed light fields
in a plasma profile with a positive density gradient. Black
dashed lines show the initial injected seed level and the scat-
tered level expected after Rosenbluth amplification, in the
unit of pump intensity.
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FIG. 11. Reflectivity from PIC simulations under different
chirp rates, where EPW, in contrast to the case shown in
Fig. 10, is seeded via the PIC background noise (i.e., I1 =
0), together with the pump laser field. The noise level in
PIC simulations exceeds the natural broadband noise level in
plasmas.

propagating rear part of EPW could experience a clean
background with phase-locking sin(Φ) = −1 to maintain
its growth until the limit of the locking condition is met,
referring to inequality (18). When increasing the chirp
rate further to be positive as in Fig. 9(e) to (h), the
chirp rate α will cross the critical value of αc for Fig.
9(e) to (f). This leads to the change of vre from being
slower than vL to faster than vL. Obviously, within the
right-side area where the EPW is driven, vibrations in
the value of sin(Φ) arise. The larger the value of α, the

stronger are the arising vibrations as seen from Fig. 9(e)
to (h). As discussed in Sec. III, and illustrated in Figs.
8(e), (f) and Fig. 9(h), this broken phase-locking helps to
suppress the growth of EPW. Subsequently, this phase-
locking behavior not only directly impacts the growth of
EPW but also indirectly influences the SRS reflectivity.

The reflectivity defined as R = Ilhs/I0 is shown in
Fig. 10 by the colored lines, where Ilhs denotes the scat-
tered light intensity taken from the left boundary. The
EPW is driven by two counter-propagating electromag-
netic fields, the pump laser and the seed light field, in
the present case. The two dashed lines show the initial
seed intensity ε = I1/I0 in the unit of pump intensity and
the scattering level predicted by Rosenbluth’s theory3 in
the absence of any nonlinear effects, ε exp(2GR). The
temporal evolution of R is shown within ω0t=6440 to
ensure the central part of the single-mode EPW does
not reach the boundary. In the absence of chirp, the
black curve exhibits the inflationary growth of the scat-
tered light so that the reflectivity R exceeds Rosenbluth’s
prediction. This inflationary growth is accompanied by
the locking phase shown in Fig. 9(d), as explained by
the autoresonance mechanism4,5. While introducing the
frequency chirp into the pump laser with negative chirp
rates, where the red and green curves respectively show
the results with α = −8 × 10−6 and −4 × 10−6, infla-
tionary growth of the reflectivity occurs earlier than the
case without frequency chirp. This is because the choice
of a negative chirp rate leads to a broader phase-locking
area, shown in Figs. 9(a) and 9(b), which promotes the
scattering. In contrast to the choice of a negative chirp,
the blue and pink curves are for cases with positive chirp
rates, which show already mitigated scattering levels due
to the destroyed phase-locking as displayed in Figs. 9(g)
and (h).

𝑣𝐿

𝑣𝑟𝑒

𝑛𝑒 = 𝑛𝑒0(1 + 𝑥/𝐿)
Electron plasma wave

Speckle without frequency chirp

Speckle with frequency chirp

（a）

（b）

FIG. 12. Schematic presentation of EPW excitation in a 2D
configuration with a laser speckle. (a) Without frequency
chirp in the pump laser, the EPW propagates with group
velocity vL, where the coupling between the pump laser and
EPW can be strong as the EPW can stay inside the speckle
for a long time. (b) With a frequency chirp larger than αc,
the EPW can be dragged out of the excitation region quickly
before it grows to a high level, thus the coupling between the
pump laser and EPW could be reduced.
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FIG. 13. 2D PIC simulation results of the EPW driven by the beating between a Gaussian pump laser and a counter-propagating
plane seed wave. (a) and (b) show respectively the longitudinal spatial growth of EPW at transverse location y = 0 and the
spatial-temporal evolution of EPW at a series of instants in the absence of the frequency chirp in the pump. The black dashed
arrow in (b) marks the group velocity vL. (c) and (d) show the case with frequency chirp in the pump with α = 8 × 10−6,
the black solid arrow in (d) marks the resonant velocity vre defined via Eq. (10). The yellow solid lines in (a) and (c) are the
longitudinal intensity profiles of the pump at transverse location y = 0 in the unit of its peak intensity. And the black dashed
lines are from Eq. (9). The envelopes of the laser speckles are represented by the yellow ellipses in (b) and (d).

In the preceding case, the EPW carrying a single fre-
quency is excited by two counter-propagating light fields
with I1 6= 0. We now consider the growth of the SRS re-
flectivity for the more realistic case where the backscat-
tered light is seeded by the background noise in the
plasma, which exists naturally due to the electron density
fluctuations. For this case, we consider letting I1 = 0.
A similar behavior of the reflectivity R is found in Fig.
11. The negative choice of chirp rates leads to more sig-
nificant inflationary growth than that in the absence of
chirp, while it shows a severely mitigated level by taking
positive chirp rates.

C. 2D PIC simulation results

In Sec. IV B, the impact of frequency chirp on EPW
excitation, phase-locking phenomenon, and the reflectiv-
ity from SRS were discussed in the 1D configuration,
where the pump laser intensity remains constant along
the longitudinal direction unless the pump depletion is
significant. Although the resonant velocity vre, at which
the central growing part of EPW propagates, may be

faster than the group velocity vL of the EPW, and the
phase-locking is damaged provided the chirp rate α > αc,
the EPW still feels the strong pump laser intensity in the
1D case.

Considering spatially smoothed lasers25, in which a
laser beam consists of numerous hot spots or speckles,
EPWs are driven initially inside those hot spots, whose
intensity is locally at a high level61,62. An intense speckle
has a longitudinal size k0l‖ ∼ 2π2F 2 and a transverse size
k0l⊥ ∼ 2πF . The EPW driven inside the speckle prop-
agates at the group velocity vL in the absence of chirp,
as indicated in Fig. 12(a). When the longitudinal size
of the speckle is relatively long, corresponding to a big
f-number, the EPW could be amplified over a long dis-
tance and the onset of kinetic inflation for SRS can be
expected. However, if frequency chirp is introduced into
the laser with α > αc, the excited EPW would move
out of the intense speckle more quickly, and meanwhile
the phase-locking is destroyed. Hence the reduction of
the coupling between the EPW and the pump laser is
expected as indicated in Fig. 12(b).

To illustrate this scenario in our 2D simulations, the
peak intensity of the Gaussian laser beam is chosen
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to be I0(peak)λ2
0 = 8.62 × 1014W/cm2µm2, and a

counter-propagating wave as the seed light is injected
from the right side with the intensity I1λ

2
1 = 1.57 ×

1012W/cm2µm2. This seed light has a Gaussian inten-
sity profile ∼ exp(−(y/w)2) in the transverse direction,
where k0w = 35 ≈ 2πF . Still, the wavelengths of the
pump and seed are chosen to allow the matching condi-
tion to be satisfied at the plasma center.

Significant spatial growth of EPW in the 2D config-
uration is seen in Fig. 13. Autoresonance behavior is
exhibited in Fig. 13(a) in the absence of chirp, where
snapshots of the EPW amplitude are at three instants at
the transverse position with k0y = 0, the transverse cen-
ter of the intense speckle. The growth of the EPW closely
follows the curves governed by Eq. (9). The yellow solid
line represents the laser intensity profile I0(x, y = 0)
along the longitudinal direction in the unit of its peak
value I0(peak). Within the time window of our simula-
tion, the EPW propagates at group velocity vL (the black
dashed arrow) and stays inside the speckle as shown in
Fig. 13(b), thus robust amplification of the EPW is ex-
pected due to the local intense spot. The envelope of
the speckle is marked by the ellipses. In the presence
of chirp with α = 8 × 10−6 > αc, Figs. 13(c)(d) show
that the EPW exhibits a faster propagation speed at the
resonant velocity vre, which moves out of the speckle at
ω0t = 3435, as shown in Fig. 13(d), where the black solid
arrow represents the velocity vre defined by Eq. (10).

FIG. 14. The EPW amplitudes in x− y-space taken at ω0t =
5044. The EPW is driven by the beating between a Gaussian
pump laser and a counter-propagating seed wave. The cases
without and with frequency chirp are indicated in the top
and bottom panels, respectively. The envelopes of the laser
speckles are represented by the yellow ellipses.

In addition, the subsequent evolution of EPW at
ω0t =5044 is recorded in Fig. 14. Without applying
chirp, see top panel, the EPW evolves into a nonlinear
stage where the autoresonance limit is reached. Self-
focusing of the EPW occurs inside the speckle63, sug-
gesting strong excitation of EPW. In the bottom panel,

FIG. 15. 2D PIC simulation results of SRS with and without
frequency chirp in the pump laser, where the SRS is seeded
by the background noise in plasma. (a) Comparison of the
contours in x − y-space of the EPW amplitude between the
two cases without and with the frequency chirp (α = 8×10−6)
at ω0t = 4293; (b) Electrons velocity distribution at a series
of time instants; (c) Temporal evolution of 〈|Ex|2〉 for the
averaged EPW activity (left axis) inside the domain k0y ∈
[−35, 35], and SRS reflectivities (right axis).

where frequency chirp is applied, the EPW propagates
up to a position far away from the speckle. The lo-
cal laser intensity at this position is much lower than
at speckle peak intensity. Since in our simulation case,
the counter-propagating seed light is always injected, the
ponderomotive force outside the speckle is still strong,
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making the difference of EPW amplitudes between the
two cases not much apparent. However, in realistic sit-
uations, SRS is only seeded by the background electron
density fluctuations. The effect of frequency chirp on
mitigating the scattering is much more significant than
in the former case. For the case when the seed light
field is switched off, Fig. 15(a) shows the EPW when
comparing the cases without and with frequency chirp.
The EPWs are obviously excited inside and outside the
speckle in the case without a chirp. Furthermore, signif-
icant trapped-particle effects result in a plateau around
the phase velocity (the vertical black dashed line) in the
VDF of electrons, as indicated in the top panel of Fig.
15(b). This trapping effect leads to a nonlinear frequency
shift and the reduced Landau damping of EPW. The in-
flationary growth of SRS6 is expected as shown in Fig.
15(c). Meanwhile, hot electrons generated in an intense
speckle can then potentially decrease the SRS threshold
of the neighboring less-intense speckles as stated in Ref.
53. This has not been verified in our study where we
have considered a single speckle.

By introducing a laser chirp rate with α = 8× 10−6 >
αc, the EPW initially excited inside the intense speckle
moves quickly out of the speckle. Namely, the time
2π2F 2/vre for which the EPW stays inside the speckle
can be shorter than the interaction time. Thus the EPW
propagates out of the speckle before it grows to a high
level. As a result, no obvious EPW is excited as shown
in the bottom panel of Fig. 15(a). Subsequently, no hot
electrons are generated as shown in the bottom panel
of Fig. 15(b). Meanwhile, the temporal evolution of
〈|Ex|2〉 or the averaged EPW activity inside the domain
k0y ∈ [−35, 35] is shown in Fig. 15(c) by the blue lines.
This simulation shows again that a large laser frequency
chirp rate can suppress the growth of EPW, and decrease
the coupling between the EPW and the incident laser,
then lead to strongly mitigated reflectivity, as shown by
the red solid line in Fig. 15(c).

V. CONCLUSIONS AND DISCUSSION

We have presented a theoretical model to describe the
effects of laser frequency chirp on SRS. It is based upon
the governing equation for the EPW driven by the pon-
deromotive force due to the beating between the pump
laser with a frequency chirp and the scattered light. The
spatio-temporal evolution of the EPW is analyzed based
on the governing equation. A propagation velocity vre
for the resonant EPW excitation is identified with Eq.
(10), which results from the cancellation between the de-
tuning brought by the frequency chirp and the resonance
mismatch due to an inhomogeneous plasma density pro-
file. It is found that the propagation of the central part
of the EPW essentially follows the velocity vre, which is
the velocity with which the SRS resonance point in the
plasma profile moves in the presence of a chirp. This mo-
tion with vre can be faster than the group velocity of the

EPW provided the chirp rate is larger than the critical
value αc = v2

Lk
′
/(1 − vL)2. Particularly, in the kinetic

regime, where the kinetic inflation occurs, the nonlinear
kinetic effects can adjust this cancellation and modify
the evolution of the EPW, which is well described by
the solution Eq. (9). Also the impact of the frequency
chirp on the phase-locking phenomenon associated with
the EPW excitation is discussed. It is found that a neg-
ative frequency chirp rate can make the phase-locking
area broader and thus promote the growth of the EPW
and, subsequently, the growth of the SRS. However, a
positive frequency chirp, especially for α > αc, can de-
stroy this phase-locking and thus suppress the instability.
Note the dramatically different effects between the posi-
tive and negative frequency chirps on the SRS excitation
even though their overall laser frequency spectra are the
same.

One and two-dimensional kinetic PIC simulations have
been carried out which reproduce the essential properties
obtained from the envelope equation analysis. It is con-
firmed that for the chirp parameter α > αc, the breaking
of the phase-locking due to the frequency chirp not only
suppresses the growth of EPW, but also mitigates the
scattering reflectivity. Considering a single speckle in the
two-dimensional configuration, it is found that the EPW
initially driven inside the speckle can move quickly out of
the zone of peak intensity for a proper choice of the chirp
rate. In simulations with three-dimensional geometry we
expect that the physics remains qualitatively very similar
to the two-dimensional case, with a quantitative change
concerning the lateral loss of escaping particles. By re-
ducing the coupling between the EPW and the pump
laser in this manner, the EPW amplitude, hot electron
production, and scattering reflectivity are significantly
mitigated as compared to the case without a frequency
chirp.

Although only a single speckle is considered here, our
study suggests a way to mitigate the kinetic inflationary
growth by introducing frequency chirp in the pump laser
with certain bandwidth values. In the case with multi-
speckle laser beams, the EPWs excited inside several in-
tense speckles generally would lead to kinetic inflationary
scattering, and the hot electrons created in the speckles
would result in reduced nonlinear Landau damping, in-
directly decreasing the SRS threshold in the neighboring
speckles53,61,62. As mentioned above, when a proper fre-
quency chirp is introduced, the EPW excited in speckles
may quickly leave the region of vigorous interaction be-
fore it grows to a high level. Subsequently, the EPW will
experience the Landau damping after leaving the area,
where the Landau damping would not be reduced due to
the small production of hot electrons. This damping can
then dissipate the EPW quickly. As a consequence, the
EPW excited in a speckle has then a negligible influence
on the neighboring speckles. Therefore, the local and
global SRS scattering can be mitigated by introducing a
proper frequency chirp.

Generally, beams with speckle structure due to optical
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smoothing are used in the context of laser-plasma exper-
iments, with pulse duration between a few ps and hun-
dreds of ps. Experiments with a small number of speckles
have been carried out in the past to study SRS also in
the kinetic regime, based on relatively short pulses using
chirp64,65. However, the available facility (ELFIE at the
LULI facility) had certainly moderate chirp rates. For
longer laser pulse duration, beyond tens of ps, relatively
high chirp rates considered in our discussion above may
also not be realistic.

Note that the speckles located at the different positions
in the direction of laser propagation would encounter dif-
ferent central frequencies 1 + αt, so that the SRS inside
speckles from subsequent layers would be driven inde-
pendently in inhomogeneous plasmas. Hence to miti-
gate the SRS inside different speckles, the condition of
α > αc should be satisfied locally. The frequency shift
arising during the time that the EPW needs to propa-
gate through the speckle, i.e., from the center to the rear
of the speckle, namely, 2απ2F 2/vre should be not more
than a few percent. This criterion limits the validity of
our model.

Considering the recently reported experimental results
in Ref. 2, SRS signatures have been observed from den-
sities inferred to be near ncr/4 and at lower densities
(∼ 0.15 to 0.21ncr, where ncr is the critical density for
laser wavelength λ0 = 0.351µm), with the density scale
lengths, L = 400 to 700µm, electron temperatures of
Te =3 to 5KeV and the focusing F -number of 8. In order
to mitigate SRS for at least 10ps under these conditions,
it is required that α > αc in every speckle, which corre-
sponds to the minimum value of α is 3.5×10−6. The fre-
quency shift 2απ2F 2/vre inside a speckle is then about
5%; the latter guarantees that our model and analysis
in Sec. III can be applied in speckles under these pa-
rameter conditions. Meanwhile, in another experiment
relevant for shock ignition1, SRS was mainly driven in
the electron density range between 0.03ncr and 0.07ncr
(with ncr for laser wavelength λ0 = 0.527µm) with the
density scale length L = 400µm, electron temperatures
in the range of 1–1.2 keV, and focusing f-number of 2.5.
To satisfy α > αc in speckles and mitigate SRS for at
least 10ps, the minimum value of α is 7.4× 10−7, with a
frequency shift 2απ2F 2/vre inside any speckle of about
0.3%. Both requirements are smaller than that in the
former case by one order of magnitude.

Due to technological constraints in major laser facili-
ties using Nd-glass lasers, the wavelength shift by chirp
for a pulse duration of hundreds of ps can hardly exceed
1nm for 3ω, which means that the linear chirp rate α
cannot be more than 5.3×10−9 for 3ω being by orders of
magnitude below the requirements discussed above. For
frequency doubled (2ω, ‘green’) Nd-glass laser light, us-
ing a technique with Nitrogen gas66, the circumstances to
achieve stronger wave length shifts seem to be more favor-
able since higher bandwidth values have been achieved,
namely up to 8 THz.67–69.

However, the results of our work can be applied to

laser speckles of smoothed laser beams, as long as the
laser pulse can contain several speckle layers, such that
c tpulse & Lbeam with a beam length typically determined

by Lbeam ∼M(Fλ0L⊥)1/2 with M as a numerical factor
and L⊥ (� Fλ0) denoting the total beam width.70
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Appendix: Regarding the role of non-zero t0 on EPW
excitation

Eq. (9) is obtained by setting x0 = t0 = 0, for sim-
plicity. Here we briefly discuss the effects of non-zero t0
on EPW excitation, but still set x0 = 0 without the loss
of generality. The choice of non-zero t0 means a non-
zero initial phase ψ = −αt20/2 in the central plasma. In
terms of frequency, non-zero t0 values correspond to an
initial frequency shift term −αt0 relative to the laser fre-
quency ω0, thus, we have a new initial laser frequency,
ω′0 = 1−αt0. We consider the complete phase carried by
the laser field,

θ= x− t− α[x− (t− t0)]2/2, (A.1)

Taking k′0 = 1 − αt0, ω′0 = 1 − αt0, α′ = α(1/ω′0)2 and
x′ = k′0x, t′ = ω′0t, one obtains

θ= (1− αt0)x− (1− αt0)t− α[x− t]2/2− αt20/2,
= x′ − t′ − α′[x′ − t′]2/2.
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The constant term −αt20/2 is dropped for not influ-
encing the solution. Now the resulting chirp phase is
ψ′ = −α′(x′ − t′)2/2, which has the same form as Eq.
(4) by taking x0 = t0 = 0. The latter we have adopted
to perform our analysis in Sec. III. This confirms that
taking t0 = 0 for simplicity in Sec. III is reasonable and
does not lose generality.

However, it is important to emphasize that the dif-
ferent values of t0 matter when considering optically
smoothed laser beams, which consist of numerous speck-
les. The speckles located at the different positions in the
direction of laser propagation would encounter different
t0, thus the central frequencies of different speckles are
ω′0 = 1−αt0, and the SRS inside different speckles layers
may be driven independently. However, the SRS inside
different speckles still follows the analysis and modeling
in Sec. III, provided that SRS is in the kinetic regime.

REFERENCES

1G. Cristoforetti, S. Hüller, P. Koester, L. Antonelli, S. Atzeni,
F. Baffigi, D. Batani, C. Baird, N. Booth, M. Galimberti, and
et al., High Power Laser Science and Engineering 9, e60 (2021).

2M. Rosenberg, A. Solodov, W. Seka, R. Follett, J. Myatt,
A. Maximov, C. Ren, S. Cao, P. Michel, M. Hohenberger, et al.,
Physics of Plasmas 27, 042705 (2020).

3M. N. Rosenbluth, Physical Review Letters 29, 565 (1972).
4T. Chapman, S. Hüller, P. E. Masson-Laborde, W. Roz-
mus, and D. Pesme, Physics of Plasmas 17, 122317 (2010),
https://doi.org/10.1063/1.3529362.

5T. Chapman, S. Hüller, P. E. Masson-Laborde, A. Heron,
D. Pesme, and W. Rozmus, Phys Rev Lett 108, 145003 (2012).

6S. J. Spencer, A. G. Seaton, T. Goffrey, and
T. D. Arber, Physics of Plasmas 27, 122705 (2020),
https://doi.org/10.1063/5.0022901.

7M. Luo, S. Hüller, M. Chen, and Z. Sheng, Physics of Plasmas
29, 032102 (2022), https://doi.org/10.1063/5.0078985.

8J. J. Thomson and J. I. Karush, The Physics of Fluids 17, 1608
(1974), https://aip.scitation.org/doi/pdf/10.1063/1.1694940.

9G. Laval, R. Pellat, D. Pesme, A. Ramani, M. N. Rosenbluth,
and E. A. Williams, The Physics of Fluids 20, 2049 (1977),
https://aip.scitation.org/doi/pdf/10.1063/1.861824.

10W. Kruer, The physics of laser plasma interactions (crc Press,
2019).

11D. Eimerl and A. J. Schmitt, Plasma Physics and Controlled
Fusion 58, 115006 (2016).

12A. Fusaro, P. Loiseau, D. Penninckx, G. Riazuelo, and R. Collin,
Nuclear Fusion 61, 126049 (2021).

13R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H.
Froula, and J. P. Palastro, Physics of Plasmas 26, 062111 (2019),
https://doi.org/10.1063/1.5098479.

14R. K. Follett, J. G. Shaw, J. F. Myatt, H. Wen, D. H. Froula,
and J. P. Palastro, Physics of Plasmas 28, 032103 (2021).

15Y. Zhao, S. Weng, M. Chen, J. Zheng, H. Zhuo, C. Ren,
Z. Sheng, and J. Zhang, Physics of Plasmas 24, 112102 (2017),
https://doi.org/10.1063/1.5003420.

16S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring,
and J. M. Soures, J. Appl. Phys. 66, 3456 (1989).

17J. E. Rothenberg, J. Opt. Soc. Am. B 14, 1664 (1997).
18J. Garnier, L. Videau, C. Gouédard, and A. Migus, J. Opt. Soc.

Am. A 14, 1928 (1997).
19J. E. Rothenberg, Journal of Applied Physics 87, 3654 (2000),

https://doi.org/10.1063/1.372395.
20E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan,

J. E. Rothenberg, and E. A. Williams, Physics of Plasmas 5,
2701 (1998), https://doi.org/10.1063/1.872957.

21S. Hüller, P. Mounaix, and V. T. Tikhonchuk, Physics of Plasmas
5, 2706 (1998), https://doi.org/10.1063/1.872958.

22H. H. Ma, X. F. Li, S. M. Weng, S. H. Yew, S. Kawata, P. Gibbon,
Z. M. Sheng, and J. Zhang, Matter and Radiation at Extremes
6, 055902 (2021), https://doi.org/10.1063/5.0054653.

23H. Wen, R. K. Follett, A. V. Maximov, D. H. Froula, F. S. Tsung,
and J. P. Palastro, Physics of Plasmas 28, 145003 (2021).

24P. N. Guzdar, C. S. Liu, and R. H. Lehmberg, Physics of Fluids
B: Plasma Physics 3, 2882 (1991).

25J. Garnier, Phys. Plasmas 6, 1601 (1999).
26D. A. Russell, D. F. DuBois, and H. A. Rose, Physics of Plasmas
6, 1294 (1999).

27L. Yin, B. J. Albright, H. A. Rose, K. J. Bowers, B. Bergen,
D. S. Montgomery, J. L. Kline, and J. C. Fernández, Physics of
Plasmas 16, 113101 (2009).

28L. Yin, B. J. Albright, H. A. Rose, D. S. Montgomery, J. L.
Kline, R. K. Kirkwood, P. Michel, K. J. Bowers, and B. Bergen,
Physics of Plasmas 20, 012702 (2013).

29D. Strickland and G. Mourou, Optics Communications 55, 447
(1985).

30R. Nuter and V. Tikhonchuk, Phys. Rev. E 87, 043109 (2013).
31B. Ersfeld and D. A. Jaroszynski, Phys. Rev. Lett. 95, 165002

(2005).
32G. Vieux, A. Lyachev, X. Yang, B. Ersfeld, J. P. Farmer,

E. Brunetti, R. C. Issac, G. Raj, G. H. Welsh, S. M. Wiggins, and
D. A. Jaroszynski, New Journal of Physics 13, 063042 (2011).

33V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 84,
1208 (2000).

34F. Amiranoff, C. Riconda, M. Chiaramello, L. Lancia, J. R.
Marquès, and S. Weber, Physics of Plasmas 25, 013114 (2018),
https://doi.org/10.1063/1.5019374.

35M. Chiaramello, F. Amiranoff, C. Riconda, and S. Weber, Phys
Rev Lett 117, 235003 (2016).

36S. Hüller, P. Mulser, and A. M. Rubenchik, Phys. Fluids B 3,
3339 (1991), https://doi.org/10.1063/1.859994.

37L. Friedland and A. Shagalov, Physical Review E 89, 053103
(2014).

38L. Friedland, G. Marcus, J. Wurtele, and P. Michel, Physics of
Plasmas 26, 092109 (2019).

39P. Khain and L. Friedland, Physics of Plasmas 14, 082110 (2007),
https://doi.org/10.1063/1.2771515.

40P. Khain and L. Friedland, Physics of Plasmas 17, 102308 (2010),
https://doi.org/10.1063/1.3500246.

41J. Faure, J.-R. Marquès, V. Malka, F. Amiranoff, Z. Najmudin,
B. Walton, J.-P. Rousseau, S. Ranc, A. Solodov, and P. Mora,
Phys. Rev. E 63, 065401 (2001).

42T.-W. Yau, C.-J. Hsu, H.-H. Chu, Y.-H. Chen, C.-H. Lee,
J. Wang, and S.-Y. Chen, Physics of Plasmas 9, 391 (2002),
https://doi.org/10.1063/1.1430251.

43C. B. Schroeder, E. Esarey, B. A. Shadwick, and
W. P. Leemans, Physics of Plasmas 10, 285 (2003),
https://doi.org/10.1063/1.1528901.
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