
Structured Shape-Patterns from a Sketch: A Multi-Scale Approach
Supplementary Material

In this supplementary material, we first provide some computational
details of the analysis. Sect. 2 describes the overlap control in the
synthesis steps of our method. Sect. 3 provides details of the user
study that we performed to validate our results.

1 FINE-TO-COARSE ANALYSIS: COMPUTATIONAL DETAILS

1.1 From Strokes to Shapes

We compute the centroid of a stroke as follows. We first determine
whether a stroke can be considered as opened or closed by computing
the distance between its first point and last point. If it is considered
opened then we define its centroid as the mid-point between its first
point and last point; if it is closed, the centroid is the barycenter of
the stroke coordinates. We use the Euclidean distance between two
centroids as our clustering function.

For the distance between bounding boxes, we define for each
stroke its oriented bounding box (OBB), after computing the stroke
main directions using Principal Component Analysis. The distance
between two bounding boxes is defined as follows. Each bounding
box is defined by four vertices (corners) and two main directions.
We project all eight vertices along the four main directions of the
two OBBs and check the minimum and maximum values for each
quartet of vertices. For each direction, if the minimum/maximum
of one box overlaps the minimum/maximum of the other, then the
two bounding boxes are considered overlapping and their distance is
0. Otherwise, we first compute the projection of each vertex of one
box along each segment of the other box and the opposite. Finally if
needed, we compute the distance between the vertices.

1.2 Clustering algorithms & parameters

Here are more details on our clustering algorithms and their parame-
ters. To cluster bounded strokes into bounded shapes, we rely on the
bounding box distance presented above and we compute the pair-
wise distance between the input strokes. For this clustering, we use a
classical clustering algorithm and we group the bounding boxes that
are intersecting (distance threshold of 0). To cluster central points
that are the closest, we are also using a classical clustering algorithm
but with the Euclidean distance and a threshold that we empirically
determined at 0.35. For the bounded segments, we first determine
the first set of clusters by grouping them by orientation, using an
implementation of the Mean Shift algorithm with a bandwidth pa-
rameter of 0.2 and the Euclidean distance on the distance between
their main direction. Then, we refine these clusters with another
Mean Shift algorithm with a distance between the segment’s centers
and bandwidth of 6.

For the fibers, we define two lines belonging to the same
anisotropy by having them either intersect and having a difference
of orientation lower than 0.05 or not intersect and having an orienta-
tion difference lower than 0.2. Finally, to refine these clusters, we
rely on our perceptual distance. We determined the bandwidth by
computing the minimal value of the data on each axis and we take
as our bandwidth the minimal value between this value and 0.1.

The table below presents a sum up of our clustering, algorithm,
distance, and parameters, respectively.

Elements Algo. Dist. Param.
Bounded box Classic bounded box 0
Point pos. Classic Euclidean 0.35
Segments or. Mean Shift Euclidean 0.2
Segments pos. Mean Shift Euclidean 6
Fibers or. Classic Euclidean 0.2
Fibers pos. Mean Shift perc. dist calculated

Note that we provide a debug menu to let the user change these
parameters if necessary.

1.3 Displacement Areas for Bounded Shapes
The displacement area of each bounded texture (represented with
dashed lines in Fig. 11 c) in the paper) is computed as the ranges
of allowed values for perturbing the position of the texture’s center
along the support median and its orthogonal direction. These ranges
are computed as follows. For each support segment, we first com-
pute the bounding box of the associated texture, using its extreme
values along the support median of the segment and the orthogonal
direction. For each support median, and based on the box position,
we first sort the segments along the orthogonal axis to the median,
to determine the allowed displacement for each, using a sweeping
algorithm. We then update the bounding box of the shapes with
these new displacement areas, before sorting these boxes along the
support median primary axis and applying the same algorithm to
determine the displacement along the orthogonal axis.

2 COARSE-TO-FINE SYNTHESIS: OVERLAP CONTROL
THROUGH CURVED STRUCTURES

The curvature computation for the ribbon borders is detailed as
follows.

In case of overlap, each ribbon will collide twice with its lead
ribbon, on both sides of IS. For symmetry reasons, we then bend
both sides of the ribbon, even if one of the intersecting regions is out
of the output domain. We keep as intersection points the ones that
are closest to the fiber median midpoint (I1 and I2 in red in Fig. 12
of the paper). Among them, one belongs to the ribbon upper border
and the other one to the lower border. This gives the direction in
which the ribbon should be bent. We project the intersection points
on the other side of the ribbon (P1 and P2 in blue in Fig. 12), as this
is where the curvature radius is the lowest. We then generate both
border curves and shift the ribbon back onto the fiber median. To
preserve continuity between the original line border of the ribbon
and its curved version, we consider the midpoints (M1 and M2 in
green in Fig. 12) between a projected point and the other intersection
point as inflection points. For each of these inflection points (M),
the key idea is to find the circle C that passes through M and remains
inside the lead ribbon, as illustrated in Fig. 12.

By symmetry, we will explain it for one border curve, the other
will be handled similarly.

The idea is to shift P along the ribbon’s secondary axis (Lm in
Fig. 12), and towards the interior of the lead ribbon. Let P′ be
the translated point and α the value of this displacement. We have
α ∈]0;αlimit [, αlimit representing the displacement to the point P′

limit



that is the intersection between Lm and the line passing by M and
following the lead ribbon principal axis (Lt in Fig. 12). Taking an
α value closer to 0 will result in a higher curvature while taking
it closer to αlimit will result in a lower curvature but in a direction
closer to the fiber median.

In the following, we use −−→nu to represent the normalized vector
of vector −→u and (xA,yA) for the coordinates of point A. To find the
radius and center of C, we have the following properties :

1. M ∈ Lt, M ∈C, and Lt is tangent to C on M,

2. P ∈ Lt, P′ ∈C, and P′ = P+α ∗ −−−−→nLm

Let a∗ x+b∗ y+ c = 0 be Lt’s line equation with a,b,c ∈ R and
a2 +b2 = 1. From the first property, we have :

−−−−→
OM = (xM − xO,yM − yO) (1)∥∥∥−−→OM

∥∥∥= RC
−−−−−→nOM =±(a,b) (2)

The sign of −−−−−→nOM depends on the curvature turn side, or more
precisely if −−−−−→nOM is in the same direction as the normal of the fiber
median direction. From these equations, we obtain:

O = M+RC ∗ −−−−−→nOM ⇐⇒
{

xO = xM ±Rc ∗a
yO = yM ±Rc ∗b (3)

From the definition of P′, we have :

P′ = P+α ∗ −−−−−→nOM ⇐⇒
{

xP′ = xP ±α ∗a
yP′ = yP ±α ∗b (4)

with α ∈ R+∗ and :

(xP′ − xO)
2 +(yP′ − yO)

2 = R2
C (5)

By replacing (xP′ ,yP′) by Eq. 4, (xO,yO) by Eq. 3, we obtain :

((xP±α ∗a)−(xM±a∗RC))
2+((yP±α ∗b)−(yM±b∗RC))

2 =R2
C

(6)
By developing the equation and using the following properties:

• a2 +b2 = 1

• x2
P + y2

P + x2
M + y2

M −2∗ xP ∗ xM −2∗ yP ∗ xM =
∥∥∥−→MP

∥∥∥2

• P ∈ Lt and M ∈ Lt thus, a(xM − xP)+b(yM − yP) = 0.

we can reduce Eq. 5 into : α2 −2∗α ∗RC +
∥∥∥−→MP

∥∥∥2
= 0. Moreover,

by replacing RC by (τ ∗wt ) we have :

α
2 −2∗α ∗ τ ∗wt +

∥∥∥−→MP
∥∥∥2

= 0 (7)

Through this equation, we have a model to bend our fiber median
through the use of two parameters (τ and α) and the ribbon data.

We also note that Eq. 7 has a solution if τ2 ∗w2 ≥
∥∥∥−→MP

∥∥∥2
.

Indeed, from τ , w and
∥∥∥−→MP

∥∥∥ ∈ R+, we can define τmin =

∥∥∥−→MP
∥∥∥

w

and therefore ατ=τmin =
∥∥∥−→MP

∥∥∥. A value of ατ=τmin leads to a circular

arc of an angle close to π/2 that can result in a point P′ out of the
lead ribbon. In practice, we take α in the middle of the interval
defined previously and deduce τ from Eq. 7 with the relation :

τ =
α2 +

∥∥∥−→MP
∥∥∥2

2∗w∗α
(8)

Therefore, with circle C known, we can compute the intersections
of the limit line (in dashed orange in Fig. 13) with this circle.
This corresponds to the point (M′) on which we need to stop the
curve, which initially started from M. In other words, we bend
the corresponding ribbon border until reaching M′. If the latter is
out of the domain, we cut the part out of the domain, otherwise, we
successively copy and paste this curve and a reversed curve (obtained
by a mirror rotation) until reaching the output domain borders. We
apply this bending process to all the texture borders.

3 USER STUDY

This section completes Sec. 6.3 with screenshots of our online study
as well as some results from users during drawing sessions.

3.1 Drawing Session
During the drawing session, a user was asked to complete a provided
sketch in an extended domain, delimited by a black square. The
ratio between the input sketch and the output domain was 1 : 2. For
this interactive session, we ordered the tasks in increasing order of
complexity. Using a toolbox composed of a pencil and an eraser,
the user had no limit of time to achieve the tasks. Fig. 1-4 present
examples provided for the tasks and some results from the users.
In addition, most of the examples were created with a mouse by
non-artists.

For the first example, isotropic distributions were presented. The
task was to preserve the bounded shapes during their replication.
The idea was mainly to familiarize the user with the interface and
the main goal. Fig. 1 presents on the left, the provided input, and on
the right, four results from users.

For the second task, we first introduced the notion of unbounded
shapes without giving any indication to the user. We expected
users to extend and replicate the unbounded shapes to the extended
domain while avoiding overlaps both inside a group and with
another group. As depicted in Fig. 2, users globally respected the
anisotropic distributions, while some decided to create loops (see
the bottom right result).

We completed the previous example’s set of tasks by adding a
singularity with two vertical lines. We supposed that users would
extend all the curves but only replicate the horizontal ones. From
all the results and as presented in the sample in Fig. 3, most of the
outputs consist in just extending the bounded strokes to the output
domain. This task has not been considered for our validation.

Finally, we ended this drawing session with an input composed
of bounded shapes aligned in two directions. The objective was to
check whether users would preserve the anisotropic distributions.
From the results in Fig. 4, users perceived different patterns regard-
ing the anisotropic distributions of these shapes. Considering the
limited space available, users usually favored either one shape or
one direction over the other.

3.2 Selection Session
After letting users complete a provided input, they were asked
to choose one or several outputs (depending on the task) from a
provided 2D input. The goal was to pick the ones they thought to
be closest to the example. We believed that it was important for
them to see at least two alternative options, no matter what they had
drawn before. The value appearing under each choice shows the
proportion of users who picks this choice. For the last task, as users
could pick all 3D immersion choices, we affected either 1.0 if the
choice was unique, 1

2 if two choices were picked, and 1
3 if all the

solutions were considered correct.



For the first two examples illustrated in Fig. 5, the user was asked
to pick one result between two alternative methods, or none of them.
We focused these examples on unbounded shapes and on our two
less-common design guidelines, which are the non-repetition of
singularity, and no overlaps of unbounded shapes in the output if
they are not present in the input. The first input showed two groups
of strokes that are getting closer to the end of the input space. The
choice was between no overlap avoidance, a solution to overlap
avoidance or none of these outputs. Depending on the user choice
at this step, we adapted the outputs for the second example to only
focus on the replication of singular elements. The values underneath
the repetitiveness task represent the proportion of users who picked
no repetition on singular elements for the case of with and without
collision.

For this second set of comparisons, we let the user pick both
outputs if they were considered perceptually equal.

3.3 Results
To validate H1 (the fact that all alignments and groupings are in-
tentional), we asked users to draw the extended textures they imag-
ined around a series of four inputs, two for bounded shapes (each
drawn using several strokes) and two for unbounded fiber-like shapes.
Among users, 100% preserved the stroke clustering into shapes in
their sketch, and all of them but one (97%) preserved the grouping
of fiber-like shapes. Moreover, 76% respected the anisotropy direc-
tions of bounded shapes in their drawings. Moreover, the alternative
results of the second part of the study, which did not preserve stroke
clustering were never selected as correct.

H2 (the hypothesis about the explicitness of repetitiveness) was
also validated by most users. We checked whether users duplicated
the repetitive patterns in the input exemplar when manually extend-
ing the distribution to the extended output. This was always the case
for the bounded strokes, while 63% (see Fig. 3 b) bottom) elongated
but did not replicate the unbounded shapes (probably indicating
that the notion of texture was well understood for beginners). In
the second part of the user study, we provided an example with a
non-repeated elongated fiber, among repeated ones with another
orientation. 56.7% preferred the output where the isolated fiber was
not duplicated, against 40% for repetition, and 3.33% neutral.

H3 (avoiding overlaps, when not present in the input) was vali-
dated by checking the users’ drawings, with a global result of 73%
or overlap-free drawings. We also noted that 91.4% maintained
groupings and avoided overlaps between unbounded strokes when
they shared the same anisotropy direction, and the space between
groups seemed constant, whereas only 76.6% achieved it when the
input was irregular. During the second stage of the user study, we
also asked users to choose between the output from our method with
or without the curvature step (with undesired overlaps in the second
case). 54.3% chose the overlap-free output, 31.4% chose straighter
lines with more overlaps, and 14% were neutral.



Figure 1: Replication of bounded shapes: a) Provided input with empty space around it; b) Set of four outputs taken from drawings by users.

Figure 2: Unbounded shapes extension and replication without collision: a) Provided input with empty space around it; b) Set of four outputs taken
from drawings by users.



Figure 3: No replication of singularity and no overlap for unbounded shapes: a) Provided input with empty space around it; b) Set of four outputs
taken from drawings by users.

Figure 4: Bounded shapes alignments: a) Provided input with empty space around it; b) Set of four outputs taken from drawings by users



Figure 5: Comparison between overlaps or not: a) input, b) choice. Comparison between repetitiveness or not: c) input d) choice.

Figure 6: Comparison with the best state-of-the-art method Landes et al.[8].


	Fine-to-Coarse Analysis: Computational Details
	From Strokes to Shapes
	Clustering algorithms & parameters
	Displacement Areas for Bounded Shapes

	Coarse-to-Fine Synthesis: Overlap control through curved structures
	User Study
	Drawing Session
	Selection Session
	Results


