
HAL Id: hal-03706483
https://hal.science/hal-03706483

Submitted on 27 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Orthogonal considerations in the design of neural
networks for function approximation

Bruno Francois

To cite this version:
Bruno Francois. Orthogonal considerations in the design of neural networks for function approxi-
mation. Mathematics and Computers in Simulation, 1996, 41 (1-2), pp.95 - 108. �10.1016/0378-
4754(95)00062-3�. �hal-03706483�

https://hal.science/hal-03706483
https://hal.archives-ouvertes.fr

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/247084967

Orthogonal considerations in the design of neural networks for function

approximation

Article in Mathematics and Computers in Simulation · June 1996

DOI: 10.1016/0378-4754(95)00062-3

CITATIONS

13
READS

259

1 author:

Some of the authors of this publication are also working on these related projects:

HVDC inertia provision View project

Efficient Use of Renewable Energies in Albania View project

Bruno Francois

École Centrale de Lille

253 PUBLICATIONS 6,033 CITATIONS

SEE PROFILE

All content following this page was uploaded by Bruno Francois on 04 April 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/247084967_Orthogonal_considerations_in_the_design_of_neural_networks_for_function_approximation?enrichId=rgreq-0d322525ed0355d2075c584e2ae71ba4-XXX&enrichSource=Y292ZXJQYWdlOzI0NzA4NDk2NztBUzo2MTE2NTkzMTE3NTExNjhAMTUyMjg0MjM1MjY0MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/247084967_Orthogonal_considerations_in_the_design_of_neural_networks_for_function_approximation?enrichId=rgreq-0d322525ed0355d2075c584e2ae71ba4-XXX&enrichSource=Y292ZXJQYWdlOzI0NzA4NDk2NztBUzo2MTE2NTkzMTE3NTExNjhAMTUyMjg0MjM1MjY0MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/HVDC-inertia-provision?enrichId=rgreq-0d322525ed0355d2075c584e2ae71ba4-XXX&enrichSource=Y292ZXJQYWdlOzI0NzA4NDk2NztBUzo2MTE2NTkzMTE3NTExNjhAMTUyMjg0MjM1MjY0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Efficient-Use-of-Renewable-Energies-in-Albania?enrichId=rgreq-0d322525ed0355d2075c584e2ae71ba4-XXX&enrichSource=Y292ZXJQYWdlOzI0NzA4NDk2NztBUzo2MTE2NTkzMTE3NTExNjhAMTUyMjg0MjM1MjY0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0d322525ed0355d2075c584e2ae71ba4-XXX&enrichSource=Y292ZXJQYWdlOzI0NzA4NDk2NztBUzo2MTE2NTkzMTE3NTExNjhAMTUyMjg0MjM1MjY0MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruno-Francois?enrichId=rgreq-0d322525ed0355d2075c584e2ae71ba4-XXX&enrichSource=Y292ZXJQYWdlOzI0NzA4NDk2NztBUzo2MTE2NTkzMTE3NTExNjhAMTUyMjg0MjM1MjY0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruno-Francois?enrichId=rgreq-0d322525ed0355d2075c584e2ae71ba4-XXX&enrichSource=Y292ZXJQYWdlOzI0NzA4NDk2NztBUzo2MTE2NTkzMTE3NTExNjhAMTUyMjg0MjM1MjY0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ecole-Centrale-de-Lille2?enrichId=rgreq-0d322525ed0355d2075c584e2ae71ba4-XXX&enrichSource=Y292ZXJQYWdlOzI0NzA4NDk2NztBUzo2MTE2NTkzMTE3NTExNjhAMTUyMjg0MjM1MjY0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruno-Francois?enrichId=rgreq-0d322525ed0355d2075c584e2ae71ba4-XXX&enrichSource=Y292ZXJQYWdlOzI0NzA4NDk2NztBUzo2MTE2NTkzMTE3NTExNjhAMTUyMjg0MjM1MjY0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruno-Francois?enrichId=rgreq-0d322525ed0355d2075c584e2ae71ba4-XXX&enrichSource=Y292ZXJQYWdlOzI0NzA4NDk2NztBUzo2MTE2NTkzMTE3NTExNjhAMTUyMjg0MjM1MjY0MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

IMACS, Mathematics and Computers in Simulation, 41 (5-6), July 1996

 1

Orthogonal Considerations in the Design of Neural Networks For
Function Approximation

FRANCOIS B.

L2EP, E.C. Lille, Cité Scientifique BP48, 59651 Villeneuve d’Ascq, France

Tel: 20 33 53 88, Fax: 20 33 54 54, E_mail: bruno@leepi1.ec-lille.fr

ABSTRACT

 Two problems occur in the design of feedforward neural networks: the choice of the optimal
architecture and the initialization. Generally, input and output data of a system (or a function) are
measured and recorded. Then, experimenters wish to design a neural network to map exactly these
output values.
 By formulating this problem as a continuous approximation problem, this paper shows that
the use of orthogonal functions is a partial optimization in the choice of hidden functions.
 Parameters initialization is obtained by using the knowledge of input and output data in the
calculation of a discrete approximation. The hidden weights are found by constructing orthogonal
directions on which the input values are represented. The pseudo inverse is used to determine
output weights such that the Euclidean distances between neural responses and output values are
minimized.

1 Introduction

 Conventional supervised learning consists, in a first step, by setting randomly weights and
biases, and, after, updating them to reduce a quadratic cost function with a gradient descent
procedure. This technique requires a training set, of m desired output data (written

r
F), for which

the corresponding input data (
r
I) are known. A cost function, E, is usually defined as a sum of the

distances between
r
F and

r
R , the responses of the neural net fed with

r
I . Any configuration of

weights and biases, producing a global minima of E, guarantees a correct neural network output
r
R

for every input values belonging to the training set.

 It’s well known that finding this configuration with a learning algorithm can be prohibitively
slow. More over, the main method for finding the hidden layer size is to increase the hidden layer
(and so weight parameters) in a minimal network according some appropriate criteria on E
("Constructive algorithms") [1], or, to eliminate some of the weights in an oversize network
according the same criteria ("Pruning technics") [8].
 By adjusting the number of hidden units, users modify the shape of the error in the purpose
of getting a smaller global minima. Unfortunately, while the global minima is decreasing, more
local minima are created and, then, increase (again) the algorithm convergence time. A solution to
this problem is to initialize the weights near the global minima before applying weights adaptation.
But, this weights calculation is complex mainly because many equal minima may exist.

IMACS, Mathematics and Computers in Simulation, 41 (5-6), July 1996

 2

 In this paper, we determine a particular class of hidden functions which involves an unique
global minima. Afterwards, we present a weights initialization which places the cost function in the
attractive domain of the global minima. This initialization is based on the orthogonal representation,
in the hidden layer, of the information holding in

r
I , and, on the minimization of E. A learning

algorithm is detailed in section 4 to make this error fall into the global minima.

2 Particular hidden units for continuous approximation
2.1) Mathematical formulation

 Approximation theory addresses the problem of interpolating or approximating a function by
a selected function[12]. For a multilayer neural network, this selected function is a finite sum of non
linear functions. This sum is characterized by:
_ the number of hidden units, which causes the number of parameters: weights and biases
_ the non linearity of unit functions.

 Before giving the expression of this sum, let us remind that a unit "j" from a layer "a" indexed
with the character a (see figure 1) performs two tasks:

_ a linear transformation of its inputs: S W .O Bj
a

ij
a

i 1

Np
i
p

j
a= +

=∑

 where Sj
a is the summation into the unit j from the layer a

 Bj
a is the bias of unit j in layer a

 Oi
p is the output of unit i in the previous layer p

 NP is the number of units in this layer

 Wij
a is the connection weight between the unit i in the previous layer p and the unit "j" in

 layer a.
_ a non linear transformation of the resulting summation through the function (ϕ j) of unit j:

 []O Sj
a

j j
a= ϕ .

layer p layer a

Σ

.

.

.

.

.

.

.

.

.

.

.

.

ϕ j
Wij

a

WN j
a

p

W1j
a

O1
p

Oi
p

ON
p

p

Oj
aSj

a

Bj
a

figure 1: Functional description of a unit

IMACS, Mathematics and Computers in Simulation, 41 (5-6), July 1996

 3

 Consider the feedforward network (figure 2), designed to approximate a function with NI
inputs variables: I ... I1 NI

 and a single output R.

W11

ϕ 1

ϕΝH

W11
H

WΝ 1
H

=R

I

I1

WΝ Ν
I

IΝ

Σ

•
•
•

W1Ν
H

WΝ Ν
H

W11
O

WΝ 1
O

I

I
I I

I H

H

H

B1
O

B1
H

BΝ
H

H

B1
I

BΝ
I

I

Σ

Σ
•
•
•

•
•
•

Σ

Σ

•
•
•

•
•
•

O1
H

OΝ
H

O1
I

OΝ
I

I

O1
O

H

figure 2: Functional description of a neural network

 All units from the input layer I have a linear function ϕ j , their outputs are a weighted and

biased copy of the input variable Ii (for 1 i NI≤ ≤): ()O I = S B W .Ii
I

i i
I

i
I

ii
I

i= + (1)

 These unit outputs Oi

I are mixed with the hidden weights Wij
H as

 () ()S I ... I B W .O Ij
H

1 N j
H

ij
H

i 1

N
i
I

iI

I= +
=∑ (2)

and cross the non linear function ϕ j : () ()[]O I ... I S I ... Ij
H

i N j j
H

i NI I
= ϕ (3)

 As the unit from the output layer has a linear function ϕ j , this unit output is

 () () ()O I ... I S I ... I B W .O I ... I1
O

1 N 1
O

1 N 1
O

j1
O

j
H

1 Nj 1

N
I I I

H= = +
=∑ (4)

Then, the response of the neural network can be expressed as a limit sum of non linear functions

IMACS, Mathematics and Computers in Simulation, 41 (5-6), July 1996

 4

 () ()[]R I ... I W . S I ... I1 N j1
O

j j
H

1 Nj 0

N
I I

H=
=∑ ϕ (5)

with []ϕ0 ... 1= and W = B01
O

1
O

2.2) Approximation with orthogonal functions

 Providing that ϕ j are continuous, monotone, non-linear and bounded functions, a number of
papers [2], [3], [4], have proved that this feedforward network may uniformly approximate any
continuous function to an arbitrary degree of accuracy.
 The accuracy can be measured with the squared Euclidean distance:

() () ()[]E I ... I f I ... I - R I ... I1 N 1 N 1 N
2

I I I
= (6)

 () () ()[]=
=∑f I ... I - 2. W .f I ... I . S I ... I1 N

2
j1
O

1 N j j
H

1 Nj 0

N
I I I

H ϕ

 ()[] ()[]+ W .W . S I ... I . S I ... Ij1
O

k1
O

j j
H

1 N k k
H

1 Nk=0

N

j 0

N
I I

HH ϕ ϕ∑∑ =

 For a continuous variation of the input variables I ... I1 N I
in respective domains ∆ ∆I ... I1 N I

,
the sum of this distance defines the L2 norm:

()E ... f I ... I dI ...dI - 2. W .C
I

1 N
2

1 N
I

j1
O

jj 0

N

1

I I

NI

H= ∫ ∫ ∑ =
∆ ∆

 ()[] ()[]+ W .W S I ... I . S I ... I d I ...d Ij1
O

k1
O

I
j j

H
1 N k k

H
1 N

I
1 Nk=0

N

j 0

N

1

I I

NI

I

HH

∆ ∆
∫ ∫∑∑ =

ϕ ϕ (7)

with () ()[]C ... f I ... I . S I ... I dI ... dIj
I

1 N j j
H

1 N
I

1 N

1

I I

NI

I
= ∫ ∫

∆ ∆

ϕ (8),

 We want to determine the functions ϕ j and parameters Wj1

O such that E is a minimum. A

suboptimal solution to this problem is to minimize E among the parameters Wj1
O and, after, to

deduce the functions ϕ j .

()[] ()[]∂
∂

ϕ ϕE
W

0 C = W S I ... I . S I ... I dI ...dI
j1
O j k1

O
j j

H
1 N k k

H
1 N

II
1 Nk=0

N
I I

NI1

I

H= ⇔ ∫∫∑
∆∆

 This system is easily solved if all functions ϕ j are orthogonal:

()[] ()[]ϕ ϕ δj j
H

1 N k k
H

1 N
S S

j k jk j k
S S

S I ... I . S I ... I dS dS . dS dS
I I

k j k j∆ ∆ ∆ ∆
∫∫ ∫∫= , where

_ δ jk is the Kronecker symbol (δ δjk jj0 if j k, 1= ≠ =)

IMACS, Mathematics and Computers in Simulation, 41 (5-6), July 1996

 5

_ ∆ Sj and ∆ Sk are the variation domains of each hidden units j and k, due to the variation of
I ... I1 N I

in ∆ ∆I ... I1 N I
following equation (2).Then, the output weights have the following

expression: W
C

... dI ...dI
 for 0 j Nj1

O j

1 N
II

H
I

NI1

= ≤ ≤

∫∫
∆∆

.

 By replacing this expression in (7), we find the value of the unique global minima:

() ()E ... f I ... I dI ...dI - W dI ...dImin

I
1 N

2
1 N

I
j1
O 2

j 0

N

I
1 N

I1

I I

NI

H

1

I

NI

= ∫ ∫ ∑ ∫ ∫
=∆ ∆ ∆ ∆

 If the number of expansion terms (N H) increases, the global minima Emin decreases [6].

 More over, if
∆ ∆I

1 N
I1

I

NI

... dI ...dI 1∫ ∫ = , Emin goes to the well known Parceval’s equality.

 In summarize, the Euclidean distance (6) can be reduced by choosing an infinite
sum of hidden functions ϕ j such that:

_ []ϕ 0 j
HS 1=

_ []ϕ j j
HS are orthogonal in the domains ∆ Sj induced by ∆ ∆I ... I1 NI

_. W
C

... dI ...dI
 for 0 j Nj1

O j

1 N
II

H
I

NI1

= ≤ ≤

∫∫
∆∆

.

 Legendre polynomials belong to this class of functions and are defined, on the domain

∆ S [1,1]j = − by: []ϕ 0 j
HS 1= , []ϕ1 j

H
j
HS S= and [] [] []ϕ ϕ ϕn+1 j

H
j
H

n j
H

n-1 j
HS 2.n 1

n 1
.S S n

n 1
. S=

+
+

−
+

. .

 Unfortunately, since the expression of ()f I ... I1 N I

 is supposed not known, the Cj terms

(equation 8) can't be calculated. More over, it's excluded to consider an infinite layer of hidden
units in practice. As the only knowledge of ()f I ... I1 N I

 is a set of discrete values coming from the

training set, we are going to determine the number and the values of parameters Wj1
O by minimizing

E for discrete variations of ()I ... I1 N I
.

3 Initialization of parameters by discrete function representation
3.1) Vectorial formulation of the problem

 All values of an input scalar variable Ii can be included into a vector ()[]

r
I = ... I ...i i

 Tα with
1 m≤ ≤α , where α is an index and m is the number of values. For each value of independent input

IMACS, Mathematics and Computers in Simulation, 41 (5-6), July 1996

 6

scalar variables () (){ }I ... I1 N I
α α from the training set, we can associate the corresponding output

scalar value ()f α . The set of all output values constitutes the vector ()[]
r
F = ... f ... Tα and we say

that this vector is a function of []r r
I ... I1 NI

. The basis defined by the independent input vectors,

[]r r
I ... I1 NI

, defines a NI dimensional space I, where the vector
r
F spans a subspace written F

(figure 3).

()I2 α

 x x
 x x
x x
x x

 Output
data set

() () ()I 1 I 2 ... I m
 x x x
1 1 1

() () ()I 1 I 2 ... I m
 x x x
2 2 2

() () ()
 x x x
f 1 f 2 ... f m

First input
 data set

Second input
 data set

r
F

Spatial representation

Vector representation

I1

I2

()I1 α

()[]
r
I ... I ... 1 1= α

()[]
r
I ... I ... 2 2= α

()[]
r
F ...f ... = α

of data sets

of the sets of input data

F

I

figure 3: Representations of a two inputs function

 In a same way, we can associate to the input vectors a vector

r
R containing the responses of

the neural network when fed with the input values from []r r
I ... I1 NI

.

Then, the initialization of a neural network applied to function approximation can be formulated as:
" Assuming that

r
F contains a full representation of the function output set, the problem is to find a

new basis, determined by the weights and the bias, in which
r
R is similar to

r
F on the restricted

input domain defined by the basis []r r
I ... I1 NI

 ".

3.2) Reduction of the variation domain of input variables

 The number of input units is the number of input variables of the function: NI . Elementary
statistical arrangement, when manipulating input sets of data, is to center them with their mean

IMACS, Mathematics and Computers in Simulation, 41 (5-6), July 1996

 7

value ()I : I 1
m

. Ii i i
1

m
=

=
∑
α

α , and to divide them with the squared root of their variance

()()σ σ α
α

i i i i
2

1

m
: I I= −

=
∑ to get a better scattering.

 This calculation can be implemented on the first layer by setting W 1
ii
I

i
=

σ
 and B I

i
I i

i
=

−
σ

.

 By replacing Ii with ()Ii α in equation (1) and writing it for all α , we find

() ()

.

.

.
O

.

.

.

=

.

.

.
B
.
.
.

W .

.

.

.
I

.

.

.

i
I

i
I

ii
I

iα α

+

 with 1 m≤ ≤α for 1 i NI≤ ≤ , then we get
r r r
O = B W . Ii

I
i
I

ii
I

i+ .

 The first level of processing layer converts the training input sets by data translation into a
best data representation (figure 4).

I1

I2

()I1 α

()I2 α

 x x
 x x x
x x x
 x x

O2
I

O1
I

 x x
 x x x
 x x x
 x x

figure 4: Representation of two sets of input variables after processed by the input layer

3.3) Orientation of the spatial representation of input data
3.31) Construction of an orthogonal basis

 The set of the input unit responses can form a (m x NI) matrix as [] O = O ...OI

1
I

N
I

I

r r
. The

covariance matrix, C O .OI IT

= , is a positive semi definite matrix and, then, admits non negative
real eigenvalues: λ λ λ1

2
2
2

N
2... 0

I
≥ ≥ ≥ ≥ . We'll write the NI corresponding orthogonal unit

eigenvectors:
r r r
V ,V ,...,V1 2 NI

. Using these vectors as an orthogonal basis, OI can be represented as

O = P .V + P .V + ... + P .VI
1 1

T
2 2

T
N N

T
I I

r r r r r r
, where P = O .Vi

I
i

r r
 is called a component vector.

IMACS, Mathematics and Computers in Simulation, 41 (5-6), July 1996

 8

 The subspace spanned by the component vectors (corresponding to non zero magnitude)
represents the linear relationships (independent of α) which exist among the inputs contained in
OI .

3.32) Linear dependencies between input and hidden units

 Each input () Sj

H α of hidden units j is a point fixed by NI coordinates: () ()O ,...,O1
I

N
I

I
α α .

The set of values (1≤α≤m) is considered as a vector Sj
Hr in the vectorial space ℜNI .

 For example, consider NI =2. When presenting () I1 α and () I2 α , we obtain on the first

layer () O1
I α and () O2

I α . Assume that B 01
H = , the summation made by the first hidden unit is

given by equation (2): () () ()

.

.

.
S

.

.

.

= W .

.

.

.
O

.

.

.

W .

.

.

.
O

.

.

.

1
H

11
H

1
I

21
H

2
Iα α α

+

 for 1 m≤ ≤α , then we get

[]r r r r
S = O O . W1

H
1
I

2
I

1
H . []r

W = W W 1
H

11
H

21
H T

 is a projection vector among an axis guided by
r
S1

H .

 More generally, for a neural network with NI inputs and NH hidden units, the internal

summation of the hidden unit j ()1 j NH≤ ≤ is: S = O .Wj
H I

j
Hr r

 with

[]r
W = W W ... W j

H
1 j
H

2 j
H

N j
H T

I
.

 From a geometric point of view, the hidden layer contains a particular representation of O1
I

that will be written: O = S .W + S .W + ... + S .WH
1
H

1
H

2
H

2
H

N
H

N
HT T

H H

Tr r r r r r
.

3.33) Application of principal component analysis to hidden initialization

 If we consider the particular case where ()N NH I≤ , the initialization of these hidden
weights can be found by using the Principal Component Analysis. Consequently, to get the best
approximation of the linear dependencies between the inputs, we must minimize the critical

error: J = O - O I H 2
 (9) by choosing O = P .VH

j jj=1

N TH r r
∑ (10).

 By replacing (10) in (9), it is easy to find J = j
2

j=N 1

N

H

I λ
+∑ for fixed NH and NI .

 This error will be null if:

IMACS, Mathematics and Computers in Simulation, 41 (5-6), July 1996

 9

_ the number of hidden units is equal to the number of input variables
()N NH I=
_ the hidden weights are collinear to the eigenvectors

r r
W K .Vj

H
j j=

_ the bias, Bj
H , are null.

The normalization scalars K j will be calculated such that the domains () ()[]∆ S = Min S ,Max Si i i
fit into the domain of the orthogonal functions ([-1,1] for Legendre polynomials).

 Now, let us expose another interpretation of this hidden initialization.
 When we present input values out of the training set, the neural network makes a
generalization. This one will be better if we find a linear combination which separates the most
possible the inputs. So, this is equivalent to find the weights Wij

H which express the largest

variance on a component
r
Sj

H . In this case, we remark that the first diagonal element of the diagonal

matrix: [] []r r r r
S ...S . S ...S1

H
N
H T

1
H

N
H

H H
 is maximum. We can develop each

r
Sj

H as:

[] [] [] []r r r r r r
S ...S . S ...S ...W O .O W ...1

H
N
H T

1
H

N
H

j
H I I

j
H

H H

T T

= .

 As O .OI IT

 is a symmetric matrix, it admits the following decomposition [10]:
O .O V. .VI I TT

= ∆ (11), where ∆ is a diagonal matrix containing the eigenvalues of C= O .OI IT

,

∆ =

.
.

.
.

i

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

λ and V is a matrix containing the corresponding eigenvectors of C,

[]V ...,V , ...i=
r

. Then, if we set
r r

W Vj
H

j= , [] []r r r r
S ...S . S ...S1 N

T
1 NH H

= ∆ . Following the previous

remark, ∆ must contain the eigenvalues in a decreasing order.
From relation (11), we can show that component vectors are orthogonal: S .S = 0i

H
j
HTr r

(for i j≠), S =i
H 2

i
2r

λ .

3.34) Dimensionally expansion of the input space

 Following this initialization, the data are projected from their original NI dimensional space

I, spanned by { }r r
I ... I1 N

N
I

I∈ℜ , onto the NH dimensional space S, spanned by

{ }r r
S ...S1 N

N
H

H∈ℜ .

This particular orthogonal representation, known as principal component analysis, is characterized:
_ by

r
S1 , which orients the data representation among the input data vectors holding the maximum

 eigenvalue λ1of C .

IMACS, Mathematics and Computers in Simulation, 41 (5-6), July 1996

 10

_ by the number of hidden units NH , which has been supposed to be 1 N NH I≤ ≤ .
 It has been demonstrated by recent rigorous results that a minimal hidden layer conditions the
best generalization properties [7]. For specific applications, it may be interesting to construct a
large hidden layer. Firstly, it improves the accuracy of the approximation (Emin decreases see
section 22). Secondly, it increases the robustness (of hardware implementation) in the sense that if
one connection is cut (W 0ij

a =), the neural network still gives a good approximation.

 For this class of neural networks (N NH I>), our initialization consists to
recalculate the covariance matrix without including the input vector which has given the
largest eigenvalue and, so, has given the orientation of the previous representation.

The component vectors of this reduced covariance matrix spans a new (N 1I −) dimensional space
in which nevertheless the inputs can be represented.
 By implanting at least two representations in the hidden layer, we have realized a
dimensionally expansion of the input space. So, we can find no more than NI representations and,
then, the maximum number of hidden units (possible for the proposed initialization) is:

()N N 1 ... 1I I+ − + +

 For higher number of hidden units, we calculate the biases Bi
H (()i > N N 1 ... 1I I+ − + +) such

that the domains ∆ Si
H don't overlap.

3.4) Output initialization
3.41) Data transformation

 Each values ()Sj

H α from
r
Sj

H is transformed by the functions ()[]ϕ αj j
HS . And, all output

values of hidden units are ranged in
r
ϕ j : ()[]r

ϕ ϕ αj j
 T

... ...= for ()1 j NH≤ ≤ .

 Consider a linear combination of the NH vectors
r
ϕ j ,this is a subspace of ℜNH called R. This

subset is spanned by
r
R which contains the responses of the neural network:

() () ()

.

.

.
R

.

.

.

= W .

.

.

.

.

.

.

W .

.

.

.

.

.

.

01
O

0 N 1
O

NH H
α ϕ α ϕ α

+

 1 ≤ ≤α m , then
r r r
R = W W .01

O
0 N 1

O
NH H

ϕ ϕ+ +

(12)
Remark: If ()ϕ α0 01

O
1
O= 1, W = B

3.42) Output initialization with the pseudo inverse

 Equation (12) can be rewritten as []r r r r r

R = W = . W0 N 1
O

1
O

H
ϕ ϕ Φ (13)

IMACS, Mathematics and Computers in Simulation, 41 (5-6), July 1996

 11

where []r
W W W1

O
01
O

N 1
O T

H
 = , ... ,

contains the output parameters and Φ is a (mx NH) matrix.

The problem is then to find
r

W1
O to have

r r
F W1

O= .Φ (14). This problem is linear in the vector
r

W1
O , although non linear with respect to the input []r r

I ... I1 NH
.

 The general solution of (14) is
r r

W1
O Φ + . F

where the pseudo inverse of Φ is called Φ + and is given by []Φ Φ Φ Φ+ −
= T T 1

. . The

computation of the pseudo inverse of a general matrix based on the Greville's theorem can be
viewed in [5]. Assume that rank[]Φ = r, the table 1 gives the meaning of Φ + .

Table 1

 In practice, we have usually more patterns than hidden units: m NH≥ . Suppose any function
ϕ j[...] , then, linear dependencies between

r r
ϕ ϕ0 N, ...,

H
can appear, and, N rH > . So, another way

to draw near to E is to increase the linearly independent subset of φ by increasing the number of
hidden units until that r = m. If ϕ j[. . .] are chosen non linear and different each other (It is the case
of Legendre polynomials), the linearly independent subset is the all set φ . Then, N = rH is
guaranteed, and, so, less added hidden units are required to reach m = r.

4) Learning algorithm

 Since adaptation to new dynamics or new functionnement domain is required in practice, we
develop now a learning algorithm based on the generalized delta rule [11]. The well known

backpropagation algorithm performs a steepest descent on the surface 1
2

E()2α by adjusting the

weights as New W = Old W + . Wij
a

ij
a

ij
aη ∆ , where η is the learning rate and

∆ W
[1
2

E()]

Wij
a

2

ij
a=

∂ α

∂
.

For the output weights, we have then: ∆ W
[1
2

E()]

S
 . S

W
E() . Oi1

O
2

1
O

1
O

i1
O 1

H= = −
∂ α

∂
∂
∂

α .

For other weights, the chain rule is used to write:

r=m r ≠ m

m < N H m> N H ∀ m m= N H

(14) have many solutions
but Φ + . F

r
is the one

which minimizes the
norm of

r
W1

O

Φ + is the full inverse
of the full rank and
squared matrix Φ

(14) have not exact solutions but
Φ + . F

r
is the one which minimizes the

Euclidean distance: () ()r r r r
F R . F R

T
− −

and the norm of
r

W1
O

IMACS, Mathematics and Computers in Simulation, 41 (5-6), July 1996

 12

∆W
[1
2

E()]

S
 .

S

W

[1
2

E()]

S
 . S

O
.

O

S
 .

S

Wij
H

2

j
H

j
H

ij
H

2

1
O

1
O

j
H

j
H

j
Hj 1

N j
H

ij
H

H= =

=∑

∂ α

∂

∂

∂

∂ α

∂
∂
∂

∂

∂

∂

∂
.

 ()∆W
[1
2

E()]

S
 . W . ' S . Oij

H
2

1
O j1

O
j
H

j 1

N
i
I

j

H=

=∑

∂ α

∂
ϕ

()ϕ
j

S j
H' are then the derivative of the Legendre polynomials.

5) Example and simulation

 The proposed example is the approximation of the function f I * I1 2= with a 2 hidden units
neural network. We have represented, figure 5, the m=18 sampled input output data and, figure 6,
the same points but after processed by the hidden orthogonalization .

 The sum of all Euclidean distances: () () ()[]E I ... I f I ... I - R I ... I1 N
2

1 N 1 N
2

i i i
= measures the

dissimilarity between f and the neural network approximation on the restricted domain []r r
I ... I1 N I

.

 Table 2 compares a unity hidden initialization and the hidden orthogonalization with the
Euclidean distance E(18) for different hidden functions. No great differences appear when choosing

linear hidden functions or sigmoid hidden functions (It is certainly due to the small number of
patterns).
 Keeping the calculated initializations, we present, now, data outside the training set. A global
error performance can be measured with the following error function:

() () () ()E n E E E2

1

n
2

1

m
2

m 1

n
= = +

= = = +
∑ ∑ ∑α α α
α α α

. The first term includes all patterns used to initialize

the network and the second measures the generalization ability. We calculate this distance for n=38.
 Table 3 shows the good generalization behavior of Legendre polynomials. The corresponding
initialization is given by:

r r
W 1.01, W 0.65, B 0.02, B 0.02, 11

I
22
I

1
I

2
I= = = − =

r r
W [-0.31 0.2] , W [-0.2 0.31] , [-1.61 - 0.12 - 3.38]1

H T
2
H T T= = =θ .

IMACS, Mathematics and Computers in Simulation, 41 (5-6), July 1996

 13

-2

0

2

-5

0

5
-15

-10

-5

0

5

 figure 5: Input output data figure 6: Representation of these points
 in the hidden layer

6) Conclusion

 We have presented a neural network architecture and the corresponding initialization for
approximating relationship between input and output data. Multi output function approximation can
be executed by placing orthogonal neural networks in parallel on input variables as many as it is
necessary. The initialization applies three treatments to the training set:
_ a statistical arrangement to make appear the maximum of information hold in the input data sets
_ a hyperspace construction such that the projected input data get generalization abilities
_ an interpolation of output data from the training set with the output values from hidden units.

 The hidden initialization based on principal component analysis can be easily extended to
continuous variation of α in ()O j

I α by considering the grammian written

() ()G = O .O d2 I IT

1

2

α α α
α

α

∫ rather than the covariance matrix [9].

 The output initialization depends on the definition of a distance ()E α and on a training set.
Possible improvements can be achieved by hanging this measurement, for example the Bernoulli

error: ()E f(). log[R()] [1 f()]. log[1 R()]
1

n
α α α α α

α

= + − −
=

∑ .

I2
I1

F

S1
H

S2
H

OH

 linear sigmoid Legendre

l i l
59.99 60.9 11.08

59.99 59.98 2.87

table 2: Effect of the hidden
 orthogonalization

r r
W 1j

H =

r r

W Vj
H

j=

 609 558 450

 609 548 279

table 3: Generalization capacity
 of Legendre polynomials

E(18) E(59) linear sigmoid Legendre

r r
W 1j

H =

r r

W Vj
H

j=

IMACS, Mathematics and Computers in Simulation, 41 (5-6), July 1996

 14

 The initialization is greatly depending of the training set (like the convergence of a learning
algorithm). It will be more precise if the training set is closest to the function dynamics.
 Considerations about the hidden layer size have been done among generalization abilities,
approximation accuracy and rank calculation. In future, generalization abilities will be study by
using the information theory (Quantification of the knowledge holding in the data training) and the
selectivity (Quantification of the network storage capacity).
 Finally, practical implantation of orthogonal functions must be considered on parallel chips
(A.S.I.C) and on pipeline algorithm (applied on Digital Signal Processors).

REFERENCES
[1] Francois B., Borne P., "Design and initialization of a multilayer neural network applied to
 function approximation", 3rd IMACS Int. Workshop on "Qualitative Reasoning and Decision
 Technologies", QUARDET'93, 1993, Barcelona (Spain)
[2] Cybenko G., "Approximation by Superpositions of a Sigmoïdal function", Mathematics of
 Control, Signals and Systems, 1989, 2, p. 306-314
[3] Hornik, K., Stinchcombe, M., and White, H., " Multilayer Neural Feedforward Neural
 Networks are Universal Approximators", Neural Networks, 1981, vol. 2, p. 359-366
[4] Cotter, E.N., " The Stone-Weierstrass Theorem and its Application to Neural Networks",
 IEEE Trans. on Neural Networks, vol. 1, No 4, Dec. 1990
[5] Ben-Israel, A., Greville, T.,N.E., "Generalized Inverses: Theory and Applications", 1974, a
 Wiley-Interscience Publication, John WileySons, NEW YORK, ISBN 0-471-06577-3
[6] Murray R. Spiegel, "Analyse de Fourier", serie Schaum, 1980, France
[7] Saratchandran P., " Effect of hidden layers on generalization properties of feedforward neural
 networks ", Neural Parallel & Scientific Computations, 1993, vol.1, p. 227-240
[8] Ehud D. Karnin, " A Simple Procedure for Pruning Back-Propagation Trained neural networks",
 IEEE Trans. on neural networks, vol. 1, No 2, June 90, p. 239-242
[9] Bruce C. Moore, " Principal Component Analysis in Linear Systems: Controllability,
 Observability and Model Reduction ", IEEE Trans. on Automatic Control, vol. AC-26, No 1,
 Feb. 81, p.17-32
[10] Kosko B., " Neural Networks and Fuzzy Systems ", Chap. 5, Prentice Hall International, 1992
[11] Rumelhart D.E., HintonG.E., and Williams R.J. , "Parallel distributed processing", Vol.1,
 M.I.T. Press, Cambridge, Mass. 1988, Chap.8
[12] Chen T., Chen H., "Approximation of Continuous Functionnals by Neural Networks with
 Application to Dynamic System", IEEE Trans. on Neural Networks, Vol.4, No 6, June 93,
 p. 910-918

View publication statsView publication stats

https://www.researchgate.net/publication/247084967

