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ABSTRACT 
 
 Two problems occur in the design of feedforward neural networks: the choice of the optimal 
architecture and the initialization. Generally, input and output data of a system (or a function) are 
measured and recorded. Then, experimenters wish to design a neural network to map exactly these 
output values.  
 By formulating this problem as a continuous approximation problem, this paper shows that 
the use of orthogonal functions is a partial optimization in the choice of hidden functions. 
 Parameters initialization is obtained by using the knowledge of input and output data in the 
calculation of a discrete approximation. The hidden weights are found by constructing orthogonal 
directions on which the input values are represented. The pseudo inverse is used to determine 
output weights such that the Euclidean distances between neural responses and output values are 
minimized. 
 
 
 
 
1 Introduction 
 
 Conventional supervised learning consists, in a first step, by setting randomly weights and 
biases, and, after, updating them to reduce a quadratic cost function with a gradient descent 
procedure. This technique requires a training set, of m desired output data (written 

r
F ), for which 

the corresponding input data (
r
I ) are known. A cost function, E, is usually defined as a sum of the 

distances between 
r
F and 

r
R , the responses of the neural net fed with 

r
I . Any configuration of 

weights and biases, producing a global minima of E, guarantees a correct neural network output 
r
R  

for every input values belonging to the training set.  
 
 It’s well known that finding this configuration with a learning algorithm can be prohibitively 
slow. More over, the main method for finding the hidden layer size is to increase the hidden layer 
(and so weight parameters) in a minimal network according some appropriate criteria on E 
("Constructive algorithms") [1], or, to eliminate some of the weights in an oversize network 
according the same criteria  ("Pruning technics") [8].  
 By adjusting the number of hidden units, users modify the shape of the error in the purpose 
of getting a smaller global minima. Unfortunately, while the global minima is decreasing, more 
local minima are created and, then, increase (again) the algorithm convergence time. A solution to 
this problem is to initialize the weights near the global minima before applying weights adaptation. 
But, this weights calculation is complex mainly because many equal minima may exist. 
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 In this paper, we determine a particular class of hidden functions which involves an unique 
global minima. Afterwards, we present a weights initialization which places the cost function in the 
attractive domain of the global minima. This initialization is based on the orthogonal representation, 
in the hidden layer, of the information holding in 

r
I , and, on the minimization of E. A learning 

algorithm is detailed in section 4 to make this error fall into the global minima. 
 
 
2 Particular hidden units for continuous approximation 
2.1) Mathematical formulation 
 
 Approximation theory addresses the problem of interpolating or approximating a function by 
a selected function[12]. For a multilayer neural network, this selected function is a finite sum of non 
linear functions. This sum is characterized by: 
_ the number of hidden units, which causes  the number of parameters: weights and biases 
_ the non linearity of unit functions. 
 
 Before giving the expression of this sum, let us remind that a unit "j" from a layer "a" indexed 
with the character a  (see figure 1) performs two tasks: 

_ a linear transformation of its inputs:     S W .O Bj
a

ij
a

i 1

Np
i
p

j
a= +

=∑  

 where Sj
a is the summation into the unit j from the layer  a 

  Bj
a is the bias of unit j in layer a 

  Oi
p is the output of unit i in the previous layer  p 

  NP  is the number of units in this layer  

  Wij
a is the connection weight between the unit i in the previous layer p and the unit "j" in 

 layer a. 
_ a non linear transformation of the resulting summation through the function (ϕ j ) of unit j:  

 [ ]O  Sj
a

j j
a= ϕ . 

 

layer p layer a

Σ

.

.

.

.

.

.

.

.

.

.

.

.

ϕ j
Wij

a

WN  j
a

p

W1j
a

O1
p

Oi
p

ON
p

p

Oj
aSj

a

Bj
a

 
 

figure 1: Functional description of a unit 
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 Consider the feedforward network (figure 2), designed to approximate a function with NI  
inputs variables: I ... I1 NI

 and a single output R. 
 

W11

ϕ 1

ϕΝH

W11
H

WΝ 1
H

=R

I

I1

WΝ Ν
I

IΝ

Σ

•
•
•

W1Ν
H

WΝ Ν
H

W11
O

WΝ  1
O

I

I
I I

I H

H

H

B1
O

B1
H

BΝ
H

H

B1
I

BΝ
I

I

Σ

Σ
•
•
•

•
•
•

Σ

Σ

•
•
•

•
•
•

O1
H

OΝ
H

O1
I

OΝ
I

I

O1
O

H

 
 

figure 2: Functional description of a neural network 
 
 
 All units from the input layer I have a linear function ϕ j , their outputs are a weighted and 

biased copy of the input variable Ii  (for   1 i NI≤ ≤ ):  ( )O I = S B W .Ii
I

i i
I

i
I

ii
I

i= +    (1) 

 
 These unit outputs Oi

I  are mixed with the hidden weights Wij
H  as  

 ( ) ( )S I  ...  I B W .O Ij
H

1 N j
H

ij
H

i 1

N
i
I

iI

I= +
=∑    (2)                 

and cross the non linear function ϕ j :  ( ) ( )[ ]O I  ...  I  S I  ...  Ij
H

i N j j
H

i NI I
= ϕ     (3) 

 
 
 As the unit from the output layer has a linear function ϕ j , this unit output is  

 ( ) ( ) ( )O I ... I S I ... I B W .O I ... I1
O

1 N 1
O

1 N 1
O

j1
O

j
H

1 Nj 1

N
I I I

H= = +
=∑     (4) 

 
Then, the response of the neural network can be expressed as a limit sum of non linear functions  
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 ( ) ( )[ ]R I ... I W . S I ... I1 N j1
O

j j
H

1 Nj 0

N
I I

H=
=∑ ϕ     (5)       

with [ ]ϕ0  ... 1=   and  W = B01
O

1
O  

 
2.2) Approximation with orthogonal functions 
 
 Providing that ϕ j  are continuous, monotone, non-linear and bounded functions, a number of 
papers [2], [3], [4], have proved that this feedforward network may uniformly approximate any 
continuous function to an arbitrary degree of accuracy.  
 The accuracy can be measured with the squared Euclidean distance: 

( ) ( ) ( )[ ]E I ... I f I ... I - R I ... I1 N 1 N 1 N
2

I I I
=        (6) 

 ( ) ( ) ( )[ ]=
=∑f I ... I - 2. W .f I ... I . S I ... I1 N

2
j1
O

1 N j j
H

1 Nj 0

N
I I I

H ϕ  

 ( )[ ] ( )[ ]+ W .W . S I ... I . S I ... Ij1
O

k1
O

j j
H

1 N k k
H

1 Nk=0

N

j 0

N
I I

HH ϕ ϕ∑∑ =
 

 For a continuous variation of the input variables I ... I1 N I
in respective domains ∆ ∆I ... I1 N I

, 
the sum of this distance defines the L2 norm: 

( )E ...  f I ... I dI ...dI     - 2. W .C     
I

1 N
2

1 N
I

j1
O

jj 0

N

1

I I

NI

H= ∫ ∫ ∑ =
∆ ∆

 

 ( )[ ] ( )[ ]+  W .W . ... S I ... I . S I ... I  d I ...d Ij1
O

k1
O

I
j j

H
1 N k k

H
1 N

I
1 Nk=0

N

j 0

N

1

I I

NI

I

HH

∆ ∆
∫ ∫∑∑ =

ϕ ϕ (7) 

with   ( ) ( )[ ]C ... f I ... I . S I ... I  dI ... dIj
I

1 N j j
H

1 N
I

1 N

1

I I

NI

I
= ∫ ∫

∆ ∆

ϕ     (8),   

 
 We want to determine the functions ϕ j  and parameters Wj1

O  such that E  is a minimum. A 

suboptimal solution to this problem is to minimize E  among the parameters Wj1
O  and, after, to 

deduce the functions ϕ j .  

( )[ ] ( )[ ]∂
∂

ϕ ϕE
W

0  C = W . ... S I ... I . S I ... I dI ...dI
j1
O j k1

O
j j

H
1 N k k

H
1 N

II
1 Nk=0

N
I I

NI1

I

H= ⇔ ∫∫∑
∆∆

 

 
 This system is easily solved if all functions ϕ j  are orthogonal: 

( )[ ] ( )[ ]ϕ ϕ δj j
H

1 N k k
H

1 N
S S

j k jk j k
S S

S I ... I . S I ... I  dS dS . dS dS
I I

k j k j∆ ∆ ∆ ∆
∫∫ ∫∫= , where 

_  δ jk is the Kronecker symbol (δ δjk jj0   if  j k,  1= ≠ = ) 
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_  ∆ Sj  and ∆ Sk  are the variation domains of each hidden units j and k, due to the variation of 
I ... I1 N I

in ∆ ∆I ... I1 N I
following equation (2).Then, the output weights have the following 

expression:    W
C

... dI ...dI
  for 0 j Nj1

O j

1 N
II

H
I

NI1

= ≤ ≤

∫∫
∆∆

. 

 
 By replacing this expression in (7), we find the value of the unique global minima: 

( ) ( )E ... f I ... I dI ...dI    - W . ... dI ...dImin

I
1 N

2
1 N

I
j1
O 2

j 0

N

I
1 N

I1

I I

NI

H

1

I

NI

= ∫ ∫ ∑ ∫ ∫
=∆ ∆ ∆ ∆

 

 
 If the number of expansion terms ( N H ) increases, the global minima Emin  decreases [6]. 

 More over, if 
∆ ∆I

1 N
I1

I

NI

... dI ...dI 1∫ ∫ =  , Emin  goes to the well known Parceval’s equality.  

 
 In summarize, the Euclidean distance (6) can be reduced by choosing an infinite 
sum of hidden functions  ϕ j  such that: 

_ [ ]ϕ 0 j
HS 1=    

_ [ ]ϕ j j
HS  are orthogonal in the domains ∆ Sj induced by ∆ ∆I ... I1 NI

 

_. W
C

... dI ...dI
  for 0 j Nj1

O j

1 N
II

H
I

NI1

= ≤ ≤

∫∫
∆∆

. 

 
 Legendre polynomials belong to this class of functions and are defined, on the domain 

∆ S [ 1,1]j = −  by:   [ ]ϕ 0 j
HS 1=   ,   [ ]ϕ1 j

H
j
HS S=   and   [ ] [ ] [ ]ϕ ϕ ϕn+1 j

H
j
H

n j
H

n-1 j
HS 2.n 1

n 1
.S S n

n 1
. S=

+
+

−
+

.  . 

 
 Unfortunately, since the expression of ( )f I ... I1 N I

 is supposed not known, the Cj  terms 

(equation 8) can't be calculated. More over, it's excluded to consider an infinite layer of hidden 
units in practice. As the only knowledge of ( )f I ... I1 N I

 is a set of discrete values coming from the 

training set, we are going to determine the number and the values of parameters Wj1
O  by minimizing 

E for discrete variations of ( )I ... I1 N I
. 

 
 
3 Initialization of parameters by discrete function representation 
3.1) Vectorial formulation of the problem 
 
 All values of an input scalar variable Ii  can be included into a vector ( )[ ]

r
I = ... I ...i i

 Tα  with 
1 m≤ ≤α , where α is an index and m is the number of values. For each value of independent input 
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scalar variables ( ) ( ){ }I ... I1 N I
α α  from the training set, we can associate the corresponding output 

scalar value ( )f α . The set of all output values constitutes the vector ( )[ ]
r
F = ... f ...  Tα and we say 

that this vector is a function of [ ]r r
I ... I1 NI

. The basis defined by the independent input vectors, 

[ ]r r
I ... I1 NI

, defines a NI  dimensional space I, where the vector 
r
F  spans a subspace written F  

(figure 3). 
 

( )I2 α

 x    x
   x x
x     x
x x

 Output
data set

( ) ( ) ( )I 1      I 2    ...       I m    
    x           x                x
1 1 1

( ) ( ) ( )I 1      I 2    ...       I m    
    x           x                x
2 2 2

( ) ( ) ( )
   x          x               x
f 1      f 2    ...       f m    

First input
  data set

Second input
    data set

r
F

Spatial representation

Vector representation

I1

I2

( )I1 α

( )[ ]
r
I  ... I ...  1 1= α

( )[ ]
r
I  ... I ...  2 2= α

( )[ ]
r
F  ...f ...  = α

of data sets

of  the sets of input data

F

I

 
 

figure 3: Representations of a two inputs function 
 
 
 In a same way, we can associate to the input vectors a vector 

r
R  containing the responses of 

the neural network when fed with the input values from [ ]r r
I ... I1 NI

. 

Then, the initialization of a neural network applied to function approximation can be formulated as:  
" Assuming that 

r
F contains a full representation of the function output set, the problem is to find a 

new basis, determined by the weights and the bias, in which 
r
R  is similar to 

r
F  on the restricted 

input domain defined by the basis [ ]r r
I ... I1 NI

 ". 

 
 
3.2) Reduction of the variation domain of input variables 
 
 The number of input units is the number of input variables of the function: NI . Elementary 
statistical arrangement, when manipulating input sets of data, is to center them with their mean 
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value ( )I :  I 1
m

. Ii i i
1

m
=

=
∑
α

α , and to divide them with the squared root of their variance 

( )( )σ σ α
α

i i i i
2

1

m
:  I I= −

=
∑ to get a better scattering. 

 This calculation can be implemented on the first layer by setting W 1
ii
I

i
=

σ
 and B I

i
I i

i
=

−
σ

. 

 
 By replacing Ii  with ( )Ii α  in equation (1) and writing it for all α , we find 

( ) ( )

.

.

.
O

.

.

.

=

.

.

.
B
.
.
.

W .

.

.

.
I

.

.

.

i
I

i
I

ii
I

iα α

























































+





























    with 1 m≤ ≤α    for 1 i NI≤ ≤ ,  then  we get  
r r r
O = B W . Ii

I
i
I

ii
I

i+ . 

 The first level of processing layer converts the training input sets by data translation into a 
best data representation (figure 4). 
 

I1

I2

( )I1 α

( )I2 α

 x    x
   x x   x
x   x x
     x  x

O2
I

O1
I

 x       x
   x  x     x
     x      x  x
      x   x

 
 

figure 4: Representation of two sets of input variables after processed by the input layer 
 
 
3.3) Orientation of the spatial representation of input data 
3.31) Construction of an orthogonal basis 
 
 The set of the input unit responses can form a ( m x NI ) matrix as [ ] O =  O ...OI

1
I

N
I

I

r r
. The 

covariance matrix,  C O .OI IT

= , is a positive semi definite matrix and, then, admits non negative 
real eigenvalues: λ λ λ1

2
2
2

N
2... 0

I
≥ ≥ ≥ ≥ . We'll write the NI  corresponding orthogonal unit 

eigenvectors: 
r r r
V ,V ,...,V1 2 NI

. Using these vectors as an orthogonal basis, OI  can be represented as  

O  =  P .V + P .V +  ...  + P .VI
1 1

T
2 2

T
N N

T
I I

r r r r r r
, where  P  =  O  .Vi

I
i

r r
 is called a component vector. 
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 The subspace spanned by the component vectors (corresponding to non zero magnitude) 
represents the linear relationships (independent of α) which exist among the inputs contained in 
OI . 
 
 
3.32) Linear dependencies between input and hidden units 
 
 Each input ( ) Sj

H α  of hidden units j is a point fixed by NI  coordinates: ( ) ( )O ,...,O1
I

N
I

I
α α . 

The set of values (1≤α≤m) is considered as a vector  Sj
Hr   in the vectorial space ℜNI .  

 For example, consider NI =2. When presenting ( ) I1 α  and ( ) I2 α , we obtain on the first 

layer ( ) O1
I α  and ( ) O2

I α  . Assume that  B 01
H = , the summation made by the first hidden unit is 

given by equation (2):   ( ) ( ) ( )

.

.

.
S

.

.

.

= W .

.

.

.
O

.

.

.

W .

.

.

.
O

.

.

.

1
H

11
H

1
I

21
H

2
Iα α α

























































+





























     for  1 m≤ ≤α ,  then we get      

[ ]r r r r
S  =  O  O  . W1

H
1
I

2
I

1
H .     [ ]r

W =  W  W  1
H

11
H

21
H  T

 is a projection vector among an axis guided by 
r
S1

H . 

 
 More generally, for a neural network with NI  inputs and NH  hidden units, the internal 

summation of the hidden unit j ( )1 j NH≤ ≤  is:  S  =  O  .Wj
H I

j
Hr r

 with 

[ ]r
W =  W  W  ...  W  j

H
1 j
H

2 j
H

N j
H  T

I
. 

 From a geometric point of view, the hidden layer contains a particular representation of  O1
I  

that will be written: O  =  S .W + S .W +  ...  + S .WH
1
H

1
H

2
H

2
H

N
H

N
HT T

H H

Tr r r r r r
. 

 
 
3.33) Application of principal component analysis to hidden initialization 
 
 If we consider the particular case where ( )N NH I≤ , the initialization of these hidden 
weights can be found by using the Principal Component Analysis. Consequently, to get the best 
approximation of the linear dependencies between the inputs, we must minimize the critical 

error: J = O - O  I H 2
  (9)        by choosing   O  =  P .VH

j jj=1

N TH r r
∑     (10). 

 By replacing (10) in (9), it is easy to find J = j
2

j=N 1

N

H

I λ
+∑   for fixed NH  and NI . 

 
 This error will be null if: 
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_ the number of hidden units is equal to the number of input variables 
( )N NH I=  
_ the hidden weights are collinear to the eigenvectors 

r r
W K .Vj

H
j j=  

_ the bias, Bj
H , are null. 

 
The normalization scalars K j  will be calculated such that the domains ( ) ( )[ ]∆ S = Min S ,Max Si i i  
fit into the domain of the orthogonal functions ([-1,1] for Legendre polynomials). 
 
 Now, let us expose another interpretation of this hidden initialization. 
 When we present input values out of the training set, the neural network makes a 
generalization. This one will be better if we find a linear combination which separates the most 
possible the inputs. So, this is equivalent to find the weights Wij

H  which express the largest 

variance on a component 
r
Sj

H . In this case, we remark that the first diagonal element of the diagonal 

matrix: [ ] [ ]r r r r
S ...S . S ...S1

H
N
H T

1
H

N
H

H H
 is maximum. We can develop each 

r
Sj

H  as:  

[ ] [ ] [ ] [ ]r r r r r r
S ...S . S ...S ...W ...  .  O .O  .  ...W ...1

H
N
H T

1
H

N
H

j
H I I

j
H

H H

T T

= . 

 As O .OI IT

 is a symmetric matrix, it admits the following decomposition [10]:  
O .O V. .VI I TT

= ∆  (11), where ∆ is a diagonal matrix containing the eigenvalues of  C= O .OI IT

,  

∆ =























.
.

.
.

i

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

λ  and V is a matrix containing the corresponding eigenvectors of C, 

[ ]V ...,V ,  ...i=
r

. Then, if we set 
r r

W Vj
H

j= , [ ] [ ]r r r r
S ...S . S ...S1 N

T
1 NH H

= ∆ . Following the previous 

remark, ∆ must contain the eigenvalues in a decreasing order. 
From relation (11), we can show that component vectors are orthogonal:  S .S = 0i

H
j
HTr r

  

( for i j≠  ),  S =i
H 2

i
2r

λ . 

 
 
3.34) Dimensionally expansion of the input space 
 
 Following this initialization, the data are projected from their original NI  dimensional space 

I, spanned by { }r r
I ... I1 N

N
I

I∈ℜ , onto the NH  dimensional space S, spanned by 

{ }r r
S ...S1 N

N
H

H∈ℜ . 

This particular orthogonal representation, known as principal component analysis, is characterized: 
_ by  

r
S1 , which orients the data representation among the input data vectors holding the maximum 

 eigenvalue λ1of C . 
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_ by the number of hidden units NH , which has been supposed to be 1 N NH I≤ ≤ . 
 It has been demonstrated by recent rigorous results that a minimal hidden layer conditions the 
best generalization properties [7]. For specific applications, it may be interesting to construct a 
large hidden layer. Firstly, it improves the accuracy of the approximation ( Emin  decreases see 
section 22). Secondly, it increases the robustness (of hardware implementation) in the sense that if 
one connection is cut ( W 0ij

a = ), the neural network still gives a good approximation. 
 

 For this class of neural networks ( N NH I> ), our initialization consists to 
recalculate the covariance matrix without including the input vector which has given the 
largest eigenvalue and, so, has given the orientation of the previous representation.  

 
The component vectors of this reduced covariance matrix spans a new ( N 1I − ) dimensional space 
in which nevertheless the inputs can be represented. 
 By implanting at least two representations in the hidden layer, we have realized a 
dimensionally expansion of the input space. So, we can find no more than NI  representations and, 
then, the maximum number of hidden units ( possible for the proposed initialization) is: 

( )N N 1 ... 1I I+ − + +  

 For higher number of hidden units, we calculate the biases Bi
H ( ( )i > N N 1 ... 1I I+ − + + ) such 

that the domains ∆ Si
H don't overlap. 

3.4) Output initialization 
3.41) Data transformation 
 
 Each values ( )Sj

H α  from 
r
Sj

H  is transformed by the functions ( )[ ]ϕ αj j
HS . And, all output 

values of hidden units are ranged in 
r
ϕ j : ( )[ ]r

ϕ ϕ αj j
 T

... ...=  for ( )1 j NH≤ ≤ . 

 Consider a linear combination of the NH  vectors 
r
ϕ j ,this is a subspace of ℜNH called R.  This 

subset is spanned by 
r
R  which contains the responses of the neural network: 

( ) ( ) ( )

.

.

.
R

.

.

.

= W .

.

.

.

.

.

.

W .

.

.

.

.

.

.

01
O

0 N 1
O

NH H
α ϕ α ϕ α

























































+





























   1 ≤ ≤α m , then 
r r r
R =  W . ....  W .01

O
0 N 1

O
NH H

ϕ ϕ+ +    

(12) 
Remark:  If ( )ϕ α0 01

O
1
O= 1, W = B  

 
 
3.42) Output initialization with the pseudo inverse 
 
 Equation (12) can be rewritten as  [ ]r r r r r

R =   ...   . W   =  . W0 N 1
O

1
O

H
ϕ ϕ Φ      (13) 
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where [ ]r
W W W1

O
01
O

N 1
O T

H
 =  ,  ... ,  

 
contains the output parameters and Φ  is a (mx NH ) matrix. 

The problem is then to find 
r

W1
O to have 

r r
F W1

O= .Φ    (14). This problem is linear in the vector 
r

W1
O , although non linear with respect to the input [ ]r r

I ... I1 NH
.  

 The general solution of (14) is    
r r

W1
O Φ + . F   

where the pseudo inverse of Φ is called Φ + and is given by [ ]Φ Φ Φ Φ+ −
= T T 1

. . The 

computation of the pseudo inverse of a general matrix based on the Greville's theorem can be 
viewed in [5]. Assume that rank[ ]Φ = r, the table 1 gives the meaning of Φ + . 
 
 
 

 
 
 
 
 
 
 
 

Table 1 
 
 In practice, we have usually more patterns than hidden units: m NH≥ . Suppose any function 
ϕ j[...] , then, linear dependencies between 

r r
ϕ ϕ0 N,  ...,  

H
can appear, and, N rH > . So, another way 

to draw near to E  is to increase the linearly independent subset of φ  by increasing the number of 
hidden units until that r = m. If ϕ j[. . . ]  are chosen non linear and different each other (It is the case 
of Legendre polynomials), the linearly independent subset is the all set φ . Then, N  =  rH  is 
guaranteed, and, so, less added hidden units are required to reach m = r. 
 
 
4) Learning algorithm 
 
 Since adaptation to new dynamics or new functionnement domain is required in practice, we 
develop now a learning algorithm based on the generalized delta rule [11]. The well known 

backpropagation algorithm performs  a steepest descent on the surface 1
2

E( )2α  by adjusting the 

weights as New W   =   Old  W  +   . Wij
a

ij
a

ij
aη ∆ , where η  is the learning rate and 

∆ W
[1
2

E( ) ]

Wij
a

2

ij
a=

∂ α

∂
.   

For the output weights, we have then: ∆ W
[1
2

E( ) ]

S
 .  S

W
E( )  .  Oi1

O
2

1
O

1
O

i1
O 1

H= = −
∂ α

∂
∂
∂

α . 

For other weights, the chain rule is used to write:  

r=m r ≠ m 

m < N H m> N H  ∀  m m= N H  

(14) have many solutions
but Φ + . F

r
is the one 

which minimizes the
norm of 

r
W1

O  

Φ + is the full inverse
of the full rank and
squared matrix Φ  

(14) have not exact solutions but 
Φ + . F

r
is the one which minimizes the 

Euclidean distance: ( ) ( )r r r r
F R . F R

T
− −

and the norm of 
r

W1
O  
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∆W
[1
2

E( ) ]

S
 .  

S

W

[1
2

E( ) ]

S
 .  S

O
.  

O

S
  .  

S

Wij
H

2

j
H

j
H

ij
H

2

1
O

1
O

j
H

j
H

j
Hj 1

N j
H

ij
H

H= =















=∑

∂ α

∂

∂

∂

∂ α

∂
∂
∂

∂

∂

∂

∂
. 

 ( )∆W
[1
2

E( ) ]

S
 .  W .  ' S   .  Oij

H
2

1
O j1

O
j
H

j 1

N
i
I

j

H=















=∑

∂ α

∂
ϕ  

( )ϕ
j

S j
H'  are then the derivative of the Legendre polynomials. 

 
 
5) Example and simulation 
 
 The proposed example is the approximation of the function f I * I1 2= with a 2 hidden units 
neural network. We have represented, figure 5, the m=18 sampled input output data and, figure 6, 
the same points but after processed by the hidden orthogonalization . 

 The sum of all Euclidean distances: ( ) ( ) ( )[ ]E I ... I f I ... I - R I ... I1 N
2

1 N 1 N
2

i i i
= measures the 

dissimilarity between f and the neural network approximation on the restricted domain [ ]r r
I ... I1 N I

. 

 Table 2 compares a unity hidden initialization and the hidden orthogonalization with the 
Euclidean distance E(18) for different hidden functions. No great differences appear when choosing 
 
linear hidden functions or sigmoid hidden functions (It is certainly due to the small number of 
patterns). 
 Keeping the calculated initializations, we present, now, data outside the training set. A global 
error performance can be measured with the following error function:  

( ) ( ) ( ) ( )E n E E E2

1

n
2

1

m
2

m 1

n
= = +

= = = +
∑ ∑ ∑α α α
α α α

. The first term includes all patterns used to initialize 

the network and the second measures the generalization ability. We calculate this distance for n=38. 
 Table 3 shows the good generalization behavior of Legendre polynomials. The corresponding 
initialization is given by:  

r r
W 1.01,  W 0.65,  B 0.02,  B 0.02,  11

I
22
I

1
I

2
I= = = − =  

r r
W [-0.31 0.2] ,  W [-0.2  0.31] ,  [-1.61 - 0.12  - 3.38]1

H T
2
H T T= = =θ . 
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 figure 5: Input output data  figure 6: Representation of these points  
 in the hidden layer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6) Conclusion 
 
 We have presented a neural network architecture and the corresponding initialization for 
approximating relationship between input and output data. Multi output function approximation can 
be executed by placing orthogonal neural networks in parallel on input variables as many as it is 
necessary. The initialization applies three treatments to the training set: 
_ a statistical arrangement to make appear the maximum of information hold in the input data sets 
_ a hyperspace construction such that the projected input data get generalization abilities 
_ an interpolation of output data from the training set with the output values from hidden units. 
 
 The hidden initialization based on principal component analysis can be easily extended to 
continuous variation of α  in ( )O j

I α  by considering the grammian written 

( ) ( )G = O .O d2 I IT

1

2

α α α
α

α

∫  rather than the covariance matrix [9]. 

 The output initialization depends on the definition of a distance ( )E α  and on a training set. 
Possible improvements can be achieved by hanging this measurement, for example the Bernoulli 

error: ( )E f( ). log[R( )] [1 f( )]. log[1 R( )]
1

n
α α α α α

α

= + − −
=

∑ . 

I2
I1

F  

S1
H

S2
H

OH

  linear    sigmoid     Legendre  
                              

l i l
59.99       60.9        11.08 

59.99      59.98         2.87  

table 2: Effect of the hidden  
             orthogonalization 

r r
W 1j

H =  

 
r r

W Vj
H

j=

   609       558            450 

   609       548            279 

table 3: Generalization capacity   
          of Legendre polynomials 

E(18) E(59)  linear    sigmoid     Legendre  
                              

r r
W 1j

H =  

 
r r

W Vj
H

j=  
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 The initialization is greatly depending of the training set (like the convergence of a learning 
algorithm). It will be more precise if the training set is closest to the function dynamics. 
 Considerations about the hidden layer size have been done among generalization abilities, 
approximation accuracy and rank calculation. In future, generalization abilities will be study by 
using the information theory (Quantification of the knowledge holding in the data training) and the 
selectivity (Quantification of the network storage capacity ). 
 Finally, practical implantation of orthogonal functions must be considered on parallel chips 
(A.S.I.C) and on pipeline algorithm (applied on Digital Signal Processors). 
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