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Abstract
Structured pruning is a popular method to reduce
the cost of convolutional neural networks. How-
ever, depending on the architecture, pruning intro-
duces dimensional discrepancies which prevent
the actual reduction of pruned networks and mask
their true complexity. Most papers in the literature
overlook these issues. We propose a method that
systematically solves them and generate an oper-
ational network. We show through experiments
the gap between the theoretical pruning ratio and
the actual complexity revealed by our method.

1. Introduction
Deep convolutional neural networks are at the state of the
art in many domains, such as computer vision. However,
their cost in energy, memory and latency is prohibitive on
embedded hardware, and this is why many works focus on
reducing their cost to fit targets with limited resources (Chen
et al., 2016). The field of deep neural networks compression
counts multiple types of method, such as quantization (Cour-
bariaux et al., 2015) or distillation (Hinton et al., 2015). The
one we focus on in this article is pruning (Han et al., 2015b),
that involves removing unnecessary weights from a network.

To focus on the theoretical approach of studying the impact
of removing weights from the network’s function on its ac-
curacy, many papers only remove weights by putting their
value to zero, which does not reduce the cost of networks.
Leveraging pruning to get gains on hardware is actually not
a trivial task. Pruning isolated weights (Han et al., 2015b)
(“non-structured pruning”) produces sparse matrices, that
are difficult to accelerate (Ma et al., 2021). Pruning entire
convolution filters (a.k.a. “structured pruning”) is more
easily exploitable, but the input and output dimensions of
layers are altered, which can induce many problems in net-
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works, especially those including long-range dependencies
between layers (He et al., 2016).

In this paper we propose a solution to reduce effectively
the size of networks using structured pruning. Our method
is generic, automatic and reliably produces an effectively
pruned network. We demonstrate its ability to operate on
networks of any complexity by applying it on both a stan-
dard classification network (He et al., 2016) on the Ima-
geNet ILSVRC2012 dataset (Russakovsky et al., 2015) and
on a more complex semantic segmentation network (Sun
et al., 2019) trained on CityScapes (Cordts et al., 2016). Our
experiments show that not taking into account the afore-
mentioned problems tends to distort the apparent trade-off
between the computational complexity and accuracy, which
harms the relevance of the results. Therefore, our method is
a useful tool for a more reliable study of pruning.

2. Related Works
When pruning a network, three aspects have to be tackled:
1) what kinds of parts to prune, 2) how to identify those to
prune and 3) to prune them. We already mentioned how the
first aspect can be divided into non-structured and structured
pruning. The second issue can be solved using various
types of pruning criteria. In the case of non-structured
pruning, the magnitude of weights (Han et al., 2015b) or
their gradients (Molchanov et al., 2016) are two popular
criteria. In the case of structured pruning, these criteria can
be extended to either their norm over a filter (Li et al., 2016)
or a proxy that accounts for the whole filter’s importance, for
example the multiplicative learned weight included in batch-
normalization layers (Liu et al., 2017). These criteria can be
applied in two different ways: either they are used to identify
the same (or a pre-determined) amount of weights/filters
to remove in all layers (local pruning) or the target is set
globally and the criterion is applied to all layers, possibly
unevenly, at the same time (global pruning).

Concerning the third issue, many popular methods apply a
simple framework (Han et al., 2015a): training the network,
pruning a given proportion of weights by masking them
away, fine-tuning the network and repeating the last two
steps multiple times until a target pruning rate is reached.
Other methods can involve a more progressive approach (He



Investigating the Not-So-Obvious Effects of Structured Pruning

C

C

C

+

CR

Indexation-Addition Indexation-Addition

Convolution Layer Convolution LayerConvolution Layer

Figure 1. Pruning filters (greyed-out columns) means producing fewer output channels: the input dimensions of the following layers must
be adapted (greyed out rows). However, the number of channels a layer gets as an input is not easy to predict: because of the addition at
the end of each residual block, the respective index of each channel must be conserved in the destination tensor. Summing together the
outputs of two pruned layers can produce a tensor whose number of channels is different from that of any of the two summed tensors, as
the addition must be replaced with a mix of concatenations and additions (which we call an indexation-addition operation). Therefore, the
dimensions of tensors and of the layers can only be deduced by taking into account all dependencies in the network at once.

et al., 2018) that can include a regrowing mechanism (Mo-
canu et al., 2018). Some techniques propose a more contin-
uous way to prune weights, for example the application of a
penalty on them during training (Tessier et al., 2022).

3. Method
In Section 2, we explained what is structured pruning. Prun-
ing filters can introduce some dimensional discrepancies,
especially in architectures such as ResNets (He et al., 2016),
that must be tackled to be able to allow proper inference.
Figure 1 and its caption sum up the different problems that
can occur and that our method is designed to solve.

These problems are often overlooked in the literature, even
though most papers deal with ResNet-based architectures
that are subject to all of them. Some expertise allows man-
ually figuring out dependencies in such networks, but the
complexity can get out of hand in the case of networks
such as HRNets (Sun et al., 2019). Missing any of these
problems makes the networks impossible either to run effi-
ciently or to run at all. Moreover, avoiding these problems
by only putting pruned weights to zero, and thus not taking
into account any of these dependencies, leads to evaluate
incorrectly the actual runtime complexity of pruned net-
works, which harms the reliability of their study. This is
the reason why we propose a method that can automatically
and reliably produce pruned networks in which of all these
problems have been solved.

3.1. Automatic Adaptation of Networks

The first step of our method involves identifying all the parts
of the network that are disconnected when removing filters

by taking into account all the dependencies.

To identify all the parameters whose contribution in a net-
work’s function is null, one can use their gradients over,
for example, a mini-batch from the training data. Indeed,
provided this mini-batch is a satisfying approximation of
the network’s domain of definition, a null gradient means
that the network’s function is null relatively to the involved
weights, or at least constant in the case of biases. However,
for our use-case, this is insufficient: not only does it not
allow removing disconnected biases that still produce con-
stant outputs that somehow contribute to the function, but
it may also identify some isolated weights as pruned in a
non-structured way, which we do not want to consider.

This is why we instead operate on an architectural abstrac-
tion of the network, which is a copy of it that received
modifications that are illustrated and described in Figure 2
and its caption. These modifications allow a single input,
filled with non-null values of the same sign, to be enough to
identify all disconnected weights. Indeed, this network be-
haves like a purely linear and positive function and any null
gradient in its parameters can only be due to a null function
that can be removed. Weights, identified as disconnected
in this copy network, are then removed from the original
network, effectively reducing its size.

3.2. Automatic Indexation in Additions

Deep convolutional networks can contain operations that
create constraints on the tensors they take as an input. In
the case of networks such as ResNets (He et al., 2016) or
HRNets (Sun et al., 2019), the addition at the end of every
residual block needs its two input tensors to be of the exact
same dimensions, which may not be the case anymore after
pruning. We can tackle this problem by replacing additions
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Figure 2. Illustration of the proposed method to identify discon-
nected weights, with the original network on the left and the modi-
fied version on the right. (A) Input tensors are filled with positive
values to avoid unwanted zeros, (B) weights of layers are replaced
with their mask, therefore (C) the output only contain zeros if
a filter is pruned. (D) Normalization and biases are removed to
preserve zeros and (E) activation functions are removed not to add
extra ones. Final output (F) allows deducing pruned filters.

with a generalized operator able to handle missing filters in
any of its inputs. To this mean, we replace additions with a
new indexation-addition operation, with a and b the tensors
to sum, that contain respectively na and nb channels, ia and
ib two lists of indices and the output tensor c, that contains
nc channels, defined in Equation (1).

If na = nb, ia = [1, 2, . . . , na] and ib =
[
1, 2, . . . , nb

]
,

this indexation-addition operation is purely equivalent to an
element-wise addition. Properly parameterized by adequate
ia and ib, this operation allows leveraging any type of filter
pruning. It is however necessary to find the right ia and ib

and we provide a solution in Section 3.2. Figure 1 illustrates
how our solution relates to the problems mentioned in its
caption and provides a simple way to view how it can behave
like a mix of additions and concatenations.

∀k ∈ J1;ncK, ck =

{
aiak , if iak ∈ J1;naK
∅, otherwise

(1)

+

{
bibk

, if ibk ∈ J1;nbK
∅, otherwise

To deduce automatically the right ia and ib, we add an-
other modification to the copy network described in Sec-
tion 3.1: we apply an identity convolution to the two tensors
before summing them together. This identity convolution
has weights of shape n× n× 1× 1 (with n the number of
channels in the input tensor, 1× 1 because we consider 2d
inputs) whose values equates that of an identity matrix.

The gradient of the weights of this identity convolution
allows deducing the corresponding list of indices. Indeed,
once the null rows and columns of its weights are removed,
the output dimensions are the same for both tensors to be
summed while the input dimension matches that of the input
tensors after pruning. The zero and non-zero remaining
coefficients allow deducing how to map the input to the
corresponding output channels.

3.3. Summary

Algorithm 1 sums up our overall method:

Algorithm 1 Summary of the Method

1: train the network N
2: generate the pruning mask m that masks out filters
3: create a copy N ′ of the network
4: remove all the biases b from N ′

5: remove all the activation functions and normalizations
from N ′

6: replace the weights w of N ′ by m
7: insert the identity convolutions where needed in N ′

8: generate an input tensor x, of adequate size, filled with
ones and run N ′(x)

9: compute δN ′

δw (x)
10: generate the new pruning mask m′ that masks away all

the weights whose gradients are null in N ′

11: apply m′ to N and mask away biases whose weights
are pruned

12: deduce from the mask of the identity convolutions the
right ia and ib to replace additions with indexation-
addition operations where needed

This method produces pruned networks in which inter-
dependant weights are guaranteed to be pruned altogether,
which prevents any dimensional mismatch between layers.
Our method also adapts the addition operations so that they
can accommodate tensors of different number of channels.
Therefore, all the filters and kernels are guaranteed to con-
tribute to the network’s function, which allows a more reli-
able measurement of the actual pruning rate and associated
complexity of pruned networks.
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4. Experiments
In our experiments, we will detail the impact of our method
on both the accuracy of the network and the evaluation
of its compression rate. Our source code is available
at: https://github.com/HugoTessier-lab/
Neural-Network-Shrinking.git.

4.1. Training conditions

ImageNet We trained ResNet-50 (He et al., 2016) on the
ImageNet ILSVRC2012 image classification dataset (Rus-
sakovsky et al., 2015) for 90 epochs with a batch-size of 170
and a learning rate of 0.01 reduced by 10 every 30 epochs.
We used the SGD optimizer with weight decay set to 1·10−4

and momentum set to 0.9.

Cityscapes We trained the HRNet-48 network (Sun
et al., 2019) on the Cityscapes semantic segmentation
dataset (Cordts et al., 2016) for 200 epochs with a batch
size of 10 and a learning rate of 0.01 reduced by (1 −
current epoch

epochs )2 at each epoch. We used the RMI loss (Zhao
et al., 2019) and the SGD optimizer with weight decay set to
5 · 10−4 and momentum set to 0.9. During training, images
are randomly cropped and resized, with a scale of [0.5, 2],
to 3 × 512 × 1024. Data augmentation involves random
flips, random Gaussian blur and color jittering.

Pruning We prune networks following the method of
Liu et al. (Liu et al., 2017): pruning is divided in three
iterations, with a linearly growing proportion of removed fil-
ters until the final pruning rate is matched. At each iteration,
filters are masked out depending on the magnitude of the
weight of their batch-normalization layer. After each itera-
tion, ResNet-50 fine-tuned during 10 epochs and HRNet-48
during 20 epochs. The method of Liu et al. (Liu et al., 2017)
also implies penalizing weights of batch-normalization lay-
ers with a smooth-L1 norm, with an importance factor of
λ = 10−5 for ResNet-50 and λ = 10−6 for HRNet-48.

4.2. Impact on Accuracy and Compression Rate

In our experiments, we mostly reported no difference in
accuracy before and after applying our method, as it can
be seen horizontally in Figure 3. This implies that the pa-
rameters removed by our method, that did not have a null
contribution to the function, such as the remaining biases
mentioned in Section 3.1, might have had a negligible im-
pact on the network’s accuracy. The only outliers are points
where accuracy is already severely decreased, for example
the accuracy of ResNet-50 pruned at 60% that goes from
66.1% to 63.5%, while the baseline is at 75.7%.

Figure 3 features another, more significant, difference be-
tween the two curves, as they show the trade-off between
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Figure 3. For ResNet-50 on ImageNet (left) or HRNet-48 on
Cityscapes (right): accuracy depending on pruning rate, either
in terms of proportion of pruned filters (blue) or remaining param-
eters after application of our method (red).

accuracy and two different types of pruning rate: one de-
fined as the proportion of removed filters, which the target
criterion, widespread in the literature, that we used when
pruning the networks, and one defined as the exact count
of remaining parameters in the network once our method
has been applied after pruning. We see that using the per-
centage of removed filters is not a reliable indicator of the
actual compression rate of the network. The actual trade-off
is more advantageous once our method has been applied
to both purge the network from useless weights and get a
reliable estimation of all eliminated weights.
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Figure 4. For ResNet-50 on ImageNet (left) or HRNet-48 on
Cityscapes (right): relationship between the estimated compression
rate in terms of pruned filters (x-axis) and remaining parameters
after reducing the network using our method (y-axis). The dashed
lines provide a y = x reference.

In Figure 4, we compare the compression rate (i.e.
100%

100%−pruning rate% ) in terms of removed filters or removed
parameters, i.e. before and after our method. The relation-
ship between the two measures seems to differ greatly de-
pending on the involved architecture, and we expect it to
depend on the pruning criterion too. Moreover, in either
cases, the relationship is non-linear, which highlights that
the rate of remaining parameters in our operational models
is hardly predictable from the initial rate of pruned filters.

https://github.com/HugoTessier-lab/Neural-Network-Shrinking.git
https://github.com/HugoTessier-lab/Neural-Network-Shrinking.git
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5. Conclusion
We have proposed an efficient and generic way to leverage
any type of filter pruning in deep convolutional neural net-
works. Indeed, even though removing filters in a network
can induce a certain array of problems that can even prevent
inference, our solution is able to tackle them and generate
operational pruned networks that can be used for a more
reliable study of the impact of pruning.
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