
HAL Id: hal-03706214
https://hal.science/hal-03706214v1

Submitted on 29 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An extensive appraisal of weight-sharing on the
NAS-Bench-101 benchmark

Aloïs Pourchot, Kévin Bailly, Alexis Ducarouge, Olivier Sigaud

To cite this version:
Aloïs Pourchot, Kévin Bailly, Alexis Ducarouge, Olivier Sigaud. An extensive appraisal
of weight-sharing on the NAS-Bench-101 benchmark. Neurocomputing, 2022, 498, pp.28-42.
�10.1016/j.neucom.2022.04.108�. �hal-03706214�

https://hal.science/hal-03706214v1
https://hal.archives-ouvertes.fr

An Extensive Appraisal of Weight-Sharing

on the NAS-Bench-101 Benchmark

Alöıs Pourchota,b,∗, Kévin Baillya, Alexis Ducarougeb, Olivier Sigauda

aSorbonne Université, CNRS UMR 7222, Institut des Systèmes Intelligents et de
Robotique, F-75005 Paris, France

bGleamer, 117 Quai de Valmy, 75010 Paris, France

Abstract

Weight-sharing (WS) has recently emerged as a paradigm to accelerate the

automated search for efficient neural architectures, a process dubbed Neural

Architecture Search (NAS). By using and training the same set of weights

for the whole search space, WS allows for the quick evaluation of millions

of architectures, where classical NAS approaches require lengthy individ-

ual trainings. Although very appealing, WS is not without drawbacks and

several works have started to question its capabilities on small hand-crafted

benchmarks. In this paper, we take advantage of the NAS-Bench-101 dataset

to challenge the efficiency of a uniform-sampling based WS variant on sev-

eral representative search spaces. After reviewing previous studies on WS

and highlighting several of their shortcomings, we introduce our own exper-

imental setup, from which we extract several good practices that one should

keep in mind when evaluating WS. With our experiments we first establish

that, given the correct evaluation procedure, WS is able to produce accuracy

∗Corresponding author
Email address: alois.pourchot@gmail.com (Alöıs Pourchot)

Preprint submitted to Neurocomputing August 18, 2022

scores decently correlated with standalone ones. We then provide evidence

that on some search spaces, this WS variant is able to rapidly find better

than random architectures, whilst it is equivalent or sometimes even worse

than a baseline random search on others, as we find that given the same bud-

get, the probability of superiority of an architecture found using WS over an

architecture found through random search can vary between 7% and 78% de-

pending on the search space. We present evidence that the search space itself

has an intricate effect on the capabilities of WS and can bias weight-sharing

towards certain architectural patterns with no clear accuracy advantage. We

conclude that the impact of WS is heavily search-space dependent and diffi-

cult to anticipate for a given problem.

Keywords: Deep convolutional neural networks, neural architecture search

(NAS), weight-sharing (WS), computer vision.

1. Introduction

Using deep neural networks (DNNs) has led to numerous breakthroughs

on many hard machine learning tasks, such as object detection and recogni-

tion or natural language processing [1]. In the last years, a paradigm shift was

observed, from hand-designing features that can be fed to a machine learn-

ing algorithm, to hand-designing neural architectures that can extract those

features automatically. However, arranging DNNs is itself time-consuming,

requires a lot of expertise and remains very domain-dependent. A promising

approach is to automatically design them, a process referred to as Neural

Architecture Search (NAS) [2, 3].

Regrettably, because of expensive training requirements, evaluating a sin-

2

gle DNN architecture can take days to weeks. In turn, original NAS ap-

proaches [4, 5, 6] required thousands of GPU days worth of computing, only

to find conformations slightly better than expert-designed ones. In light of

this concern, many methods have been explored that could drastically cut

the resources required to perform NAS, and today’s literature is blooming

with approaches requiring less than a day of computations [7, 8, 9, 10]

Most of these efficient methods rely on a computational trick called

weight-sharing (WS). Although weight-sharing can refer to various meth-

ods as it was coined independently several times with different meanings

[11, 7, 12, 13], we refer here to the approach first popularized by [11] and

[7], where authors propose to reuse sets of weights from previously trained

networks to bootstrap the training of new ones, rather than training each

newly chosen architecture from scratch. Pham et al. [7] further notice that

in specific search spaces, each network can be seen as a sub-graph of a larger

graph, which is widely referred to as the ”super-net” in the NAS community.

With WS, one can train the whole search space at once, by using a single set

of weights, from which the parameters of each single possible model can be

extracted.

Despite a growing literature, the effect of WS on the performance of NAS

is still poorly understood. A particular concern is the quality of the scores

obtained with the super-net. Employing WS implies substituting metrics

obtained after standalone training with metrics derived from the shared set

of parameters. Both quantities thus need to be correlated: if networks with

excellent standalone performance are under-evaluated by the super-net or

vice-versa, the process could be pointless and even detrimental.

3

A possible reason for a lack of studies on the matter is the cost required

by the training of a proper amount of architectures. As described in Sec-

tion 3, several works mitigate this issue by assessing the correlations between

evaluations of the super-net and true evaluations in reduced settings, either

evaluating few architectures or studying a drastically reduced search space.

In this paper, we leverage the architecture evaluations of the NAS-Bench-

101 [14] dataset to scrutinize the correlations offered by a simple WS variant

and investigate whether it can improve the efficiency of baseline NAS algo-

rithms. We perform this comparison in a realistic setup in which we account

for all the computational costs incurred by WS. To strengthen the results of

our different analyses, we consider seven different search spaces with specific

structural properties and reproduce this analysis on each of them. Besides,

to grant the results clear statistical significance, we compare the different

methods with an appropriate number of runs given a pre-specified effect size,

totaling around 25 WS training for each search space. To our knowledge, this

study is the first to consider analysing WS on such a wide variety of search

spaces, using a fair comparison protocol that explores all sources of compu-

tational cost, and with strong enough statistical power to draw meaningful

conclusions.

We summarize the key take-aways of our experimental setup in a list of

several good practices, which we believe are essential to accurately evaluate

WS. They are the following: evaluating WS using a wide variety of search

spaces, avoiding the different sources of biases that could come up during the

estimation of correlations, visualizing said correlations, properly assessing

computation duration, and guaranteeing statistical significance of the NAS

4

results.

Based on these observations and the resulting good practices, our exper-

imental results show that: (i) with the correct methodology, one can get

decent Spearman’s rank correlations between super-net proxy evaluations

and real evaluations on several search spaces containing hundred thousands

of architectures, which can range between 0.46 and 0.71 depending on the

search space; (ii) WS is often able to quickly spot better than random ar-

chitectures, but is sometimes on par or even worse than a random search

baseline, as the probability of superiority of WS over random search under

a one-shot setting can vary between 7% and 78% depending on the search

space; (iii) global correlations evidenced in (i) are not the limiting factor of

uniform-sampling based WS, as search spaces offering better global correla-

tion do not always offer better WS performances; (iv) the search-space can

bias the super-net training and the resulting evaluations, making WS fairly

unreliable.

2. Background

In this Section, we introduce the foundations of NAS optimization before

describing the basic WS approach and some improvements to the standard

super-net training that have been suggested in the literature. We then rapidly

describe the NAS-Bench-101 dataset.

2.1. NAS Optimization

Given a set of possible architectures A, each of them coming with a set

of possible weights W(A), the goal of NAS can be formulated as a bi-level

5

optimization process [15], which takes the following generic form:

Find A ∈ arg min
A∈A

Γ(A), where Γ(A) = (1)

inf
{
F (A,w?), w? ∈ arg min

w∈W
f(A,w)

}
.

In bi-level optimization problems, the evaluation of the variable of interest

depends on a second variable (here A and w respectively) that is constrained

to be optimal with respect to another optimization problem. F and A are

called the outer objective and variable, whereas f and w are the inner ob-

jective and variable. In the typical context of machine learning, f would

be the loss of a model on a training dataset, whereas F would be the loss

of the same model on a held-out validation dataset. During training, the

model only has access to the training dataset to update its parameters in

order to minimize f . However, we would rather like the architecture of the

model to be selected so as to improve the model generalization, that is to

decrease the loss of the model on unseen data, represented by the validation

dataset. A bi-level optimization typically encountered in machine learning

is the hyper-parameter optimization problem, of which NAS is a particular

instance.

2.1.1. Dynamic Formulation of the Constraint

Under its general form, the problem presented in (1) creates constraints

on the inner variable w that cannot be explicitly formulated in terms of A.

Several optimal values might also exist. As a result, w? ∈ arg minw∈W f(A,w)

cannot be expressed as a function of A, an undesirable property when search-

ing for practical resolution algorithms. To circumvent this difficulty, the

6

assumption is often implicitly made that each possible value of w? corre-

sponds to the same value of the outer objective F . It is also assumed that at

least one set of optimal weights can be reached through an iterative process,

which dynamics can be described analytically in terms of A. In practice, (1)

is replaced by:

Find A ∈ arg min
A∈A

F (A,wT (A)), (2)

u.c.

 w0 = Φ0(A, ε)

wt = Φt(wt−1, A, ε) t = 1, . . . , T,

where the initial weights w0 are initialized in a deterministic way or through

some random process, characterized by a random variable ε. Each wt is

obtained by applying the process Φt to wt−1 and the current architecture

A. Typically, Φt takes the form of a stochastic gradient update on a loss l

computed using a mini-batch of data sampled from a training set:

Φt(wt−1, A, ε) = wt−1 − α∇wEx,y∼Dt [l(A,w, x, y)]. (3)

If the inner optimization behaves well, then as T −→ ∞ the solutions of (2)

should get closer to the solutions of (1). Franceschi et al. [16] show that this

is true under reasonable assumptions.

2.1.2. Continuous and Stochastic Relaxations

In a NAS problem, the set of possible architectures A is usually dis-

crete. Some approaches directly solve the outer optimization problem using

this discrete representation, making use of either genetic algorithms [4, 17],

reinforcement learning algorithms [18] or hyper-parameter optimization al-

gorithms [19]. When an architecture A is to be evaluated, the corresponding

7

wT (A) is computed and the resulting fitness of the individual is calculated

as F (A,wT (A)).

To work with continuous rather than discrete variable, other NAS ap-

proaches rely on some form of relaxation of the objective in (2). In [8], the

authors introduce a continuous relaxation of the search space itself: an ar-

chitecture is considered as a weighted average of all possible architectures.

Given a set of elementary operations O = (oi)i, each choice of such opera-

tion oj is replaced by a weighted average operation: õj =
∑

i λi,joi. Typically,

those elementary operations take the form of different convolution kernels,

pooling kernels or skip connections. This makes the problem differentiable

with respect to the architecture parameters λ. The problem described in (2)

becomes:

Find λ ∈ arg min
λ∈Λ

F (A(λ), wT), (4)

u.c.

 w0 = Φ0(A(λ), ε)

wt = Φt(wt−1, A(λ), ε), t = 1, . . . , T.

Although very straightforward, this approach is not resource-efficient, as all

the allowed elementary operations of each node appear in the computational

graph. Several works have since improved in various ways the original idea

[20, 21].

Numerous other authors [5, 9, 10] rather consider a stochastic relaxation

of the problem. Instead of working with A directly, a family of probability

distributions P = {Pθ : θ ∈ Θ ⊆ Rnθ} is introduced over the set of architec-

tures [22]. It is assumed that each Pθ ∈ P has a density function pθ which is

differentiable with respect to θ. Working with this family, the outer objective

8

in (2) is replaced by:

Find θ ∈ arg min
θ∈Rnθ

EA∼Pθ
{
F (A,wT)

}
. (5)

The idea behind this relaxation is that optimality is reached if Pθ concentrates

all its mass in a Dirac centered at the optimal architecture. This results in

the following optimization problem:

Find θ ∈ arg min
θ∈Rnθ

EA∼Pθ
{
F (A,wT (A))

}
(6)

where

 w0(A) = Φ0(A, ε)

wt(A) = Φt(wt−1, A, ε), t = 1, . . . , T.

The constraints of the original formulation disappear (because A is now a

dummy variable in the expectation), which renders θ completely independent

from the sequence of weights encountered during the inner optimization and

makes the objective trivially differentiable in θ. In this case, the resulting

gradient is a Reinforce like type gradient. Notice that this black-box

approach is similar to the gradient-free methods used in the discrete case,

and is in particular very akin to evolutionary algorithms such as evolution

strategies [23].

2.2. Weight-Sharing

Weight-sharing refers to combining the weights of all the architectures of

a search space into a single super-net. To access a model and its weights,

one only needs to activate the corresponding computational sub-graph. The

shared parameters are learned by successively activating different parts of

the super-net and performing the standard forward-backward propagation

algorithm using mini-batches of training data.

9

2.2.1. WS Optimization

WS approximates the solution to a NAS problem by successive iterations

of two steps:

Find W ∈ arg min
W∈RN

Φ(A, f,W), (7)

Find A ∈ arg min
A∈A

F (A,W), (8)

where A is the set of possible architectures, W the weights of the super-net,

F is the outer objective (usually a validation loss), f is the inner objective

(usually a training loss) and Φ is a function of the inner objective and the

search space which dictates how to optimize W . The loss Φ is usually ex-

pressed as an expectation of the inner objective over a distribution Pθ of

architectures:

Φ(A, f,W) = EA∼Pθ(A){f(A,W)}. (9)

Different approaches combine both phases in different ways. Most alternate

between the two, with mini-batches of data respectively coming from training

and validation sets [8, 9, 10, 7]. In this work, we first train a super-net until

convergence, and then use it to select possibly good architectures. We take

as baseline the work of [24], where models are sampled uniformly from the

set of all possible architectures and the super-net is updated in accordance.

This paradigm facilitates the analysis of correlations, as methods training

both weights and architectures together induce a bias towards architectures

with good early evaluations. Besides, [24] report better performance when

exploiting their trained super-net to perform NAS.

10

2.2.2. Enhancing Weight-Sharing Correlations

Several tricks and WS training variants have been introduced in the lit-

erature to improve the correlations granted by the super-net. We list several

unrelated approaches here, which we explore in our experiments in Section 4.2

and 5.1.

During evaluation, it is possible to directly exploit the whole super-net

and perform a standard forward pass on the impending data whilst activating

the graph corresponding to the evaluated net. However, several works report

the benefit of adapting the statistics of the inherited batch normalization

layers [25, 24].

The weights of the super-net W are updated through gradient descent

with respect to the objective in (7), using the formulation of Φ described

in (9). The resulting gradient takes the form of an expectation over the

distribution Pθ:

∇WΦ(A, f,W) = EA∼Pθ(A){∇Wf(A,W)}. (10)

This expectation is approximated by an empirical average, using random

architectures sampled following Pθ(A). However, in practice Guo [24] only

use a single architecture to estimate the expectation. Although this process is

unbiased, it results in high variance updates of W . Decreasing this variance

by sampling more models could improve the super-net optimization, at a

higher computational cost.

In [26], the authors propose to not only share the weights of the basic

operations between architectures, but to further merge the weights of all

basic operations at a given node into a single set of parameters. For instance,

if two basic operations were a x×x convolution and a y×y convolution with

11

x > y, instead of representing each operation with its own set of kernels,

one could use a single set of size x × x, and apply the y × y convolution by

extracting the sub-kernels of size y × y from the the shared set.

Authors of [27] identify in their work a bias towards architectures with

fewer parameters, as they get trained faster. They propose to correct this bias

by sampling architectures pro-rata to their number of parameters, sampling

complex architectures more often.

3. Related Work

In this section we describe several works trying to measure the efficiency

of weight-sharing.

In [25] the authors train a super-net on a search space of their own. Path

dropout is applied during training to randomly cut some portions out of

the super-net. A random search is then used to find a good architecture. To

validate the use of the super-net as a proxy, 20, 000 architectures are sampled

from the chosen search space and evaluated with the resulting super-net.

This set is then partitioned into several bins based on the obtained proxy

scores. For each bin, 4 architectures are sampled and trained from scratch

for a small number of epochs (around 10% of the length of baseline training)

before being evaluated. The authors note visually satisfying correlations

between the two proxies, but do not report any metrics. For computational

reasons, correlations with full budget standalone accuracy are not reported.

Moreover, because the few models evaluated are evenly spread across the

range of possible proxy accuracies, the produced appealing correlations plots

might not be representative of the whole search space.

12

In [28], Sciuto et al. quantify the impact of WS on NAS-Bench-101,

and on a small language modeling task. They find that a simple random

search baseline is competitive with and often outperforms several NAS algo-

rithms exploiting WS such as DARTS [8], ENAS [7] and NAO [29], which

furthermore display high variance in their results. They report poor corre-

lations between the ranks obtained using a super-net and with standalone

evaluations on the considered search spaces. We note however that the used

algorithms were not specifically designed to produce good correlations at the

end of training, but rather exploit them to rapidly converge to seemingly

good architectures.

Zhang et al. [30] explore another small search space of 64 architectures

dedicated to computer vision. They train several super-nets using different

seeds, and report high variance in the relative rankings of the architectures

obtained with WS. They notice that during super-net training, strong in-

teractions exist between architectures, as updates in some models can either

improve or deteriorate the performance of others. They reach correct correla-

tions with standalone rankings, albeit the important variance seems to hinder

the practical implications of the super-net. They propose several approaches

to reduce the amount of WS between architectures, such as fine-tuning parts

of the super-net before evaluation or grouping architectures into different sets

according to different strategies.

In [31], Chu et al. argue that WS is limited by uneven sampling of individ-

ual weights throughout the learning process. Although they are seen equally

often on average, some might locally be over-represented due to chance, effec-

tively biasing the weights of the super-net. To prevent this, they propose to

13

average the gradient updates of the shared parameters over n samples, cho-

sen such that each of the n elementary operations of the super-net appears

exactly once. They combine their super-net trained with the aforementioned

strategy with a multi-objective genetic algorithm, to build a Pareto front of

accurate architectures with adequate numbers of parameters and multiply-

add operations. To justify their approach, they sample 13 models equally

distant from the found Pareto front and compare the accuracy obtained with

WS against standalone ones, and reveal that rankings are well preserved.

However, details regarding this experiment are lacking and it is likely that

the result does not hold for the whole search space.

Luo et al. [27] also note a strong variance in the results of a few NAS al-

gorithms exploiting WS, and impute the poor results to meager correlations,

which they illustrate using 50 randomly sampled architectures. After identi-

fying several factors that could hinder performances, such as short training

times and bias towards simple architectures, they propose straightforward so-

lutions for each of them, and eventually demonstrate improved performances.

In [32], the authors benchmark 8 NAS methods, 6 of which are based on

WS, on 5 different datasets. Their careful analysis reveals that many NAS

algorithms have trouble outperforming a random search. They further argue

that the use of training tricks in the evaluation protocol have a greater influ-

ence over the final performance than the NAS algorithm itself. Besides, they

note that search spaces typically used in NAS have a very narrow accuracy

range and are thus already tuned to the considered tasks.

Zela et al. [33] use NAS-Bench-101 to evaluate NAS algorithms exploiting

WS. However, because the authors choose to study DARTS variants, they

14

create their own search spaces to perform evaluations, whereas we directly

use the whole NAS-Bench-101 search space. In one of their experiments,

they report the evolution during training of the correlations between evalu-

ations obtained using the super-net, and evaluations queried from the NAS-

Bench-101 dataset. They report poor or nonexistent correlations for most

algorithms, which seems to contradict our findings.

Posterior to an early version of our work [34], Zhang et al. [35] perform

experiments with an intent similar to that of our study. Instead of con-

sidering several sub-spaces of NAS-Bench-101, the authors rely on different

search-spaces typically found in the NAS literature. On NAS-Bench-101,

the authors consider a relatively small sub search-space, introduced by [33],

which contains around 42, 000 architectures, around 10 times less than the

number of available unique architectures. For each search space, they train

several super-nets using the same uniform-sampling variant of WS [24]. Their

results suggest that it is possible to reach correct correlations, but that there

is an important variance with respect to the search space considered. This

variance of behavior is more preeminent in their work, given the greater

diversity of search spaces considered. Because the search space that they

consider are not all based on available NAS benchmarks, some of those cor-

relations are obtained by training only a few tens of architectures. They

additionally reveal that on some search spaces uniform WS is biased towards

certain operators, and that although WS cannot be used to accurately select

top architectures, it is paradoxically quite capable of finding the worst ones.

Unlike this work, the authors conclude that the positive effect of WS on NAS

is clear cut and positive. We explain this discrepancy by the fact that they

15

do not account for super-net training times when comparing against random

search.

For clarity purposes, we gather in Table 1 a quick summary of each work

described in this section and their conclusions on super-net correlations and

whether WS can improve NAS consistently. We embed each paper using five

dimensions: the approximate size of the considered search spaces, the number

of studied search spaces, the number of architecture evaluations performed,

whether the architecture evaluations are biased and whether the WS variant

used uniform sampling. We additionally highlight in red what we think

are shortcomings of the different studies, which we briefly describe here. The

authors of [30] consider an unrealistic search space of merely 64 architectures.

All studies except [33, 35] and ours consider less than three search spaces,

which we think is too narrow to get an understanding of the various behaviors

of WS. Almost all authors evaluate below 1,000 architecture when analysing

correlations, resulting in limited statistical significance. The authors of [25,

31] perform biased evaluations which are likely to overestimate the quality of

the correlations offered by WS. On the contrary, authors of [28] report their

results for WS based NAS algorithms that do not use uniform sampling and

are therefore likely to underestimate the quality of the correlations offered

by WS.

All in all, the authors of [25, 30, 31, 35] report reaching correct cor-

relations whilst the authors of [28, 27, 33] report poor correlations, both

sides coming with various shortcomings in the methodology. Regarding NAS

performances when exploiting WS, authors of [28, 32], suggest that when

properly evaluated WS-based NAS are no better than random search, whilst

16

authors space size #spaces #evals unbiased evals uniform ws good corrs. ws ↗

[25] ∼ 109 1 ∼ 102 × X X X

[28] ∼ 105 2 200 X × × ×

[30] ∼ 101 1 64 X X X n.a.

[31] ∼ 1019 1 13 × X X X

[32] ∼ 1025 1 n.a. n.a. n.a. n.a. ×

[27] ∼ 1025 1 50 X X × n.a.

[33] ∼ 105 3 100 X X × n.a.

[35] variable 5 variable X X X n.a.

Ours ∼ 105 7 10,000 X X X ×

Table 1: For each reference in Section 3, we gather the conclusions of the authors on

super-net correlations (good coors.), and whether WS can consistently improve NAS

(WS ↗). In each entry, we specify the approximate number of architectures in the search

space (space size), the number of search spaces considered (#spaces), the number of

architecture evaluations performed (#evals), whether the selection of the architecture

and/or their evaluation was unbiased (unbiased evals), and whether the considered WS

variant used uniform sampling (uniform ws). We highlight in red what we think are

shortcomings of the different analyses. ”n.a.” stands for not applicable, meaning that the

column was not relevant to the study.

most of the NAS literature tacitly agrees on the opposite. With this study

we aim at reaching a satisfactory conclusion on those two aspects in a specific

setup, which is using the single-path one-shot approach of [24] on the search

space described by the NAS-Bench-101 benchmark [14].

4. Methods

In this section, we describe the protocols used to address the follow-

ing questions: Are WS-based proxy-accuracies significantly correlated with

standalone ones? How do correlations vary with respect to the training and

evaluation regimes of interest? Can the super-net find better than random

17

architectures? Can it find competitive architectures? How do the results vary

between search spaces? Outcomes of the experiments mentioned hereafter

are described in Section 5

4.1. Impact of Search Spaces on NAS Performances

To measure the impact of the search space on WS, we consider for each

experiment several sub-sets of the NAS-Bench-101 search space, which we

now introduce.

In NAS-Bench-101, feature maps going to the output of a cell are concate-

nated. Given that the shape of the output is fixed across all possible cells,

and that different cells might have different number of outputs nodes, this

means that the kernel depth of a cell’s nodes varies over architectures, pos-

sibly hindering the use of WS. A reasonable splitting strategy is to consider

the sets (Ai)i=1,...,4, in which architectures contain exactly i nodes connected

to the output (beside the input node, which is added and not concatenated),

resulting in compatible nodes with feature maps of equal sizes 1.

We also consider the full NAS-Bench-101 set, which we call Afull: we

solve the aforementioned problem by dynamically adapting the number of

feature maps used for each node depending on the architecture: each node,

as seen by the super-net, contains the maximum number of filters for the

given layer, but sampled architectures only inherit the first n filters of the

filter-bank, where n is determined so as to satisfy the constraints on the

1A difference of 1 feature map can still appear in A3 since the number of final feature

maps after concatenation is rarely divisible by 3. In such case, one branch may end up

with one more or one less feature map, e.g. [42, 43, 43] for 128 output feature maps

18

output size of the architecture’s cell. Other inheritance strategies could be

considered, such as randomly selecting the correct number of filters from

the available filter bank, but [36] notice that this scheme is both simple and

efficient.

Early results additionally compelled us to study the influence of residual

connections on WS. It is well known that edges connecting the input node

to the output node of a cell, known as residual connections [37], significantly

improve the training of convolutional architectures. Suspecting that this is

also true for sub-nets of a supernet, we consider two additional search spaces:

Ares
full and Anres

full, containing all architectures of NAS-Bench-101 with and

without residual connections respectively. Figure 1 sketches the structural

properties of the different search spaces.

4.2. Ranking Architectures with Weight-Sharing

With this experiment, we want to estimate the achievable correlation

level between super-net based proxy accuracies, and accuracies obtained with

standalone training of architectures.

We train several super-nets on the cifar-10 dataset. Following [24],

for each mini-batch of data seen during training, a single architecture is

uniformly sampled from the search space. The weights of the super-net

are then updated according to the computational graph generated by the

activation of this architecture.

We reuse the hyper-parameters of [14] and train the super-nets with the

rmsprop optimizer. The initial learning rate is set to 0.2 and decayed to

0 using a cosine annealing schedule over 432 training epochs, which is four

times the original time budget used in NAS-Bench-101. As noted by [27]

19

Figure 1: Structural properties of the different search-spaces. On each graph, ”in” and

”out” denote the input and output of the cell, while ”+” and ”&” denote the sum and

the concatenation of incoming feature maps. We only display the edges discriminating at

least one search space and represent the rest of the graph with node G. If an edge does

not discriminate a specific search space, we represent it with a dotted line. A1 to A4 are

characterized by the number of edges concatenated after G, and Ares
full and Anres

full by the

presence or absence of a residual connection.

longer training times are often required for super-nets to converge. The

momentum is set to 0.9, weight decay to 10−4, and ε to 1. The batch size

is kept to 256 and the momentum and ε of the batch normalization layers

are respectively set to 0.003 and 10−5 2. We do not tune hyper-parameters

as doing so would require the computationally expensive training of several

architectures in a realistic setting.

We however reduce the initial number of filters to 16 compared to the

2Following PyTorch convention.

20

original 128, in order to accelerate training and evaluations. Earlier iterations

of our experiments revealed that using the default 128 value requires fairly

longer training times for the super-nets, without significantly improving the

resulting correlations. Although setting it to 16 is somewhat arbitrary, [33]

also note that accuracies obtained after training architectures with 16 initial

filters are greatly correlated with those obtained using the baseline 128 filters.

We thus consider that the number of filters is not the limiting factor of our

different WS experiments. This setup additionally mimics one-shot NAS

approaches such as [8, 10, 7], where the architecture found by the search is

up-scaled and retrained to further improve accuracies.

We train 5 different super-nets on each search space. We then randomly

sample 1,000 unique architectures from the search space and compute their

proxy accuracies on the held-out validation dataset. We match those accura-

cies with the average validation accuracies returned by NAS-Bench-101. To

quantify the quality of the correlations between the two, we use Spearman’s

rank correlation coefficient.

We estimate accuracies with the super-nets performing either no fine-

tuning (no-ft) or after fine-tuning the batch-norm statistics (bns-ft). With-

out fine-tuning, we directly use all the parameters and batch-norm statistics

of the super-net. When adapting the batch-norm statistics of the super-net

to a specific architecture, we simply estimate them using a single mini-batch

of training data (i.e. 256 images).

We additionally study the effect on correlations of the different train-

ing variations mentioned in Section 2.2.2. We follow the same protocol but

always fine-tune the batch-norm statistics (bns-ft). We consider four vari-

21

ants: averaging the gradients in Equation (9) over 3 architectures (avg-3),

sampling architectures pro-rata to their number of parameters (pro-rata)

[27], following the single-kernel approach of [26] (single-k), and combining

the single-kernel and pro-rata approaches (s-k + p-r).

4.3. Impact of Weight-Sharing on NAS Performances

Quantifying the correlation level obtained with WS on realistically sized

search-spaces is of interest on its own, but is insufficient to conclude on the

efficiency of WS itself. Indeed what eventually matters are not the correla-

tions as such, but rather the quality of the architectures that can be found

by exploiting them. With the experiment of this section, we aim at charac-

terizing the interest of substituting super-net evaluations to the standalone

evaluations when performing NAS.

To investigate this, we consider two very simple search algorithms: ran-

dom search (RS) and a greedy local search (GS), which we both use in two

different settings. In the baseline setting (BS) NAS, we directly maximize

the validation accuracy of models as returned by the benchmark. In the

weight-sharing (WS) setting, we maximize the performance of architectures

obtained from the super-net after fine-tuning batch-norm statistics (bns-ft).

When performing a RS, we directly sample and evaluate a fixed num-

ber of unique architectures from the given search space. The GS is a plain

hill-climbing method that has been shown to be very effective on NAS bench-

marks [38, 39]. A random architecture is initially sampled from the search

space. All of its neighbours are evaluated, and the neighbour with the best

score is selected to be the new current architecture. This process is repeated

until a fixed point (an architecture whose best neighbour is itself) is reached,

22

after which a new random architecture is sampled. The algorithm stops when

the total evaluation budget is reached. The set of neighbours of a given ar-

chitecture is comprised of the architecture itself, all architectures obtained by

modifying a single node operation, all valid architectures obtained by adding

or removing a single edge in its adjacency matrix, as well as all valid archi-

tectures that can be obtained by adding a single node to the architecture.

In the baseline NAS setting, each search is given a budget of 10, 000

architecture evaluations. For each algorithm, we report the evolution of

the test regret. The test regret is computed after each model evaluation

by comparing the mean test accuracy of the model with the running best

validation accuracy and the best mean test accuracy of the considered search

space:

Rtest(t) = max
a∈A

acctest(a)− acctest(arg max
a∈(ai)t0

accvalid(a)), (11)

where A is the considered search space, a1, . . . , at the architectures trained

on their own and evaluated on the validation dataset at time t, accvalid(a)

and acctest(a) respectively refer to the validation and test accuracies of the

architecture a.

When exploiting WS, the strategy is slightly different. We first optimize

the architecture based on the super-net proxy accuracy. Although more

evaluations could be considered, we find 10, 000 to be enough for an efficient

algorithm such as GS to converge. Each evaluation requires performing an in-

ference on a validation dataset. Although this is orders of magnitude cheaper

than training architectures, we still find the process to be quite costly, requir-

ing around 4 seconds per architecture. A search performed using the proxy

23

thus requires around ten hours, which, although reasonable on its own, has

to be multiplied by the number of search spaces and considered seeds.

Once the optimization is finished, we assess the quality of the found

solutions by querying their true validation accuracies on the benchmark. To

obtain regret curves such as those of the baseline methods, we evaluate the

10,000 intermediate models considered during the WS searches in order of

decreasing proxy accuracy. Again, we report the evolution of this test regret

as a function of time as described in Equation (11).

The different regrets reported are plotted as a function of search time.

This search time is well approximated by the duration of the training and

evaluation of the different models. For a fair time-wise comparison of the

regrets, we account in the WS-based paradigm for both super-nets training

time and the duration of the evaluation of the 10,000 models. Unfortunately,

we were not able to perform experiments using the same hardware as [14].

As a result, using the training times reported by NAS-Bench-101 would be

biased, as theirs was much more efficient. To circumvent this, we used a com-

mon setup comprised of two NVidia K80 GPUs and estimated for each dis-

tinct architecture the time required to perform a single forward and a single

backward pass. We averaged this quantity over three independent measures.

To estimate the duration of a training, we simply multiply those quantities

by the appropriate number of forward and backward passes. Besides, given

that during super-net training each sampled architecture only activates the

necessary parts of the network, we approximate the super-net training time

by the average training time of the architectures of the considered search

space.

24

The original purpose of WS is to perform NAS in a one-shot paradigm

[40] by quickly selecting a single architecture based on proxy accuracy scores,

and re-train it from scratch. Given a search space, we note for each WS run

the average time spent before the first real evaluation (super-net training and

evaluation, and training of the selected architecture) and report the difference

between the obtained regret with the regret achieved by the baseline methods

under the same time budget. To get an insight on the size of the effect, we

report Cohen’s d for the considered measures, which is defined as the average

difference divided by the pooled standard deviation. Cohen’s d [41] reflects

how the measured mean absolute difference relates to the standard deviations

of both populations. An effect is usually considered important if |d|> 0.8,

mild if |d|≈0.5 and small if |d|<0.2 [41].

We assess the statistical significance of the differences using a Student’s

t-test. For the baseline searches, since there is almost no computational

requirements (because a run is a simple query of the NAS-Bench-101 dataset),

we follow [14] and perform 100 runs. As explained above, WS-based search

takes a non-negligible amount of time. Given our computational budget, we

settle on ensuring that any effect of at least medium size can be properly

measured, with a statistical power of β = 0.8 and a significance level α =

0.05. We estimate 3 that around 25 runs of the WS-based approach should

grant such guarantees.

3using the statsmodels python package [42]

25

4.4. Good Practices

As pointed out in Section 3 and Table 1, existing analyses of WS in the

literature bear several limits. In this section we present what we think are

good practices for evaluating the impact of WS on NAS. With those guide-

lines, we hope to pave the way for future research and possible analyses of

other benchmarks. We further succinctly indicate in Table 2 the strategy

that we employed to avoid each pitfall.

Search Space Variability: When evaluating WS, we suggest not rely-

ing on a single search space, but rather explore various search spaces. This

diversity gives an idea of the intrinsic variance associated with the procedure.

As discussed in Section 5.3 this multiplicity is key as WS performance varies

greatly with the explored search space.

Unbiased Estimation of Correlations: To fairly assess the quality of

correlations between super-net and standalone scores, one must limit biases

that could emerge from the super-net in three respects: sampling biases dur-

ing training that result in some architectures being trained more often than

others, biases in the selection of architectures during evaluation that result

in correlations not representative of the whole search space, and biases in the

evaluation procedure itself that result in poor non-representative individual

performance.

Visualization of Correlations: Correlation metrics such as Spearman’s

rank correlation coefficient cannot capture the complexity of a plain scatter

26

plot of predicted against true score. Such scatter plots additionally reveal

over or under evaluation biases created by the super-net. Examples of such

figures can be observed in Figure 3 and Figure 4.

Assessment of Computation Times: When reporting the evolution of

regrets as a function of computing time, all sources of computations must be

included. This includes the time required to train the super-net, as well as

to perform the individual evaluation of all the architectures of interest.

Satisfying Statistical Power: The proper statistical comparison of two

NAS approaches is crucial to reach any conclusion. Unfortunately, it is quite

common in the NAS literature to claim the superiority of NAS method based

on a single run. One must make sure that enough runs are considered to get

statistically significant comparisons [43].

5. Results and Discussion

We now describe the results of the above studies. We then discuss the

influence of the search space on WS.

5.1. Ranking Capabilities of Weight-Sharing

For each search space, we report in the left part of Table 3 the average

over 5 different super-nets of the rank correlation between the standalone

accuracy returned by NAS-Bench-101 and the proxy accuracies obtained af-

ter applying the two evaluation protocols described in Section 4.2. no-ft

refers to performing no fine-tuning, and bns-ft to fine-tuning the batch-

norm statistics. Without any fine-tuning, correlations are poor across all

27

Good Practice Our Approach Observed Results

Search Space

Variability

We explored seven different sub

search-spaces of NAS-Bench-101.

Correlations and WS performance

vary greatly with the considered

search space. For instance, the

Spearman coefficient can range be-

tween 0.46 and 0.71.

Unbiased Estimation

of Correlations

We used the uniform sampling

scheme of [24].

Uniformly sampling architectures

during the training is a baseline

that allowed us to measure the con-

tribution of other more advanced

techniques.

We uniformly sampled architec-

tures from the considered search

space.

Uniformly sampling architectures

during evaluation allowed to con-

clude of the correlation capabilities

of WS, as well as identifying some

biases in the evaluation of certain

architectures

We tuned batch-norm statistics

during evaluation.

The average correlation over the

different search spaces increases by

270% when fine-tuning batch-norm

statistics.

Visualization of

Correlations

We introduced scatter plots with

colors indicating specific properties.

We identified some biases in the

evaluation of certain architectures.

Assessment of

Computation Times

We accounted for super-net training

and evaluation times.

Training super-nets takes a non-

negligible amount of time and ac-

counting for this duration makes a

baseline random search equivalent

to a random search employing WS

on search spaces.

Satisfying Statistical

Power

We met our statistical power and

significance goals with 25 runs.

This allowed us to conclude on the

efficiency of WS against a random

search baseline.

Table 2: For each good practice introduced in Section 4.4, we indicate the strategy that

we employed and the observed results.
28

no ft bns-ft single-k pro-rata avg-3 s-k + p-r

A4 0.08 ± 0.17 0.64 ±±± 0.03 0.66 ± 0.01 0.68 ± 0.03 ∗ 0.67 ± 0.02 0.69 ±±± 0.02

A3 0.12 ± 0.15 0.59 ±±± 0.03 0.62 ± 0.02 0.63 ± 0.02 0.61 ± 0.03 0.66 ±±± 0.02

A2 0.24 ± 0.03 0.60 ±±± 0.04 0.64 ± 0.02 0.64 ± 0.02 0.61 ± 0.01 0.65 ±±± 0.02

A1 0.32 ± 0.05 0.68 ±±± 0.02 0.72 ± 0.02 0.75 ±±± 0.02 0.73 ± 0.01 0.67 ± 0.01

Afull 0.24 ± 0.05 0.56 ±±± 0.04 ∗ 0.63 ±±± 0.02 0.59 ± 0.03 0.61 ± 0.02 0.58 ± 0.02

Anres
full ∗ 0.11 ± 0.05 ∗ 0.46 ±±± 0.06 ∗ 0.58 ±±± 0.02 0.56 ± 0.03 0.52 ± 0.02 0.49 ± 0.02

Ares
full 0.34 ± 0.10 0.71 ±±± 0.02 0.68 ± 0.01 0.72 ±±± 0.02 0.69 ± 0.02 0.66 ± 0.01

Table 3: Spearman’s Rank Correlation Coefficient Between WS and Standalone Eval-

uations for Various Search Spaces, WS Variants, and Evaluation Schemes . We report

the average over 5 independent runs and the 95% confidence interval for its estimation.

On the left, we use the baseline WS approach and the perform either no fine-tuning, or

batch-norm statistics fine-tuning. On the right, we test some variants of WS described

in Section 2.2.2 and always fine-tune batch-norm statistics during evaluations. Results

marked with an asterisk ∗ indicate that one of the super-net failed to converge, and that

the reported statistics are computed using only the four others.

search-spaces, with substantial variances. With batch-norm statistics fine-

tuning, the average correlation increases by 270% over the no-ft scheme,

granting almost 3 times better results on average.

In the right part of Table 3, we present the average rank correlations

obtained from training the super-net with the different variants described in

Section 2.2.2, and applying batch-norm statistics fine-tuning during evalua-

tions. single-k refers to exploiting the single kernel variant of [26], pro-

rata to sampling architectures pro-rata to their number of parameters [27],

and s-k + p-r the combination of the two. avg-3 refers to averaging gradi-

29

ents during the training of the super-net over three architectures. We notice

that all approaches lead to a small improvement of the correlations, as well

as a slight variance reduction.

These simple results show that it is possible to get correlations between

proxy evaluations performed with WS and full-budget evaluations as long

as batch-norm statistics are adapted to the evaluated architectures. We

notice that all the works mentioning poor correlations in Section 3 do not

detail their evaluation setup, and we suspect that they do not adapt batch-

norm statistics. Additionally, it is possible to further improve the resulting

correlations by modifying the super-net training in various ways.

5.2. Can Weight-Sharing Improve NAS ?

The regret curves of the different NAS experiments described in Sec-

tion 4.3 are reported in Figure 2. The relative position of the different meth-

ods largely depends on the considered search space, but one can see that

given sufficient training time, baseline GS outperforms all other algorithms.

In a one-shot setting, (i.e. given a time budget equivalent to the evaluation

of a single WS-picked architecture), WS-based approaches seem to perform

better on average than the baseline RS and GS but can be quite unreliable.

We report in Table 4 the average regret difference between the baseline

random search and the weight-sharing based random search (RSbs −RSws),
and between the baseline random search and the weight-sharing based greedy

search (RSbs − GSws), in the one-shot setting. Numerical and statistical

results coincide with the visual results of Figure 2. Similarly, we report in

Table 5 the average regret difference between the baseline greedy search and

the weight-sharing based random search (GSbs − RSws), and between the

30

105 107

time (s)

10−3

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(a) A4

105 107

time (s)

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(b) A1

105 107

time (s)

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(c) Afull

Figure 2: We report for a few search space the test regret as a function of time for the

different NAS algorithms considered. Curves are averaged over 100 runs for RSbs and GSbs,

and 25 runs for RSws and GSws. Visible colored areas correspond to the 95% confidence

interval for the estimation of the average. Notice that both axes use a logarithmic scale.

Figures for all search spaces can be found in Appendix B.2.

baseline greedy search and the weight-sharing based greedy search (GSbs −
GSws).

Combining WS and random search results in a significant improvement

over the baseline random search (left column of Table 4) onA1 (d = +1.09, p =

0.00), Anres
full (d = +0.48, p = 0.03) and Ares

full (d = +0.63, p = 0.01), but

grants significant worse results on A4 (d = −0.85, p = 0.00). Results on A3

(d = −0.26, p = 0.25), A2 (d = +0.42, p = 0.07) and Afull (+0.44, p = 0.06),

are below our effect size threshold and non-significant. Unsurprisingly, the

baseline greedy search performs worse than the baseline random search in the

one-shot setting, as can be deduced from the left column of Table 5, where

GS is outperformed on all but one search space. This is to be expected from

an algorithm without any direct exploration of the search space. Results in

Table 4 moreover suggest that combining WS with GS rather than RS re-

31

RSbs −RSws RSbs −GSws

A4 −0.68± 0.80 (p=0.00, d=−0.85) −0.82± 0.83 (p=0.00, d=−0.99)

A3 −0.20± 0.77 (p=0.25, d=−0.26) −0.62± 0.88 (p=0.00, d=−0.71)

A2 0.36± 0.87 (p=0.07, d=+0.42) 0.54± 0.85 (p=0.01, d=+0.63)

A1 1.18± 1.08 (p=0.00, d=+1.09) 1.30± 1.10 (p=0.00, d=+1.18)

Afull 0.53± 1.22 (p=0.06, d=+0.44) 0.76± 0.96 (p=0.00, d=+0.79)

Anres
full 0.63± 1.30 (p=0.03, d=+0.48) 0.32± 1.44 (p=0.32, d=+0.22)

Ares
full 0.33± 0.52 (p=0.01, d=+0.63) −0.02± 0.58 (p=0.87, d=−0.04)

Table 4: We report the average regret differences between the baseline random search and

the WS-based random search (RSbs−RSws), and between the baseline random search and

the WS-based greedy search (RSbs − GSws) in the one-shot paradigm. We additionally

report the pooled standard deviation, the p-value, as well as the effect size d. For clar-

ity purposes, regrets are multiplied by 100. We test for the statistical significance

of the difference using an independent t-test and report the resulting p-values. Results

highlighted in blue correspond to settings where the considered method performed sig-

nificantly worse than the random search baseline (p < 0.05), whereas results marked in

red highlight settings in which the considered method performed significantly better than

random search baseline (p < 0.05).

sults in unexpected behaviors, as it can either improve (A2, A1, Afull), or be

detrimental to (A4, A3, Anres
full, Ares

full) performances depending on the search

space.

All in all, results suggest that in a one-shot setting, WS can improve

the performance of RS but that its efficiency is inconsistent and on average

relatively small. To put the different reported regrets in context, one can

consider that with an effect size d = +0.44 for the WS based RS over baseline

32

GSbs −RSws GSbs −GSws

A4 0.30± 1.21 (p=0.27, d=+0.25) 0.19± 1.25 (p=0.51, d=+0.15)

A3 0.72± 1.45 (p=0.03, d=+0.50) 0.28± 1.50 (p=0.41, d=+0.18)

A2 1.67± 2.92 (p=0.01, d=+0.57) 1.86± 2.92 (p=0.01, d=+0.64)

A1 2.46± 1.85 (p=0.00, d=+1.33) 2.50± 1.84 (p=0.00, d=+1.36)

Afull 1.42± 3.03 (p=0.04, d=+0.47) 1.67± 2.95 (p=0.01, d=+0.57)

Anres
full 1.48± 1.76 (p=0.00, d=+0.84) 1.14± 1.85 (p=0.01, d=+0.62)

Ares
full 0.78± 0.87 (p=0.00, d=+0.90) 0.43± 0.93 (p=0.04, d=+0.47)

Table 5: We report the average regret differences between the baseline greedy search and

the WS-based random search (GSbs−RSws), and between the baseline greedy search and

the WS-based greedy search (GSbs − GSws) in the one-shot paradigm. We additionally

report the pooled standard deviation, the p-value, as well as the effect size d. For clarity

purposes, regrets are multiplied by 100. We test for the statistical significance of

the difference using an independent t-test and report the resulting p-values. Results high-

lighted in blue correspond to settings where the considered method performed significantly

worse than the greedy search baseline (p < 0.05), whereas results marked in red highlight

settings in which the considered method performed significantly better than the greedy

search baseline (p < 0.05).

RS on Afull, the probability that a random run with WS produces a smaller

regret than the baseline given the same time budget is only around 61%4.

On A1, where WS is somehow very effective and produces a large effect size

of d = +1.09, this probability reaches a maximum of 78%. On the contrary,

4An interactive visualization of the phenomenon can be studied at https://

rpsychologist.com/d3/cohend/ [44]

33

https://rpsychologist.com/d3/cohend/
https://rpsychologist.com/d3/cohend/

on A4, where WS is least effective, this probability can get as low as 7%.

As it has been noted several times in the literature [45, 32, 28], reporting

the results over several runs is thus crucial to NAS research, especially when

considering moderate or small effect sizes.

Interestingly, Table 4 reveals no clear link between the average level of

correlation reached by WS on a search space and its ability to outperform a

baseline RS in a one-shot setting: on Anres
full, where correlations in Table 3 are

the lowest, WS significantly outperforms RS, whereas it offers terrible results

on A4 despite significantly better correlations. WS offers similar correlations

on A2 and A3, but the WS-guided greedy search respectively gives smaller

and larger regrets than the baseline random search. On Ares
full and A1, where

WS offers the best correlations, the WS-guided greedy search is respectively

equivalent to RS, and much better than RS.

Under the time constraints of one-shot NAS, WS can slightly outperform

a baseline RS, although rarely to a significant extent, and can even be worse.

Besides, there seems to be no obvious relationship between the level of cor-

relation between proxy and standalone evaluations, and the performances of

WS on a search space.

5.3. Variations between Search Spaces

From Section 5.2, WS-guided NAS seems to often slightly outperform RS,

but this depends on the search space.

Coincidentally, we notice from the results of Section 5.1 that simply

changing the number of nodes connected to the output makes the average

correlation vary between 0.59 on A3 and 0.68 on A1. Additionally, restrict-

ing the search space to architectures presenting a residual connection has a

34

noticeable positive effect on the correlations, as they increase from 0.46 to

0.71 between Anres
full and Ares

full. The search space itself has an important im-

pact on the correlations, even more so when using the training enhancements

described in Section 2.2.2.

The size of the datasets could explain the varying correlations. It has

often been asserted in the literature that, the more architectures there are

in the search space, the harder it is to train the super-net. The Spearman

rank’s correlation between the average correlation obtained with batch-size

fine-tuning (bns-ft) reported in Table 3 and the sizes of the dataset reaches

−0.71 (p = 0.07). The effect hints that larger search-spaces could possibly

lead to smaller correlations between proxy and standalone evaluations, but

the relatively low number of search spaces of this study prevents us from

positively rejecting the null hypothesis that it does not with great confidence,

and further studies are required to conclude on this matter. Besides, results

in Section 5.1 suggest that it is probably not the only aspect of the search

space that is of influence. On A2 and A3, WS offers roughly the same level of

correlation, despite A2 being twice larger than A3. The correlation achieved

is 25% smaller in Anres
full than in Afull, with 23% less architectures. It is also

interesting to note that few architectures are actually seen during training:

given 432 training epochs of 157 mini-batches of data, less than 67, 824 unique

architectures are used to update the super-net. This might be enough to cover

A4 or Ares
full, but represents only a tiny fraction of larger datasets, such as

A2 (' 200, 000 architectures), or Afull (' 400, 000 architectures). Further

studies are required to clearly establish whether the size of the dataset has a

non-negligible impact on the correlation capabilities of WS, but several facts

35

suggest that it cannot entirely explain the discrepancies between the different

search spaces.

We report in Figure 3 and for each search space a scatter plot between the

true validation accuracies and the proxy accuracies resulting from training a

super-net. Interestingly, several visible clusters seem to be linked to proxy

evaluations. For each scatter-plot, we report the distributions of the true

validation and proxy accuracies over sampled architectures. Coincidentally

with the different visible architecture clusters, distributions of proxy evalu-

ations are much less regular than their true validation counterparts, often

presenting several modes. The clusters of architectures in the scatter-plots

visually transcribe existing biases in proxy evaluations.

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90
ρs = 0.67

0.3

0.4

0.5

0.6

(a) A4

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.69

0.2

0.3

0.4

0.5

(b) A1

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.56

0.1

0.2

0.3

0.4

(c) Afull

Figure 3: We report, for a few search spaces, a scatter plot of the proxy accuracy computed

using a super-net bns-ft (y-axis), and the average validation accuracy returned by NAS-

Bench-101(x-axis) for 10,000 architectures. Scatter plots for all search spaces can be found

in Appendix B.1.

There is no trivial relation between different biases and particular struc-

tural properties of the architectures. Fortunately, some biases are easier to

36

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.70

0.2

0.3

0.4

0.5

(a) A1

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90
ρs = 0.68

0.3

0.4

0.5

0.6

(b) A4

Figure 4: We report for a super-net trained on A1 (left) and A4 (right) the proxy accuracy

computed after fine-tuning the batch-norm statistics (y-axis), and the average validation

accuracy returned by NAS-Bench-101 (x-axis) for 1, 000 architectures. We highlight in a

darker tone the points corresponding to architectures with residual connections (left) and

architectures with a 3 × 3 convolution on the first node (right). Both examples reveal

a clear bias in super-net evaluations. We also report the distributions of the proxy and

standalone accuracies of the sampled architectures for the complete population and for

the sub-population of interest.

highlight than others. We focus on two such biases in Figure 4. On A1, archi-

tectures with a residual connection tend to get better evaluations than those

without. On A4, the presence of a 3×3 convolution on the first node triggers

over-evaluation. Such clusters can be seen in the scatter plots of all search

spaces except Ares
full. Different search spaces bias the super-nets in different

ways, resulting in different structural patterns of over/under-evaluations.

The patterns appearing in the scatter-plots may explain the search results

37

of Section 5.2 better than the correlations level reached by WS. On A4, the

over-evaluation bias visible in Figure 4 creates a cluster of architectures with

excellent proxy accuracies. As a result, in a one-shot paradigm, WS neglects

a large number of architectures with equal or better capabilities that ran-

dom search does not miss. Although the cluster contains a few of the best

architectures, its average standalone accuracy is particularly poor. This im-

pedes WS from selecting top models, and makes the early WS-guided search

worse than RS on this particular search space. On A1, the over-evaluation

bias towards residual connections benefits to the search, as architectures with

residual connections are better on average and constitute most of the best

architectures of the search space. The WS-guided search is in turn quite

efficient.

The patterns of over/under-evaluations dictate the search behavior when

exploiting WS. If WS is biased towards interesting patterns in the considered

search space, then it is likely to perform much better than random search.

Otherwise, the difference may not be significant. In the worst scenario, the

bias can even be strong enough to undermine the performances of WS.

6. Conclusion

In this paper we have leveraged the NAS-Bench-101 dataset to investi-

gate the impact of WS on the efficiency of NAS over seven search spaces.

Our results lead to the following conclusions. First, super-nets trained with

WS can offer significant correlations between proxy evaluations and stan-

dalone evaluations, but fine-tuning the batch-norm statistics of the models

is mandatory for the process to be successful. The results can be further

38

improved by tweaking the WS training process, but the search space itself

has a more significant influence over the quality of correlations.

Most importantly, in a one-shot NAS setting, WS combined with RS

is not consistently faster than a baseline RS. Improvements are, to a large

extent, search-space dependent and of relatively small effect. Super-nets

resulting from optimization with WS can be biased towards specific structural

patterns in the architectures, which also vary depending on the search-space.

Those patterns, rather than the level of correlations, seem to dictate the

efficiency of NAS when exploiting WS. Given that each search space has its

own specific biases, it is hard to foresee how well WS is going to perform.

This conclusion goes against the tacit agreement in the literature that WE

based NAS algorithms are both efficient and effective.

Gathering both theoretical understanding and additional experimental

evidence of the different biases created by search spaces on the super-net, such

as done in [46] will be key to the weight-sharing literature and the successful

application of NAS, and is a promising lead for future work. Additionally, It

would be interesting to establish whether the described results would transfer

from cifar-10 to larger image datasets such as imagenet, or to larger search

spaces. Both perspective constitute excellent material for further studies,

and exploiting different NAS benchmarks, such as NAS-Bench-201 [47] and

NAS-Bench-301 [48], would likely be key to future work on the subject. To

facilitate future research on those matters, we have introduced in this paper

several good practices which we identified as key to a proper analysis of the

performance of WS. We trust that with those good practices in mind, future

researchers will avoid pitfalls that would limit the scope of their results.

39

7. Acknowledgements

We thank Arnaud Dapogny for feedback on an earlier version of this

work. Financial support for this study was provided by Gleamer, which had

no involvement in the design of the study, nor on the collection, analysis and

interpretation of the data.

8. Vitae

Alöıs Pourchot received the M.S.E. degree from Télécom

Paris, Paris, France, in 2019 and a M.S. in Computer Vision and Artificial

Intelligence from ENS Paris Saclay, Paris, France in 2019. He is currently

pursuing the Ph.D. degree with Sorbonne University, Paris, France, under

the supervision of Prof. O. Sigaud. As part of the CIFRE program he is also

an employee of Gleamer, Paris, France. His current research interests are

computer vision, neural architecture search, and medical image processing.

Kevin Bailly is associate professor with the Institute of In-

telligent Systems and Robotics (ISIR) at Sorbonne University and Head of

Research of Datakalab. He received the PhD degree in computer science

from the Pierre et Marie Curie University in 2010 and was a postdoctoral

40

researcher at Telecom Paris from 2010 to 2011. His research interests are in

machine learning and computer vision applied to face processing, behavior

analysis and medical image processing.

Alexis Ducarouge received the M.S.E. degree from Télécom

Paris, France in 2017 and a M.S. in Cognitive Sciences and Artificial Intelli-

gence from ENS Ulm, Paris, France in 2017. He worked on Deep Reinforce-

ment Learning approaches during his internship at the robotics institute of

Sorbonne university (ISIR) under the supervision of Prof. O. Sigaud. He co-

founded Gleamer, in 2017 where he holds the position of Scientific Technical

Director.

Olivier Sigaud was born in 1968 in France. He received

a Ph.D. degree in computer science with Paris XI University, Orsay, France

in 1996 and a Ph.D. degree in philosophy with Paris I University, Paris,

France in 2002. From 1996 to 2001, he was with Dassault Aviation, St-

Cloud, France. He is currently Professor in computer science at Sorbonne

University and member of the robotics institute of this university (ISIR). He

has published numerous articles and has been involved in several national

41

and European projects.

Appendix A. Additional Scatter Plots

We provide scatter plots of the proxy accuracy computed using a super-

net and the average validation accuracy return by the NAS-Bench-101 bench-

mark for all search spaces in Figure B.1.

Appendix B. Additional Regret Plots

We provide the evolution of the test regret as a function of time for the

different NAS algorithms considered in 4.3 in Figure B.2.

42

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90
ρs = 0.67

0.3

0.4

0.5

0.6

(a) A4

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.59

0.2

0.3

0.4

0.5

0.6

(b) A3

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.59

0.2

0.3

0.4

0.5

(c) A2

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.69

0.60.6

0.70.7

0.8

(d) A1

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.37

0.2

0.3

0.4

(e) Anres
full

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.69

0.60.6

0.70.7

0.8

(f) Ares
full

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.56

0.1

0.2

0.3

0.4

(g) Afull

Figure B.1: For each search space we report a scatter plot of the proxy accuracy computed

using a super-net bns-ft (y-axis), and the average validation accuracy returned by NAS-

Bench-101(x-axis) for 10,000 architectures.

43

105 107

time (s)

10−3

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(a) A4

105 107

time (s)

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(b) A3

105 107

time (s)

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(c) A2

105 107

time (s)

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(d) A1

105 107

time (s)

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(e) Anres
full

105 107

time (s)

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(f) Ares
full

105 107

time (s)

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(g) Afull

Figure B.2: For each search space, we report the evolution of the test regret as a function

of time for the different NAS algorithms considered. Curves are averaged over 100 runs

for RSbs and GSbs, and 25 runs for RSws and GSws. Visible colored areas correspond to

the 95% confidence interval for the estimation of the average. Notice that both axes use

a logarithmic scale..

44

References

[1] R. Salakhutdinov, Deep learning, in: S. A. Macskassy, C. Perlich,

J. Leskovec, W. Wang, R. Ghani (Eds.), The 20th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, KDD

’14, New York, NY, USA - August 24 - 27, 2014, ACM, 2014, p. 1973.

doi:10.1145/2623330.2630809.

URL https://doi.org/10.1145/2623330.2630809

[2] T. Elsken, J. H. Metzen, F. Hutter, Neural architecture search: A survey,

The Journal of Machine Learning Research 20 (1) (2019) 1997–2017.

[3] M. Wistuba, A. Rawat, T. Pedapati, A survey on neural architecture

search, arXiv preprint arXiv:1905.01392 (2019).

[4] E. Real, A. Aggarwal, Y. Huang, Q. V. Le, Regularized evolution for

image classifier architecture search, in: The Thirty-Third AAAI Con-

ference on Artificial Intelligence, AAAI 2019, The Thirty-First Innova-

tive Applications of Artificial Intelligence Conference, IAAI 2019, The

Ninth AAAI Symposium on Educational Advances in Artificial Intelli-

gence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,

2019, AAAI Press, 2019, pp. 4780–4789. doi:10.1609/aaai.v33i01.

33014780.

URL https://doi.org/10.1609/aaai.v33i01.33014780

[5] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learning transferable

architectures for scalable image recognition, in: 2018 IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake

45

https://doi.org/10.1145/2623330.2630809
https://doi.org/10.1145/2623330.2630809
https://doi.org/10.1145/2623330.2630809
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html

City, UT, USA, June 18-22, 2018, IEEE Computer Society, 2018, pp.

8697–8710. doi:10.1109/CVPR.2018.00907.

URL http://openaccess.thecvf.com/content_cvpr_2018/html/

Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.

html

[6] B. Zoph, Q. V. Le, Neural architecture search with reinforcement learn-

ing, in: 5th International Conference on Learning Representations,

ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Pro-

ceedings, OpenReview.net, 2017.

URL https://openreview.net/forum?id=r1Ue8Hcxg

[7] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, J. Dean, Efficient neural ar-

chitecture search via parameter sharing, in: J. G. Dy, A. Krause (Eds.),

Proceedings of the 35th International Conference on Machine Learning,

ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,

Vol. 80 of Proceedings of Machine Learning Research, PMLR, 2018, pp.

4092–4101.

URL http://proceedings.mlr.press/v80/pham18a.html

[8] H. Liu, K. Simonyan, Y. Yang, DARTS: differentiable architecture

search, in: 7th International Conference on Learning Representations,

ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, OpenReview.net,

2019.

URL https://openreview.net/forum?id=S1eYHoC5FX

[9] S. Xie, H. Zheng, C. Liu, L. Lin, SNAS: stochastic neural architecture

search, in: 7th International Conference on Learning Representations,

46

https://doi.org/10.1109/CVPR.2018.00907
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg
http://proceedings.mlr.press/v80/pham18a.html
http://proceedings.mlr.press/v80/pham18a.html
http://proceedings.mlr.press/v80/pham18a.html
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rylqooRqK7

ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, OpenReview.net,

2019.

URL https://openreview.net/forum?id=rylqooRqK7

[10] F. P. Casale, J. Gordon, N. Fusi, Probabilistic Neural Architecture

Search, arXiv e-prints (2019) arXiv:1902.05116arXiv:1902.05116.

[11] A. Brock, T. Lim, J. M. Ritchie, N. Weston, SMASH: one-shot model ar-

chitecture search through hypernetworks, in: 6th International Confer-

ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada,

April 30 - May 3, 2018, Conference Track Proceedings, OpenReview.net,

2018.

URL https://openreview.net/forum?id=rydeCEhs-

[12] S. J. Nowlan, G. E. Hinton, Simplifying neural networks by soft weight-

sharing, Neural computation 4 (4) (1992) 473–493.

[13] Z. Tang, R. Zhu, P. Lin, J. He, H. Wang, Q. Huang, S. Chang, Q. Ma, A

hardware friendly unsupervised memristive neural network with weight

sharing mechanism, Neurocomputing 332 (2019) 193–202.

[14] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, F. Hutter,

Nas-bench-101: Towards reproducible neural architecture search, in:

K. Chaudhuri, R. Salakhutdinov (Eds.), Proceedings of the 36th In-

ternational Conference on Machine Learning, ICML 2019, 9-15 June

2019, Long Beach, California, USA, Vol. 97 of Proceedings of Machine

Learning Research, PMLR, 2019, pp. 7105–7114.

URL http://proceedings.mlr.press/v97/ying19a.html

47

https://openreview.net/forum?id=rylqooRqK7
http://arxiv.org/abs/1902.05116
https://openreview.net/forum?id=rydeCEhs-
https://openreview.net/forum?id=rydeCEhs-
https://openreview.net/forum?id=rydeCEhs-
http://proceedings.mlr.press/v97/ying19a.html
http://proceedings.mlr.press/v97/ying19a.html

[15] B. Colson, P. Marcotte, G. Savard, An overview of bilevel optimization,

Annals of operations research 153 (1) (2007) 235–256.

[16] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, M. Pontil, Bilevel pro-

gramming for hyperparameter optimization and meta-learning, in: J. G.

Dy, A. Krause (Eds.), Proceedings of the 35th International Conference

on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Swe-

den, July 10-15, 2018, Vol. 80 of Proceedings of Machine Learning Re-

search, PMLR, 2018, pp. 1563–1572.

URL http://proceedings.mlr.press/v80/franceschi18a.html

[17] T. Elsken, J. H. Metzen, F. Hutter, Efficient multi-objective neural ar-

chitecture search via lamarckian evolution, in: 7th International Confer-

ence on Learning Representations, ICLR 2019, New Orleans, LA, USA,

May 6-9, 2019, OpenReview.net, 2019.

URL https://openreview.net/forum?id=ByME42AqK7

[18] L. Wang, Y. Zhao, Y. Jinnai, Alphax: exploring neural architec-

tures with deep neural networks and monte carlo tree search, CoRR

abs/1805.07440 (2018). arXiv:1805.07440.

URL http://arxiv.org/abs/1805.07440

[19] S. Falkner, A. Klein, F. Hutter, BOHB: robust and efficient hyperpa-

rameter optimization at scale, in: J. G. Dy, A. Krause (Eds.), Proceed-

ings of the 35th International Conference on Machine Learning, ICML

2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, Vol. 80

of Proceedings of Machine Learning Research, PMLR, 2018, pp. 1436–

48

http://proceedings.mlr.press/v80/franceschi18a.html
http://proceedings.mlr.press/v80/franceschi18a.html
http://proceedings.mlr.press/v80/franceschi18a.html
https://openreview.net/forum?id=ByME42AqK7
https://openreview.net/forum?id=ByME42AqK7
https://openreview.net/forum?id=ByME42AqK7
http://arxiv.org/abs/1805.07440
http://arxiv.org/abs/1805.07440
http://arxiv.org/abs/1805.07440
http://arxiv.org/abs/1805.07440
http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html

1445.

URL http://proceedings.mlr.press/v80/falkner18a.html

[20] H. Liang, S. Zhang, J. Sun, X. He, W. Huang, K. Zhuang, Z. Li,

DARTS+: Improved Differentiable Architecture Search with Early

Stopping, arXiv e-prints (2019) arXiv:1909.06035arXiv:1909.06035.

[21] Y. Xu, L. Xie, X. Zhang, X. Chen, G. Qi, Q. Tian, H. Xiong, PC-

DARTS: partial channel connections for memory-efficient differentiable

architecture search, CoRR abs/1907.05737 (2019). arXiv:1907.05737.

URL http://arxiv.org/abs/1907.05737

[22] Y. Akimoto, S. Shirakawa, N. Yoshinari, K. Uchida, S. Saito, K. Nishida,

Adaptive stochastic natural gradient method for one-shot neural archi-

tecture search, in: K. Chaudhuri, R. Salakhutdinov (Eds.), Proceedings

of the 36th International Conference on Machine Learning, ICML 2019,

9-15 June 2019, Long Beach, California, USA, Vol. 97 of Proceedings of

Machine Learning Research, PMLR, 2019, pp. 171–180.

URL http://proceedings.mlr.press/v97/akimoto19a.html

[23] H.-G. Beyer, H.-P. Schwefel, Evolution strategies–a comprehensive in-

troduction, Natural computing 1 (1) (2002) 3–52.

[24] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, J. Sun, Single path

one-shot neural architecture search with uniform sampling, in: European

Conference on Computer Vision, Springer, 2020, pp. 544–560.

[25] G. Bender, P. Kindermans, B. Zoph, V. Vasudevan, Q. V. Le, Under-

standing and simplifying one-shot architecture search, in: J. G. Dy,

49

http://proceedings.mlr.press/v80/falkner18a.html
http://arxiv.org/abs/1909.06035
http://arxiv.org/abs/1907.05737
http://arxiv.org/abs/1907.05737
http://arxiv.org/abs/1907.05737
http://arxiv.org/abs/1907.05737
http://arxiv.org/abs/1907.05737
http://proceedings.mlr.press/v97/akimoto19a.html
http://proceedings.mlr.press/v97/akimoto19a.html
http://proceedings.mlr.press/v97/akimoto19a.html
http://proceedings.mlr.press/v80/bender18a.html
http://proceedings.mlr.press/v80/bender18a.html

A. Krause (Eds.), Proceedings of the 35th International Conference on

Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,

July 10-15, 2018, Vol. 80 of Proceedings of Machine Learning Research,

PMLR, 2018, pp. 549–558.

URL http://proceedings.mlr.press/v80/bender18a.html

[26] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyan-

tha, J. Liu, D. Marculescu, Single-Path NAS: Designing Hardware-

Efficient ConvNets in less than 4 Hours, arXiv e-prints (2019)

arXiv:1904.02877arXiv:1904.02877.

[27] R. Luo, T. Qin, E. Chen, Balanced one-shot neural architecture opti-

mization, arXiv preprint arXiv:1909.10815 (2019).

[28] K. Yu, C. Sciuto, M. Jaggi, C. Musat, M. Salzmann, Evaluating the

search phase of neural architecture search, in: 8th International Confer-

ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,

April 26-30, 2020, OpenReview.net, 2020.

URL https://openreview.net/forum?id=H1loF2NFwr

[29] R. Luo, F. Tian, T. Qin, E. Chen, T. Liu, Neural architecture opti-

mization, in: S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information

Processing Systems 31: Annual Conference on Neural Information

Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,

Canada, 2018, pp. 7827–7838.

URL https://proceedings.neurips.cc/paper/2018/hash/

933670f1ac8ba969f32989c312faba75-Abstract.html

50

http://proceedings.mlr.press/v80/bender18a.html
http://arxiv.org/abs/1904.02877
https://openreview.net/forum?id=H1loF2NFwr
https://openreview.net/forum?id=H1loF2NFwr
https://openreview.net/forum?id=H1loF2NFwr
https://proceedings.neurips.cc/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html

[30] Y. Zhang, Q. Zhang, J. Jiang, Z. Lin, Y. Wang, Deeper insights into

weight sharing in neural architecture search, in: Submitted to Interna-

tional Conference on Learning Representations, 2020, rejected.

URL https://openreview.net/forum?id=ryxmrpNtvH

[31] X. Chu, B. Zhang, R. Xu, J. Li, FairNAS: Rethinking Evaluation Fair-

ness of Weight Sharing Neural Architecture Search, arXiv e-prints (2019)

arXiv:1907.01845arXiv:1907.01845.

[32] A. Yang, P. M. Esperança, F. M. Carlucci, NAS evaluation is frustrat-

ingly hard, in: 8th International Conference on Learning Representa-

tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, OpenRe-

view.net, 2020.

URL https://openreview.net/forum?id=HygrdpVKvr

[33] A. Zela, J. Siems, F. Hutter, Nas-bench-1shot1: Benchmarking and dis-

secting one-shot neural architecture search, in: 8th International Confer-

ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,

April 26-30, 2020, OpenReview.net, 2020.

URL https://openreview.net/forum?id=SJx9ngStPH

[34] A. Pourchot, A. Ducarouge, O. Sigaud, To Share or Not To Share:

A Comprehensive Appraisal of Weight-Sharing, arXiv e-prints (2020)

arXiv:2002.04289arXiv:2002.04289.

[35] Y. Zhang, Q. Zhang, Y. Yang, How Does Supernet Help in Neural

Architecture Search?, arXiv e-prints (2020) arXiv:2010.08219arXiv:

2010.08219.

51

https://openreview.net/forum?id=ryxmrpNtvH
https://openreview.net/forum?id=ryxmrpNtvH
https://openreview.net/forum?id=ryxmrpNtvH
http://arxiv.org/abs/1907.01845
https://openreview.net/forum?id=HygrdpVKvr
https://openreview.net/forum?id=HygrdpVKvr
https://openreview.net/forum?id=HygrdpVKvr
https://openreview.net/forum?id=SJx9ngStPH
https://openreview.net/forum?id=SJx9ngStPH
https://openreview.net/forum?id=SJx9ngStPH
http://arxiv.org/abs/2002.04289
http://arxiv.org/abs/2010.08219
http://arxiv.org/abs/2010.08219

[36] K. Yu, R. Ranftl, M. Salzmann, How to train your super-net: An

analysis of training heuristics in weight-sharing nas, arXiv preprint

arXiv:2003.04276 (2020).

[37] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image

recognition, in: 2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, IEEE

Computer Society, 2016, pp. 770–778. doi:10.1109/CVPR.2016.90.

URL https://doi.org/10.1109/CVPR.2016.90

[38] C. White, S. Nolen, Y. Savani, Local search is state of the art for nas

benchmarks, arXiv preprint arXiv:2005.02960 (2020).

[39] T. D. Ottelander, A. Dushatskiy, M. Virgolin, P. A. Bosman, Local

search is a remarkably strong baseline for neural architecture search,

arXiv preprint arXiv:2004.08996 (2020).

[40] L. Xie, X. Chen, K. Bi, L. Wei, Y. Xu, Z. Chen, L. Wang, A. Xiao,

J. Chang, X. Zhang, et al., Weight-sharing neural architecture search:a

battle to shrink the optimization gap, arXiv preprint arXiv:2008.01475

(2020).

[41] J. Cohen, Statistical power analysis for the behavioral sciences. abing-

don, England: Routledge (1988).

[42] S. Seabold, J. Perktold, statsmodels: Econometric and statistical mod-

eling with python, in: 9th Python in Science Conference, 2010.

52

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

[43] C. Colas, O. Sigaud, P.-Y. Oudeyer, How many random seeds? statis-

tical power analysis in deep reinforcement learning experiments, arXiv

preprint arXiv:1806.08295 (2018).

[44] K. Magnusson, Interpreting cohen’s d effect size: An interactive visual-

ization (2020).

URL https://rpsychologist.com/d3/cohend/

[45] L. Li, A. Talwalkar, Random search and reproducibility for neural ar-

chitecture search, in: A. Globerson, R. Silva (Eds.), Proceedings of the

Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI

2019, Tel Aviv, Israel, July 22-25, 2019, Vol. 115 of Proceedings of Ma-

chine Learning Research, AUAI Press, 2019, pp. 367–377.

URL http://proceedings.mlr.press/v115/li20c.html

[46] S. Xie, S. Hu, X. Wang, C. Liu, J. Shi, X. Liu, D. Lin, Understanding

the wiring evolution in differentiable neural architecture search, arXiv

e-prints (2020) arXiv:2009.01272arXiv:2009.01272.

[47] X. Dong, Y. Yang, Nas-bench-201: Extending the scope of reproducible

neural architecture search, in: 8th International Conference on Learning

Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,

OpenReview.net, 2020.

URL https://openreview.net/forum?id=HJxyZkBKDr

[48] J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, F. Hutter, NAS-

Bench-301 and the Case for Surrogate Benchmarks for Neural Architec-

ture Search, arXiv e-prints (2020) arXiv:2008.09777arXiv:2008.09777.

53

https://rpsychologist.com/d3/cohend/
https://rpsychologist.com/d3/cohend/
https://rpsychologist.com/d3/cohend/
http://proceedings.mlr.press/v115/li20c.html
http://proceedings.mlr.press/v115/li20c.html
http://proceedings.mlr.press/v115/li20c.html
http://arxiv.org/abs/2009.01272
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
http://arxiv.org/abs/2008.09777

	Introduction
	Background
	NAS Optimization
	Dynamic Formulation of the Constraint
	Continuous and Stochastic Relaxations

	Weight-Sharing
	WS Optimization
	Enhancing Weight-Sharing Correlations

	Related Work
	Methods
	Impact of Search Spaces on NAS Performances
	Ranking Architectures with Weight-Sharing
	Impact of Weight-Sharing on NAS Performances
	Good Practices

	Results and Discussion
	Ranking Capabilities of Weight-Sharing
	Can Weight-Sharing Improve NAS ?
	Variations between Search Spaces

	Conclusion
	Acknowledgements
	Vitae
	Additional Scatter Plots
	Additional Regret Plots

