Théo Leuliet 
email: theo.leuliet@creatis.insa-lyon.fr
  
Voichiţa Maxim 
email: voichita.maxim@creatis.insa-lyon.fr
  
Françoise Peyrin 
email: francoise.peyrin@creatis.insa-lyon.fr
  
Bruno Sixou 
email: bruno.sixou@creatis.insa-lyon.fr
  
Combining conditional GAN with VGG perceptual loss for bones CT image reconstruction

come    

Introduction

Bone microstructure study with X-ray computed tomography (CT) is a challenging task due to the complexity of the underlying structures [START_REF] Li | Nonconvex Mixed TV/Cahn-Hilliard Functional for Super-Resolution/Segmentation of 3D Trabecular Bone Images[END_REF], [START_REF] Peyrin | CT Imaging: Basics and New Trends[END_REF]. Physical limitations of scanners and the need for reducing the patient's radiation dose may lead to noisy data, which need to be corrected to help practitioners get relevant parameters. When the number of projections is sufficiently large with a reasonable amount of noise, analytical algorithms like the Filtered Back-Projection (FBP) can offer satisfying results. When this is no longer the case, iterative methods [START_REF] Gilbert | Iterative methods for the three-dimensional reconstruction of an object from projections[END_REF] [4] can be considered. A major drawback of such algorithms is the reconstruction time and the need for tuning parameters for every reconstruction. Deep Learning based algorithms have the potential to enhance the quality of images by learning patterns from groundtruth data, while significantly reducing the reconstruction time compared to iterative algorithms. A solution is to use neural networks to improve a poor-quality analytically obtained reconstruction [START_REF] Yang | Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss[END_REF] [START_REF] Wang | 3D conditional generative adversarial networks for high-quality PET image estimation at low dose[END_REF], e.g the FBP obtained from low-dose projections. A critical point to address is the way the network should be trained. A Mean Squared Error (MSE) loss between predicted images and the corresponding ground-truths as in [START_REF] Chen | Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network[END_REF] might lead to slight oversmoothing that deteriorates some important structural details and thus affects the study of bone microarchitecture. Instead, the use of a generative adversarial network (GAN) [START_REF] Goodfellow | Advances in Neural Information Processing Systems[END_REF] allows to capture the probability distribution of the ground-truth images. In [START_REF] Yang | Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss[END_REF], such a network is trained with the Wasserstein distance along with a perceptual loss that compares the network output against the ground truth in a feature space designed to match the human eye perception, thus preserving key structural information. The resulting WGAN-VGG achieves impressive results on noise removal and artifacts correction. A similar architecture was proposed in [START_REF] Yu | Underwater-GAN: Underwater Image Restoration via Conditional Generative Adversarial Network[END_REF] for underwater image restoration. Nevertheless in both cases, the Wasserstein distance might be low even if the output does not correspond to the FBP it has been generated from. This is not the case when considering a conditional GAN [START_REF] Mirza | Conditional Generative Adversarial Nets[END_REF] where the discriminator also takes the conditional information as an input. Such a framework was proposed in [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF] and for medical image reconstruction in [START_REF] Wang | 3D conditional generative adversarial networks for high-quality PET image estimation at low dose[END_REF]. In [START_REF] Adler | Deep Bayesian Inversion[END_REF], authors propose a conditional Wasserstein GAN (CWGAN) to capture the probability distribution of some volume conditionally to the FBP obtained from low-dose projections.

Combining such a conditional GAN with a perceptual loss has never been performed, though it seems to be perfectly adapted to bone microarchitecture imaging in order to capture their structural information. We then propose the CWGAN-VGG network that learns a probability distribution conditionally to the FBP obtained from low-dose projections, with a perceptual loss that is added to the generator loss function in order to preserve bone microstructure information. In section 2, we present our CWGAN-VGG algorithm. In section 3 we detail the numerical experiments that we performed on simulated low-dose projections of µCT bone data. In section 4 we discuss the impact of both the conditioning and the perceptual loss on the quality of the reconstructions.

CWGAN-VGG framework

Conditional GAN and perceptual loss

Let y be the FBP reconstructed volume from low-dose projections and x the reference volume. We recall the CWGAN introduced in [START_REF] Adler | Deep Bayesian Inversion[END_REF], where the aim is to approximate the posterior distribution π(x|y) with a parametrized generator G θ (y). Knowing this distribution allows to generate a number of volumes that can be responsible for data y. To approximate such a posterior distribution, the objective is to find θ * that minimizes d(G θ (y), π(x|y)), with d some distance between probability distributions. A now commonly used method to improve neural networks convergence is to consider the Wasserstein distance [START_REF] Arjovsky | Wasserstein GAN[END_REF]. Denoting the probability distribution associated to the generator G θ (y) by P θ (y) -remember that y is the condition here -, the dual characterization of this distance writes

W (π(x|y), P θ (y)) = sup || f || L ≤1 E x∼π(x|y) [ f (x)] -E v∼P θ (y) [ f (v)] (1)
where the supremum is taken over all the 1-Lipschitz functions. Since it is not feasible to cover the entire space of these functions, they are parametrized with a neural network D w called a discriminator, with parameters w. Also, the generator G θ (y) takes as input realizations z drawn from a simple probability distribution η. We ensure the Lipschitz condition by adding a gradient penalty term to the distance as in [START_REF] Gulrajani | Improved Training of Wasserstein GANs[END_REF]. Minimizing the Wasserstein distance approximated by neural networks finally gives the optimization problem

θ * ∈ argmin θ sup w L CWGAN (D, G) = E (x,y)∼µ [D w (x, y)] -E z∼η y∼P y [D w (G θ (z, y), y)] + λ E x∼P x[(||∇ xD w ( x, ŷ)|| 2 -1) 2 ] (2)
where µ is the joint distribution of (x, y) corresponding to paired low-dose FBPs and high-dose ground truths, P y the unknown distribution of low-dose FBP data, x ∼ P x are sampled along straight lines between samples from both π(x|y) and the generated distribution P θ (y), ŷ are sampled along straight lines between the corresponding FBPs, and λ is the weighting term for the gradient penalty. During training, expectations are replaced by their empirical counterpart obtained with paired data. The resulting network generates stochastic samples conditionnally to the FBP of low-dose projections, according to a probability distribution that approximates the true distribution π(x|y). Also, one can take η as a Dirac distribution. In that case, the network is deterministic and generates a single output from the low-dose FBP. We call this network Det-CWGAN. In [START_REF] Yang | Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss[END_REF], authors propose the WGAN-VGG framework which consists in training a generator by adding a perceptual loss to an unconditioned WGAN objective function, in order to better fit human perception of images, given as

L VGG (G θ ) = 1 n E (x,y)∼µ [||V GG(G θ (y)) -V GG(x)|| 2 F ] ( 3 
)
where n is the total number of voxels and V GG is the 16 th output of the pre-trained VGG-19 model [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF], ||.|| F is the Frobenius norm, and in their case G θ only takes y as input. It is shown in [START_REF] Zhang | The Unreasonable Effectiveness of Deep Features as a Perceptual Metric[END_REF] that such a loss better suits human perception compared to pixel-wise based losses. In this framework, the output is deterministic and the discriminator is not conditioned on the FBP input, which amounts to taking η as a Dirac distribution and x ∼ π(x) instead of x ∼ π(x|y) in (1).

Proposed architecture

In this work, we make use of the FBP computed from the acquired low-dose projections, to learn a conditional probability, by adding this FBP as an input to the discriminator. The benefits of conditioning the discriminator were already shown in [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF] for natural images. Though authors used pixelwise based additional losses, we propose to use the VGG perceptual loss since retrieving structural information on data is of major importance in bone microarchitecture imaging. Thus we propose the CWGAN-VGG framework that is trained as

min θ max w L CWGAN (D w , G θ ) + λ 1 L VGG (G θ ) (4) 
with λ 1 a weighting parameter. The scheme of the resulting network is presented in Fig. 1. In WGAN-VGG, the discriminator is not fed with the low-dose FBP, which results in a different paradigm compared to conditional GANs; the distribution that is learned is π(x), and the generator is a mapping between the space of low-dose FBPs and the space of high-dose images. In conditional GANs, the low-dose FBP y is the conditional data and the generator is a mapping between the latent space Z, where samples z are drawn from η, and the space of high-dose images. To our knowledge this is the first time that the CWGAN-VGG architecture is proposed. Moreover, both [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF] and [START_REF] Adler | Deep Bayesian Inversion[END_REF] pointed out the difficulties of CWGAN to generate stochasticity, as the network tends to ignore the input noise. Thus in our tests, we also implemented a deterministic CWGAN-VGG (Det-CWGAN-VGG) that only learns a Dirac distribution, for comparison.

3 Numerical Experiments

Materials and methods

The ground-truth data consist of human bone volumes reconstructed from acquisitions of radius and shin structures obtained on a SCANCO µ-CT 100 with a 24-µm resolution. We create 180 2D projections of these volumes -corresponding to a low-dose acquisition -with ASTRA Toolbox [START_REF] Van Aarle | The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography[END_REF] in Python. To simulate counting noise, random values are drawn from a Poisson law with mean the projections pixels.

To simulate detectors noise, we then add a zero-mean Gaussian noise with standard deviation σ = 0.8% of the mean value in the projections. We then take the FBP -with Hann filter -as the input of the neural networks.

The dataset is composed of 13 volumes from different patients, 3 of which are only taken for evaluation. . Then, we post-process the reconstructed volumes with Otsu segmentation [START_REF] Otsu | A Threshold Selection Method from Gray-Level Histograms[END_REF], and we compute the DICE index between the segmented reconstructed volumes and the segmented ground-truth data. Also we compute the ratio between the segmented bone volume and the total volume (BV/TV) that we compare with the one of ground-truth data. These metrics help better reflect the capability of the networks to preserve bone microstructure information.

Since CWGAN and CWGAN-VGG produce stochastic outputs, we average each voxel of 10 generated outputs to produce the volume for evaluation. Note that in our tests, increasing this number does not improve the performance.

Training is performed on 64x64 patches from 1,992 different 2D slices for a total of 297,976 patches, 20% of which are used for validation. The evaluation is performed by averaging metrics on the 3 test volumes.

The generator is a 16-layer Convolutional Neural Network (CNN) with 128 3x3 filters in each layer, except for the last layer which has only one since the output is the generated image. We used the same discriminator structure as in [START_REF] Yang | Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss[END_REF].

For both the discriminator and the generator, Leaky ReLU activations are used with parameter 0.3 and He initialization [START_REF] He | Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification[END_REF], except for the output of the discriminator that has no activation function. Optimization is performed with Adam algorithm [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] with β 1 = 0.9, β 2 = 0.999. The learning rate is 10 -6 -except for WGAN-VGG where it is 10 -5 -, with a batch size of 128 and 7,000 epochs. We took λ 1 = 10 for all the algorithms that include a VGG loss. For one update of the discriminator, we update the generator 4 times. For a fair comparison, the kernel size, batch size, learning rate, number of generator updates and λ 1 have all been optimized for every single network, on the validation set. Computations are performed on a NVIDIA Tesla V100 

Results

Reconstructions of one of the three testing volumes are shown in Fig 2, along with a region of interest. Note that the 2 other testing volumes as well as the 10 training volumes all have a significantly different shape, which attests for the ability of the networks to generalize. In the second row of Fig 2 , we notice that Det-CWGAN is the only one that fails to recover some continuous structure of the bone, which is a key feature for bones imaging. However, for the others there is no clear indication that one reconstruction outperforms the others. Table 1 allows to better distinguish between the obtained reconstructions. Results show that CWGAN-VGG performs the best in terms of PSNR, SSIM and BV/TV ratio, which is an important metric for bone microarchitecture. The algorithm presents a DICE index that is only slightly inferior to the one of WGAN-VGG, which outperforms the other algorithms for this metric. We also note that both CWGAN and CWGAN-VGG perform better than their deterministic version for the tested metrics.

Discussions

Our results suggest that using a perceptual loss for training our generator as in [START_REF] Yang | Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss[END_REF] allows the network to produce volumes that are closer to the real ones, in terms of pixel-wise metrics and structural-specific evaluation methods. Indeed, CWGAN-VGG outperforms CWGAN, whether it is on the deterministic or stochastic version. We also argued that conditioning the discriminator would produce outputs that better match the FBP they are conditioned on. This is the case in our tests, where CWGAN-VGG produced better results than WGAN-VGG for 3 out of the 4 tested metrics, and the DICE index for both methods is very close.

We also find that it is less optimal for the network to learn a Dirac conditional distribution. Indeed, the strategy of averaging several stochastic outputs gave a significant improvement compared to using a deterministic network for both the CWGAN and CWGAN-VGG networks. Along with improvements on those metrics, the non-deterministic outputs that CWGAN and CWGAN-VGG produce might be very In order to fully show the potential of CWGAN-VGG, work is under progress to train and test it on different noise configurations to get a more robust model and evaluate it on more realistic data for even more metrics.

Conclusion

We proposed a new framework called CWGAN-VGG for the task of enhancing the quality of a FBP acquired from low-dose projections. It combines both the ability of GANs to learn conditional probabilities and the preservation of key structural information provided by perceptual losses. We showed the benefits provided by both conditioning the discriminator with the low-dose FBP and adding a perceptual loss to train the generator. We also showed the improvement on the evaluated metrics when using a non-deterministic network. Our resulting architecture thus outperformed stateof-the-art ones that rely on similar methods, for PSNR and other metrics, on CT bones data.

Figure 1 :

 1 Figure 1: Scheme of the proposed CWGAN-VGG model. The FBP data is taken as input of the generator G θ . Both the FBP and the generated image are concatenated to produce the input of the discriminator. The network is trained according to (4).

Figure 2 :

 2 Figure 2: Entire slice (first row) and zoom on this slice (second row) of the bone volume reconstructed with different architectures, with pixel intensities between 0 and 1

  These 3 volumes have respectively a number of slices, height and width of 164 × 882 × 752, 194 × 466 × 372 and 180 × 824 × 702. The trained networks are first evaluated with the Peak Signal to Noise Ratio (PSNR) and the Structural SIMilarity index (SSIM)

Table 1 :

 1 GPU, and training of one network takes approximately 30 hours. Metrics computed on the 3 test volumes. PSNR, DICE and BV/TV were computed by stacking the 3 -potentially segmented -volumes, SSIM is the average value of the metric computed on each of them. The ground-truth BV/TV is 0.2077.

		PSNR SSIM DICE BV/TV
	FBP	15.96 0.491 0.880 0.2317
	Det-CWGAN	23.05 0.634 0.928 0.1951
	CWGAN	25.41 0.739 0.939 0.2043
	WGAN-VGG	25.10 0.739 0.952 0.2154
	Det-CWGAN-VGG 25.20 0.696 0.948 0.2096
	CWGAN-VGG	26.00 0.753 0.951 0.2091
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