Kannara Mom 
email: kannara.mom@creatis.insa-lyon.fr
  
Max Langer 
  
Bruno Sixou 
  
Nonlinear primal-dual method for X-ray in-line phase contrast imaging

Keywords: Inverse problems, Iterative methods, X-ray diffraction, Holography, Non-linear operator

The in-line X-ray phase contrast imaging technique relies on the measurement of Fresnel diffraction intensity patterns due to the phase shift and the absorption induced by the object. The recovery of both phase and absorption is an ill-posed non-linear inverse problem. In this work, we address this problem with an iterative algorithm based on a primal-dual method, which allows us to introduce the non-linearity of the forward operator. We used a variational approach with different regularizations for the phase and absorption, in order to take into account the specificities of each quantity. Assuming the solution to be piecewise constant, the functional used involves the Total Generalized Variation (TGV) as well as the classical Total Variation (TV), which enables a compromise between sharp discontinuities and smoothness in the solution. This optimization problem is solved efficiently using primal-dual approach such as Primal-Dual Hybrid Gradient Method (PDHGM). From this approach, we propose an algorithm called PDGHGM-CTF, which is based on the linearized Contrast Transfer Function model, that we generalize for the nonlinear problem to get the Non-Linear Primal-Dual Hybrid Gradient Method (NL-PDHGM). The proposed iterative algorithms are able to recover simultaneously the phase and absorption from a single diffraction pattern without homogeneity assumption or support constraint, and the nonlinear version is valid without restriction on the object. Moreover, we show that the approach is robust with respect to the initialization. While giving a good approximation as starting point reduced the convergence time, it did not improve the reconstruction results. We demonstrate the potential of the proposed algorithms on simulated datasets. We show that it produces reconstructions with fewer artifacts and improved normalized mean squared error compared to a gradient descent scheme. We evaluate the robustness of the proposed algorithm by evaluating the reconstruction on simulated images of 1 000 random objects, given the same hyperparameters.

INTRODUCTION

Phase-sensitive X-ray imaging techniques have developed significantly recently due to the high sensitivity offered by phase contrast imaging, [START_REF] Momose | Phase-contrast x-ray computed tomography for observing biological soft tissues[END_REF] which has several applications in material science 2 and biomedical imaging. [START_REF] Langer | X-ray phase nanotomography resolves the 3d human bone ultrastructure[END_REF][START_REF] Varga | Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron x-ray phase nano-tomography[END_REF][START_REF] Langer | 3d x-ray ultra-microscopy of bone tissue[END_REF][START_REF] Giuliani | Synchrotron phase tomography: An emerging imaging method for microvessel detection in engineered bone of craniofacial districts[END_REF][START_REF] Kalbfleisch | X-ray in-line holography and holotomography at the nanomax beamline[END_REF] When using sufficiently coherent X-ray beams, phase contrast can be achieved by letting the wave propagate into free space after interaction with the sample. [START_REF] Cloetens | Phase objects in synchrotron radiation hard x-ray imaging[END_REF] The relationship between the absorption and phase shift induced by a sample and the diffraction pattern relies on the Fresnel diffraction theory. The phase information is not explicitly recorded in the measured intensity and must be estimated from the diffraction patterns, a processus called phase retrieval. This phase retrieval problem sets an inverse nonlinear ill-posed inverse problem. Several phase retrieval methods have been proposed to approximate the solution : direct inversion methods are based on the linearization of the forward model, they rely on Transport of Intensity Equation (TIE), [START_REF] Gureyev | Phase retrieval with the transport-of-intensity equation. ii. orthogonal series solution for nonuniform illumination[END_REF][START_REF] Paganin | Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object[END_REF] Contrast Transfer Function (CTF) [START_REF] Zabler | Optimization of phase contrast imaging using hard x-rays[END_REF] or on the Mixed approach 12 between these two. All these approaches are only valid under some restrictive assumptions on the propagation distance or on the object. Iterative methods are not limited by these constraints and some approaches have been proposed based on alternating projections on constraints between the detector and the object space. [START_REF] Gerchberg | A practical algorithm for the determination of phase from image and diffraction plane pictures[END_REF][START_REF] Fienup | Phase retrieval algorithms: a comparison[END_REF][START_REF] Bauschke | Phase retrieval, error reduction algorithm, and fienup variants: a view from convex optimization[END_REF][START_REF] Bauschke | A hybrid projection reflection method for phase retrieval[END_REF][START_REF] Elser | Phase retrieval by iterated projections[END_REF][START_REF] Luke | Relaxed averaged alternating reflections for diffraction imaging[END_REF] These also include variational methods based on the Fréchet derivative of the forward operator in conjunction with the Landweber algorithm. [START_REF] Davidoiu | Non-linear iterative phase retrieval based on frechet derivative[END_REF] This kind of algorithm enables a flexible inclusion of priors, such as Tikhonov, Sobolev or sparsity regularization. [START_REF] Davidoiu | Nonlinear approaches for the single-distance phase retrieval problem involving regularizations with sparsity constraints[END_REF][START_REF] Maretzke | Regularized newton methods for x-ray phase contrast and general imaging problems[END_REF] In order to include prior such as the Total Variation (TV) semi-norm, primal-dual schemes like Alternating Direction Method of Multipliers (ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF] have been studied for the phase retrieval problem but rely on linearization of the forward model, either using TIE [START_REF] Bostan | Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy[END_REF] or CTF. [START_REF] Villanueva-Perez | Contrast-transfer-function phase retrieval based on compressed sensing[END_REF] The single-distance inverse problem is more severely ill-posed than the classical problems with several diffraction patterns [START_REF] Beleggia | On the transport of intensity technique for phase retrieval[END_REF][START_REF] Maretzke | Stability estimates for linearized near-field phase retrieval in x-ray phase contrast imaging[END_REF] and few of the methods mentioned above propose to treat the case of a single-distance without any assumption on the object composition or the support. Data-driven methods based on neural networks are also attractive and have been widely studied for various problems in image processing. Several architectures have been proposed, for instance, the Mixed Scale Dense Network 27 and PhaseGAN 28 were able to recover both attenuation and phase from a single measured intensity. Although deep learning methods can give impressive reconstructions, as with all learning approaches, the reconstruction quality is limited by the quality of the training data, moreover, the networks are quite dependent on the physical parameters such as the energy, propagation distances and pixel size used for the training data.

In this work, we investigate a primal-dual approach based on the Primal-Dual Hybrid Gradient Method (PDHGM) [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] which has so far not been considered to the simultaneous phase and absorption retrieval problem. We first propose an iterative method for the linearized CTF problem (PDHGM-CTF) and then generalize it to the nonlinear case based on the NonLinear Primal-Dual Hybrid Gradient Method (NL-PDHGM). [START_REF] Valkonen | A primal-dual hybrid gradient method for nonlinear operators with applications to MRI[END_REF] We use different priors for absorption and phase to take into account the specificities of each quantity. The proposed method incorporates Total Variation (TV) regularization which allows for preservation of abrupt phase transitions, but also the Total Generalized Variation of second order (TGV 2 ) for getting rid of the staircasing effect on affine parts of the absorption retrieval. The suggested iterative algorithm is able to recover simultaneously the phase and absorption from a single diffraction pattern without homogeneity assumption or support constraint, moreover the algorithms does not need to be initialized with an approximated reconstruction. We demonstrate the accuracy of this approach on combinations of one or several different homogeneous materials at several signal to noise levels. The paper is organized as follows, we first detail the image formation and the CTF method, then, we present the different methods, including primal-dual hybrid gradient method and the Total Generalized Variation. The last section details the simulation methodology, and the results obtained on those simulated data.

IMAGE FORMATION AND INVERSE PROBLEM

Direct problem definition

The interaction of coherent and parallel X-ray beam with an object is related to its complex refractive index:

n(x, y, z) = 1 -δ r (x, y, z) + iβ(x, y, z) (1) 
where δ r is the refractive index decrement and β is the absorption index for the spatial coordinate (x, y, z). Both δ r and β depend on the material as well as the X-ray wavelength λ. The phase shift and the absorption are projections of the refraction and absorption index respectively defined with the following line integrals:

B(x) = 2π λ β(x, z)dz (2) 
φ(x) = 2π λ (1 -δ r (x, z))dz (3) 
where x = (x, y) represents the spatial coordinates in the perpendicular plane to the propagation direction z.

For thin objects and straight-line propagation of the beam, the interaction of coherent and parallel X-ray beam with matter can be described by a transmittance function T :

T (x) = exp[-B(x) + iφ(x)] (4) 
where B(x) is the absorption and φ(x) the phase shift induced by the object.

In the framework of the Fresnel diffraction theory, letting the beam propagates in free space over a relatively short distance D after interaction with the object can be described as a 2D convolution of the transmittance and of the Fresnel propagator for a distance D :

u D (x) = T (x) * P D (x) (5) 
where

P D (x) = 1 iλD exp(i π λD |x| 2 ) (6) 
The intensity measured at a distance D downstream of the object is thus given by

I D (x) = |u D (x)| 2 (7) 
The forward model describing the nonlinear relationship between the absorption and phase shift induced by a sample and the diffraction pattern can be written as

F D (B, φ) = |e -B+iφ * P D | 2 (8) 
Estimating the phase shift (resp. absorption) from these intensities, or diffraction patterns, is called phase (resp. absorption) retrieval. Our aim is to estimate both the phase and the absorption from a single intensity measurement.

Contrast Transfer function

The contrast transfer function method is based on the assumption of weak absorption and slowly varying phase shift :

B(x) ≪ 1, |φ(x) -φ(x + λDf )| ≪ 1 (9) 
The forward model is linearized by Taylor expanding the transmittance function to the first order

T (x) ≈ 1 -B(x) + iφ(x) (10) 
Substituting this approximation into (7) and again keeping only first order terms gives

ĨD (f ) = δ(f ) -2 cos(πλD |f | 2 ) B(f ) + 2 sin(πλD |f | 2 ) φ(f ) ( 11 
)
where f is the variable in the Fourier domain, δ(f ) is the unit impulse function, B(f ) is the Fourier transform of the absorption and φ(f ) is the Fourier transform of the phase. The CTF-linearized forward model can thus be written as

F CTF D (B, φ) = F -1 -2 cos(πλD |f | 2 ) ; 2 sin(πλD |f | 2 ) F (B, φ) (12) 
Since the phase contrast factor before φ(f ) in ( 11) has zero crossings, several distances have to be used in order to cover as much of the Fourier domain as possible.

METHODS

Different approaches have been proposed to simultaneously recover the phase and absorption from an image at a single distance but none of them proposed to use Total Variation (TV) without homogeneity assumption. Approaches based on the ADMM algorithm have been studied to incorporate TV regularization, but they rely on the linearization of the problem, either by TIE [START_REF] Bostan | Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy[END_REF] or by CTF. [START_REF] Villanueva-Perez | Contrast-transfer-function phase retrieval based on compressed sensing[END_REF] We propose to overcome these constraints by using the Primal-Dual Hybrid Gradient Method (PDHGM). [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] We show that this method, in the framework of the CTF linearized problem, works well even in the case of a single distance, and allows us to penalize the absorption and phase with the Total Variation and its higher order generalization. Finally, we use a generalization of this approach for nonlinear operators, known as NonLinear Primal-Dual Hybrid Gradient Method (NL-PDHGM), which enables us to take into account the nonlinearity information of the model.

The twofold problem of absorption and phase retrieval

In this work, we consider reconstruction couples that are solutions of the following optimization problem:

(B * , φ * ) = argmin B,φ d I obs D , F D (B, φ) + R(B, φ) (13) 
where I obs D is a given (noisy) measured intensity at a certain distance D, d I obs , F (B, φ) is the data fidelity term and R(B, φ) a regularization term. The data fidelity term enforces the reconstructed couple to fit the acquired data and allows, through the choice of the loss function d, to add knowledge on statistical properties of the noise. The regularization term forces the solution to satisfy a priori information on the unknown object. When reconstructing a couple, one can use a joint regularization to penalize both channel with the same parameter or use a different regularization for each channel. The former has the advantage of having fewer parameters to manage, but unlike the latter, it does not take into account the specificities of each channel. In the following, we chose the latter approach, we penalize B and ϕ differently, using the Total Variation (TV) as well as the Total Variation of second order (TGV 2 ), which are introduced in the following paragraphs.

Gradient descent with smooth Total Variation (GD-TV ϵ )

The general idea is to consider the problem (13) with the loss function d to be the l 2 squared norm, and the regularization R to be the Total Variation, we then seek to minimize the following functional : min

B,φ 1 2 Ω F D (B, φ)(x) -I obs D (x) 2 dx + η Ω |DB| + µ Ω |Dφ| (14) 
where Ω ⊂ R 2 is the image domain and η, µ > 0 are regularization parameters. The term Ω |Dφ| is the Total Variation of the image φ. For a function φ ∈ L 1 (Ω), the Total Variation semi-norm can be defined as :

Ω |Dφ| := sup - Ω φ(x) divψ(x)dx ; ψ ∈ C ∞ c Ω, R 2 , |ψ(x)| ≤ 1, ∀x ∈ Ω (15) 
For functions smooth enough φ ∈ W 1,1 (Ω), or equivalently ∇φ ∈ L 1 (Ω), this quantity reduces to Ω |∇φ|dx. It is well known that using Total Variation as regularization allows to reconstruct images while preserving sharp edges. The point here is that the gradient of the Total Variation semi-norm is given by div ∇φ |∇φ| which is not defined at a pixel x if ∇φ(x) = 0. We avoid this problem by considering a smooth version of the TV:

TV ϵ (φ) := Ω ϵ 2 + |∇φ(x)| 2 dx ≈ Ω |Dφ| and ∇TV ϵ (φ) = div   ∇φ ϵ 2 + |∇φ| 2   (16) 
Combining all this, we have to minimize the following energy

J η,µ,ϵ (B, φ) = 1 2 F D (B, φ) -I obs D 2 2 + ηTV ϵ (B) + µTV ϵ (φ) (17) 
This can be done with an algorithm of projected gradient descent, in order to constraint the sought solutions to be positive. We call this approach Gradient Descent with smooth Total Variation (GD-TV ϵ ).

The term [F ′ D (B, φ)] * in algorithm 1 represents the adjoint of the Fréchet derivative

F ′ D (B, φ) = ∂ B F D (B, φ) ∂ φ F D (B, φ) (18) 
of the forward operator at the point (B, φ), of which we have an analytical expression. [START_REF] Davidoiu | Non-linear iterative phase retrieval based on frechet derivative[END_REF] Algorithm 1 GD-TV ϵ Given :

• step size τ , smooth factor ϵ and regularization parameters η, µ

• (B 0 , φ 0 ) ∈ R n×m × R n×m for i = 0, . . . , N iter do : (B i+1 , φ i+1 ) ← (B i , φ i ) -τ ∇J η,µ,ϵ (B i , φ i ) = (B i , φ i ) -τ [F ′ D (B i , φ i )] * F D (B i , φ i ) -I obs D + [η∇TV ϵ (B i ), µ∇TV ϵ (φ i )] (B i+1 , φ i+1 ) ← [(B i+1 , φ i+1 )] +

Primal Dual Hybrid Gradient Method based on CTF linearization (PDHGM-CTF)

The main drawback of the GD-TV ϵ approach is that one cannot efficiently implement the TV semi-norm with a simple gradient descent without having to smooth it. To overcome this problem, we can use a primal-dual approach. A well-known algorithm for linear inverse problems is the Chambolle-Pock algorithm, [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] aka Primal Dual Hybrid Gradient Method (PDHGM) [START_REF] Esser | A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science[END_REF] which aims to solve a saddle-point problem of the form

min x∈X max y∈Y {⟨Kx, y⟩ + G(x) -F * (y)} ( 19 
)
where X is the primal space, Y the dual space, K : X → Y a continuous linear operator, F and G are convex and possibly non-smooth functions, and F * represents the Fenchel conjugate of F. This saddle-point problem ( 19) is a primal-dual formulation of the primal problem

min x∈X {F(Kx) + G(x)} (20) 
The PDHGM algorithm iteratively solves (20) by alternating proximal gradient ascent in the dual space and proximal gradient descent in the primal space (see algorithm 2).

In order to avoid the staircase effects that can appear on affine parts of the reconstructed absorption B while still preserving the possibility of having sharp edges, we decided to use a generalization of the Total Variation, the so-called Total Generalized Variation (TGV). [START_REF] Bredies | Total generalized variation[END_REF] More precisely, we use second-order Total Generalized Variation (TGV 2 ) 33 :

TGV 2 (α,β) (B) = inf v∈X α Ω |Dv| + β Ω |DB -v| (21) 
with v = (v 1 , v 2 ) where v 1 and v 2 are functions with finite Total Variation on Ω. The idea is to force the vector field v to have a sparse gradient and to penalize the gradient DB to deviate only on a sparse set from v. We observe in the definition of TGV 2 how it balances between first and second order features, controled with the ratio α β .

Let's now formulate our problem as in (20), for the absorption B, we choose to use second order Total Generalized Variation regularization, and for the phase φ, Total Variation regularization. As PDHGM algorithm is only valid for linear operator, we focus on CTF-linearized problem, using the CTF-forward operator

F CTF D .
Choosing regularization parameters to be α, β, ν > 0, and assuming our solution to be positive and sufficiently smooth, we then seek to solve the following minimization problem : min

B,φ inf v 1 2 Ω F CTF D (B, φ)(x) -I obs D (x) 2 dx + α Ω |∇v| + β Ω |∇B -v| + ν Ω |∇φ| + ι + (B, φ) (22) 
where ι + denotes the indicator function which constraint the sought solutions to be positive :

ι + (B, φ) = 0 if B, φ > 0 +∞ else (23) 
By introducing the discrete scalar images B, φ ∈ R n×m and the vectorial image v = (v 1 , v 2 ) = R n×m 2 , we can obtain the discrete version of (22), which is given by : min

B,φ,v B≥0,φ≥0 F CTF D (B, φ) -I obs D 2 2 + α ∥Dv∥ 1 + β ∥∇B -v∥ 1 + ν ||∇φ|| 1 (24) 
where

D : R n×m 2 → R n×m 4 , v → (∇v 1 , ∇v 2 ). If we denote X = R n×m × R n×m × R n×m 2 and Y = R n×m × R n×m 4 × R n×m 2 × R n×m 2
to be the discretized primal and dual spaces. Then the minimization problem ( 24) can be written in the form of : min

(B,φ,v)∈X {F [K CTF (B, φ, v)] + G (B, φ, v)} (25) 
with :

• K CTF (B, φ, v) = F CTF D (B, φ) , D(v), ∇B -v, ∇φ • F h 1 , h 2 , h 3 , h 4 = h 1 -I obs D 2 2 + α h 2 1 + β h 3 1 + ν h 4 1 • G (B, φ, v) = ι + (B, φ)
Using this formulation, we derive the PDHGM-CTF algorithm given in 2. Here, K CTF * is the adjoint operator Algorithm 2 PDHGM-CTF Given :

• step sizes σ, τ such that στ |||K CTF ||| 2 < 1 and relaxation parameter γ ∈ [0, 1]

• regularization parameters α, β and ν

• x 0 = {(B 0 , φ 0 ), v 0 } ∈ X (primal) • h 0 = [h 1 0 , h 2 0 , h 3 0 , h 4 0 ] ∈ Y (dual)
for i = 0, . . . , N iter do :

h i+1 ← prox σF * (h i + σK CTF x i ) x i+1 ← prox τ G (x i -τ K CTF * h i+1 ) x i+1 ← x i+1 + γ (x i+1 -x i )
of K CTF , and prox σf is the proximal operator of f with parameter σ defined as :

prox σf (y) = argmin x f (x) + 1 2σ ||x -y|| 2 (26) 
The algorithm 2 is convergent [START_REF] Chambolle | An introduction to continuous optimization for imaging[END_REF] if the primal step τ and the dual step σ satisfiy the inequality

στ |||K CTF ||| 2 = στ sup x∈X ||K CTF (x)|| Y ||x|| X 2 < 1 (27)

Non Linear Primal Dual Hybrid Gradient Method (NL-PDHGM)

More recently, the PDHGM algorithm has been generalized to nonlinear operators, where it was shown that convergence of the algorithm is still guaranteed even for non-linear operators, under assumptions on the initialization and on the nonlinear operator. [START_REF] Valkonen | A primal-dual hybrid gradient method for nonlinear operators with applications to MRI[END_REF] In this case, the only difference to the PDGHM-CTF is in the data fidelity term, i.e., instead of ( 24), we seek to solve the following minimization problem :

min B,φ,v B≥0,φ≥0 F D (B, φ) -I obs D 2 2 + α ∥Dv∥ 1 + β ∥∇B -v∥ 1 + ν ||∇φ|| 1 ( 28 
)
where F D is defined as the forward operator (8). As before, ( 28) can be rewritten in the form (25), this time using the non-linear operator defined by:

K NL (B, φ, v) = [F D (B, φ) , D(v), ∇B -v, ∇φ]
This new problem (28) can be solved using the NonLinear Primal Dual Hybrid Gradient Method (NL-PDHGM), where the algorithm is given in Algo. 3. We observe that unlike Algo. 2, we have the appearance of K ′ NL (x i ), Algorithm 3 NL-PDHGM Given :

• x 0 = {(B 0 , φ 0 ), v 0 } ∈ X (primal) • h 0 = [h 1 0 , h 2 0 , h 3 0 , h 4 0 ] ∈ Y (dual) • step sizes σ 0 , τ 0 > 0 and relaxation parameter γ ∈ [0, 1]
• regularization parameters α, β and ν for i = 0, . . . , N iter do :

h i+1 ← prox σF * (h i + σ i K NL x i ) x i+1 ← prox τ G x i -τ i [K ′ NL (x i )] * h i+1 x i+1 ← x i+1 + γ (x i+1 -x i ) σ i+1 , τ i+1 ← σ i , τ i such that σ i τ i sup k=0,1,...,i |||K ′ NL (x k )||| 2 < 1
the Fréchet derivative of the operator K NL at the point x i , for which we have an explicit formula. The main differences with the linear version is that to ensure the convergence of the algorithm, the operator K NL has to be locally Lipschitz differentiable, i.e. it has to be Fréchet differentiable and its gradient has to be Lipschitz in a neighborhood of a solution. Also, the initial iterate has to be close enough to a solution and we need to make sure that at every step i, the step sizes satisfy

σ i τ i sup k=0,1,...,i |||K ′ NL (x k )||| 2 = σ i τ i sup x∈X k=0,1,...,i ||K ′ NL (x k )(x)|| Y ||x|| X 2 < 1 ( 29 
)
4. EXPERIMENTS

Implementation details

In this part, we give details on the choice of the different regularization parameters and steps size. We also discuss the stopping criterion and the choice of the initialization.

Step size parameters

The convergence conditions for the gradient descent have not been analyzed in detail, we have noticed that choosing a sufficiently small fixed step size τ = 0.01 was enough to obtain convergence ot the iterates in practice.

For primal-dual methods, in order to satisfy the condition (29) (resp. ( 27)) on the primal and dual steps, one can estimate

|||K ′ NL (x)||| 2 (resp. |||K CTF ||| 2 ) by constructing a sequence y n = [K ′ NL (x)] * K ′ NL (y n-1
) and compute the quotient ρ n = ||yn(x)|| ||yn-1|| . The sequence (ρ n ) n∈N converges [START_REF] Chaari | Solving inverse problems with overcomplete transforms and convex optimization techniques[END_REF] and we have lim n→+∞ ρ n = |||K ′ NL (x)||| 2 . One has simply to choose ρ N ≈ |||K ′ NL (x)||| 2 for N sufficiently large and set

σ = τ < 1 √ ρ N
Since this process is quite costly, we only update the variables σ and τ every 50 iterations for NL-PDHGM.

Regularization parameters

The regularization parameters have been chosen empirically, which is suboptimal. We have chosen η = 10 -1 , µ = 10 -3 and the smoothing factor ϵ was set to 10 -3 for GD-TV ϵ . For both PDHGM-CTF and NL-PDHGM, we choose the same set of parameters : α = 10 -2 , β = 5 × 10 -3 , ν = 10 -2 and the relaxation parameter to be γ = 1.

Stopping criterion

A criterion often used for primal-dual methods is based on the computation of the duality gap, which, for the problem ( 19) is defined by

F(Kx) + G(x) + G * (-K * y) + F * y (30) 
and use it as a stopping criterion when it goes under a certain threshold. But the primal variable v involves in TGV 2 (see eq. ( 21)) and the duality gap is in this case equal to infinity, 36 so it is not useful as a stopping criterion in practice. This problem can be avoided by using a modified duality gap such as the pseudo-duality gap. [START_REF] Valkonen | A primal-dual hybrid gradient method for nonlinear operators with applications to MRI[END_REF] As the computation of this quantity represents an important computational cost, [START_REF] Knoll | Joint mr-pet reconstruction using a multi-channel image regularizer[END_REF] and to have a proper comparison with the gradient descent method, we did not employ this kind of criteria, but rather used a fixed number of N iter = 1 000 iterations for the different experiments.

Initialization

Even if theoretically, one must make sure that the initialization is close enough to a solution to ensure convergence, in practice, we did not have a problem of convergence when initializing with (B 0 , φ 0 ) = (0, 0). In the following, we report values only from zero-initialization.

Simulated dataset

In order to compare the performance of the different algorithms, we generated synthetic X-ray phase contrast images. The X-ray energy was set to 13 keV for a wavelength of λ = 0.095 nm, and the pixel size in the object space was set to 48 nm. We created projection datasets from 3D objects created from random combinations of one to 10 shapes, consisting with three different materials to create heterogeneous objects. The refractive indices (1) used for the materials are given in Table 1. The shapes used were ellipsoids and paraboloids with random positions and orientations. Then, 2D analytical tomographic projections of the real and imaginary part of the refractive index, corresponding to the phase (3) and the absorption (2) respectively, were obtained from the 3D objects for an image size of 2048×2048 pixels. Objects and projections were generated using the software TomoPhantom. [START_REF] Kazantsev | TomoPhantom, a software package to generate 2D-4D analytical phantoms for CT image reconstruction algorithm benchmarks[END_REF] Phase contrast images were generated from the projection images according to (7) at propagation distances D = 20.3 mm and downsampled to 512 × 512 to avoid aliasing in the calculation of the diffraction pattern. The dataset was generated using different levels of white Gaussian noise to yield a certain peak to peak signal to noise ratio (PPSNR). Examples of such diffraction are represented in Fig. 1, where the first image 1a displays the intensity measured when the object is rather thin, while the second 1b displays the intensity measured when the object is thicker.

Results

We compare the different methods on synthetic dataset containing 1 000 images, generated as described in sec. 4.2. We compare the results using the normalized mean square error (NMSE) defined by : In order to evaluate the robustness of each method, the regularization parameters were fixed for all cases (see 4.1), the averages NMSE obtained are summarized in Tab. 2

NMSE(x, x true ) = ||x -x true || 2 ||x true || 2 (31 
Overall, the NL-PDHGM method performed better than PDHGM-CTF and GD-TV ϵ , achieving better absorption and phase reconstruction in average. We find that all methods retrieved the phase better than the absorption. The evolution of the averages NMSE, as well as the standard deviation, are displayed in Fig. 2, we can see that the convergence for the phase is faster than the absorption, which suggests that different step sizes could probably be used for each of the channels to speed up the convergence. For qualitative evaluation, examples of reconstructed phase and absorption projections from the diffraction patterns (Fig. 1) are displayed in Fig. 3 & 4 (with negative contrast). Figure 3 shows the reconstructions of the methods (and the associated residuals x -x true ) when the object considered is quite thin. In this case, the CTF assumptions are well satisfied, that is why PDHGM-CTF gets the best reconstructions. The nonlinear approach has similar results, even if we see that some parts are missing inside the recovered projections compared to the linearized approach. The gradient descent performs somewhat worse, we observe that parts of the contour are missing in the reconstructions which seems to be caused by the projection on positive values and the approximation of the Total Variation. Looking at the absorption reconstruction more closely, we can see the staircasing effect that appears for GD-TV ϵ because of the Total Variation contrary to the primal-dual approaches which use the Total Generalized Variation of order 2. Figure 4 shows the reconstructions of the methods when the object considered is more thick than the previous one, as we can see on the values of the ground truths. We observe that for GD-TV ϵ and PDHGM-CTF, the reconstructions get worse, they lack a little contour for the absorption, and the information inside the phase is not well recovered. The same remarks apply for the NL-PDHGM, although this time the reconstructions are better. Finally, we can explicitly see what the nonlinearity information brings in this case, by comparing the linearized approach by CTF and the one using the direct nonlinear model. In particular, for objects that deviate from the CTF assumptions, the NL-PDHGM can still be expected to give satisfactory results.

CONCLUSION

We presented new methods based on a primal-dual approach that allowed us to reconstruct both the absorption and phase from a single diffraction pattern. We have proposed an iterative algorithm based on CTF-linearization (PDHGM-CTF) but also a more general one (NL-PDHGM) which allows to take into account the nonlinearity of the forward model. We have seen that primal-dual approaches allow to efficiently implement regularizations such as the Total Variation or its higher order generalization. With simpler approaches such as gradient descent, an approximation must be used for the gradient of Total Variation to be well defined, however, information is lost in making such a choice. The use of different regularizations for absorption and phase has proven to be more effective in taking into account the intrinsic features of each. In particular, the use of Total Generalized Variation on absorption allowed us to avoid the staircasing effect that can occurs when using Total Variation. For the phase, this problem does not occur, so the use of the Total Variation was enough to have a good recovery. In addition, we have noticed several things, firstly, when the CTF conditions are satisfied, the linearized version allows for more accurate reconstructions, and in practice, may often requires fewer iterations. But in the opposite case, we could observe the significant contribution of the nonlinear information of the problem, this suggests that the NL-PDHGM algorithm could be applied in a wide variety of cases where linear methods would fail. And although different regularization parameters must be chosen, we have seen that the choice of the latter is robust when applied over a thousand of cases. A direct extension of the proposed work would be to apply this approach to phase contrast tomography. Another approach would be to use neural networks to learn the regularization parameters or the regularization itself.
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 1 Figure 1: Simulated intensities at distance D = 20.3 mm for two different objects of the dataset.
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 2 Figure 2: Evolution of average NMSE (in %) for 1 000 test images. The transparent areas correspond to the standard deviation.
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 3 Figure 3: Comparison of the different methods using the diffraction pattern 1a
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 4 Figure 4: Comparison of the different methods using the diffraction pattern 1b

Table 1 :

 1 Complex refractive indices materials at 13 keV

	Material	µ (cm -1 )	2π λ	δ r (cm -1 ) δ r /β
	Gold	2 790		11 395	8.16
	Palladium	615		8 251	26.83
	Zinc	859		5 270	12.27

Table 2 :

 2 Average NMSE and standard deviation (in %) for 1 000 test images

		Absorption	Phase
	GD-TV	37.5 (17.4)	36.4 (18.2)
	PDHGM-CTF	32.1 (12.9)	29.6 (20.9)
	NL-PDHGM	29.2 (14.8) 23.6 (12.6)