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X-ray1 in-line

2

phase contrast imaging relies on the measurement of Fresnel diffraction intensity patterns due to
the phase shift and the attenuation induced by the object. The recovery of phase and attenuation from one or sev-
eral diffraction patterns is a nonlinear ill-posed inverse problem. In this work, we propose supervised learning
approaches using mixed scale dense (MS-D) convolutional neural networks to simultaneously retrieve the phase
and the attenuation from x-ray phase contrast images. This network architecture uses dilated convolutions to
capture features at different image scales and densely connects all feature maps. The long range information in
images becomes quickly available, and greater receptive field size can be obtained without losing resolution. This
network architecture seems to account for the effect of the Fresnel operator very efficiently. We train the networks
using simulated data of objects consisting of either homogeneous components, characterized by a fixed ratio of the
induced refractive phase shifts and attenuation, or heterogeneous components, consisting of various materials.
We also train the networks in the image domain by applying a simple initial reconstruction using the adjoint of
the Fréchet derivative. We compare the results obtained with the MS-D network to reconstructions using U-Net,
another popular network architecture, as well as to reconstructions using the contrast transfer function method,
a direct phase and attenuation retrieval method based on linearization of the direct problem. The networks are
evaluated using simulated noisy data as well as images acquired at NanoMAX (MAX IV, Lund, Sweden). In all
cases, large improvements of the reconstruction errors are obtained on simulated data compared to the linearized
method. Moreover, on experimental data, the networks improve the reconstruction quantitatively, improving the
low-frequency behavior and the resolution. ©2022Optical Society of America
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1. INTRODUCTION30

Phase sensitive x-ray imaging techniques with partially coherent31
radiation permit a significant increase of sensitivity with respect32
to x-ray tomography on the micro and nano scale. Phase contrast33
imaging is now widely used in material science and biomedical34
imaging with coherent x rays. The intensity can be measured35
at one or several propagation distances after the sample. The36
nonlinear relationship between the attenuation and phase shift37
induced by a sample and the measured intensity relies on the38
Fresnel diffraction theory and sets a nonlinear ill-posed inverse39
problem.40

To obtain an approximate solution, direct inversion41
approaches based on linearization of the forward problem42
have been proposed. The contrast transfer function (CTF) [1]43
is one such method that allows to retrieve both attenuation and44
phase, while others rather rely on assumptions on relationships45
between phase and attenuation [2,3]. Iterative methods are not46
limited by these constraints; of those are techniques that retrieve47
the object by alternating projections on constraints between48

the detector and object space [4]. These also include variational 49
approaches based on the Fréchet derivative of the forward oper- 50
ator [5] in conjunction with the Landweber algorithm. This 51
kind of algorithm permits a flexible inclusion of priors, based on 52
nonnegativity or total variation, for example, but consider the 53
attenuation and the phase as independent unknowns to retrieve. 54
It has recently been extended to other iteration schemes such as 55
iteratively regularized Gauss–Newton (IRGN) [6]. Deep learn- 56
ing methods have been much developed in recent years for signal 57
processing tasks [7]. Recent approaches based on deep learning 58
have yielded promising results for reducing the reconstruction 59
error for several inverse problems [8,9]. Some approaches opti- 60
mize a reconstruction network trained to map the measured 61
data and the reconstructed image [10]. Several iterative schemes 62
have been proposed using deep learning methods to improve the 63
results obtained with classical iterative approaches for inverse 64
problems [11,12]. Some deep learning architectures applied to 65
the phase problem have been proposed, for instance, to learn a 66
regularization into a CTF-based optimization algorithm [13]. 67
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Others such as PhaseGAN [14] were able to recover both atten-68
uation and phase from a single measured intensity by including69
explicitly the Fresnel propagator in the training. But few pro-70
posed to retrieve both attenuation and phase directly from the71
diffraction patterns. Recently, a new network architecture—the72
mixed scale dense (MS-D) network—has been proposed [15].73
This network has been used to improve the reconstruction74
quality and produce more accurate results over traditional meth-75
ods and other convolutional neural networks for tomographic76
reconstruction problems [16]. Therefore, the goal of this work77
is to develop an end-to-end deep learning approach for phase78
and attenuation retrieval from x-ray phase contrast images using79
MS-D neural networks. We compare the reconstruction results80
obtained with those given by the model-based CTF linear81
approach. The network was trained on simulated data of objects82
consisting of combinations of one or several different homo-83
geneous materials at several signal to noise levels, involving a84
single or several propagation distances.85

The remainder of the paper is organized as follows: in86
Section 2, we discuss the physical model of propagation based87
x-ray phase contrast imaging, as well as direct reconstruction88
methods, and we present the architecture of the network used.89
In Section 3, we give a detailed description of the implemen-90
tation, including the data used for training. We also discuss91
the reconstruction quality as well as post-processing of direct92
reconstructions. Comparison of the results obtained with the93
various methods for simulated and experimental data is shown.94
In Section 4, we give conclusions about the results obtained and95
perspectives for future work.96

2. MATERIALS AND METHODS97

In this section, we describe the direct problem for phase contrast98
imaging and present the CTF approach as well as the MS-D con-99
volutional neural networks. Additionally, we detail the synthetic100
datasets used for training our networks.101

A. Direct Problem Definition102

The interaction of a coherent and parallel x-ray beam with an103
object is related to its complex refractive index:104

n(x , y , z)= 1− δr (x , y , z)+ iβ(x , y , z), (1)

where δr is the refractive index decrement, and β is the absorp-105
tion index for the spatial coordinate (x , y , z). Both δr and β106
depend on the material as well as the x-ray wavelength λ. For107
thin objects and straight-line propagation of the beam along the108
propagation direction z, this interaction can be described by a109
transmittance function T of the coordinates x = (x , y ):110

T(x)= exp[−B(x)+ iϕ(x)] = a(x) exp[iϕ(x)]. (2)

B(x) is the absorption and ϕ(x) the phase shift induced by111
the object. The phase shift and the absorption are projections112
of the absorption and refraction index, respectively, defined with113
the following line integrals:114

B(x)=
2π

λ

∫
β(x , z)dz, (3)

115

ϕ(x)=
2π

λ

∫
(1− δr (x , z))dz. (4)

In the framework of the Fresnel diffraction theory, letting the 116
beam propagate in free space over a relatively short distance 117
D after interaction with the object can be described as a 2D 118
convolution of the transmittance and of the Fresnel propagator 119
for a distance D: 120

u D(x)= T(x) ∗ PD(x), (5)

where 121

PD(x)=
1

iλD
exp

(
i
π

λD
|x |2

)
. (6)

The intensity measured at a distance D downstream of the 122
object is thus given by 123

ID(x)= |u D(x)|2 + ε(x), (7)

where takes into account noise and artifacts due to the acqui- 124
sition conditions. Estimating the phase shift from these 125
intensities, or diffraction patterns, is called phase retrieval. 126
The retrieved phase shift can be used in conjunction with 127
tomography to reconstruct the 3D refractive index. This process 128
is called 3D phase tomography or holotomography. Our aim 129
is to estimate both the phase and the attenuation from one or 130
several intensity measurements whether the object involves one 131
or several materials. 132

B. Contrast Transfer Function 133

The CTF method is based on an assumption of weak absorption 134
and slowly varying phase shift: 135

B(x)� 1, |ϕ(x)− ϕ(x + λD f )| � 1. (8)

The forward model is linearized by Taylor expanding the trans- 136
mittance function to the first order: 137

T(x)≈ 1− B(x)+ iϕ(x). (9)

Substituting into (7) and again keeping only first order terms 138
gives 139

ĨD( f )= δ( f )− 2 cos(πλD| f |2)B̃( f )

+ 2 sin(πλD| f |s 2)ϕ̃( f ), (10)

where f is the variable in the Fourier domain, δ( f ) is the unit 140
impulse function, B̃( f ) is the Fourier transform of the absorp- 141
tion, and ϕ̃( f ) is the Fourier transform of the phase. Although 142
this expression is obtained by assuming weak object interac- 143
tion, it can be shown to be valid for weak absorption and slowly 144
varying phase. Since the phase contrast factor before ϕ̃( f ) in 145
(10) has zero crossings, several distances have to be used to cover 146
as much of the Fourier domain as possible. Then, a linear least 147
squares optimization problem is considered, taking the different 148
distances into account with the minimization of the sum 149∑

D

∣∣∣2 sin(πλD| f |2)ϕ̃( f )− 2 cos(πλD| f |2)B̃( f )− ĨD( f )
∣∣∣2.

(11)
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This can be solved simultaneously for B̃( f ) and ϕ̃( f ) by linear150
least squares optimization. We then have two retrieval formulas151
for both phase and absorption:152

B̃( f )=
1

21+ α

[
A
∑

D

ĨD( f ) sin(πλD| f |2)

− B
∑

D

ĨD( f ) cos(πλD| f |2)

]
, (12)

153

ϕ̃( f )=
1

21+ α

[
C
∑

D

ĨD( f ) sin(πλD| f |2)

− A
∑

D

ĨD( f ) cos(πλD| f |2)

]
, (13)

with the following coefficients:154

A=
∑

D

sin(πλD| f |2) cos(πλD| f |2)

B =
∑

D

sin2(πλD| f |2), (14)

155
C =

∑
D

cos2(πλD| f |2) 1= BC − A2, (15)

where the parameterα is a Tikhonov regularization parameter.156
Considering the case of a homogeneous object, characterized157

by a fixed known δr /β ratio of the induced refractive phase shifts158
and attenuation, both the absorption and phase can be retrieved159
from a single diffraction pattern [17,18].160

C. Mixed Scale Dense Convolutional Neural161
Networks162

The MS-D neural network has recently been proposed [15].163
This network requires fewer trainable parameters and interme-164
diate images than encoder–decoder networks to obtain accurate165
reconstruction results. The application to large images is pos-166
sible, and the amount of training images needed is reduced.167
The MS-D convolutional neural network architecture has been168
used to improve tomographic reconstruction from limited data.169
This network gives more accurate reconstruction results than170
traditional methods or others convolution neural networks171
[16]. MS-D networks are densely connected [19]: to compute172
an image of a certain layer, all previous layer images are used173
as input instead of only those of the previous layers. MS-D174
networks use dilated convolutions to retain image features175
at various scales. The scales are mixed by choosing adapted176
dilation factor distributions to avoid the gridding effect [20].177
With dilated convolutional filters, the long range information178
in images becomes quickly available in early layers of network.179
Greater receptive field size can be obtained earlier, making it180
possible to use this information to improve the results of deeper181
layers. This feature seems in line with the action of the Fresnel182
operator.183

Each feature map is the result of applying the same set of184
operations to all previous feature maps: (1) dilated convolutions185

with 3× 3 filters with a dilation rate selected from the list 186
[dmin, dmin + 1, . . . , dmax], (2) summing resulting images, (3) 187
adding a constant bias, and (4) applying a rectified linear unit 188
(ReLU) activation function defined as ReLu(x )=max(0, x ). 189
Finally, the output of the network consists of a linear combina- 190
tion of all feature maps generated and input channels, after the 191
application of the ReLU activation function. The weight of each 192
feature map, including input channels, is learned according to 193
the receptive field in the generated images that is in line with the 194
desired output. It means feature maps or input channels whose 195
receptive field is more in line with the desired output would be 196
given more weight in the final output formation in processing by 197
pointwise convolution. 198

D. U-Net 199

The U-Net architecture was originally designed to solve seg- 200
mentation problems [21]. It has been successfully used in image 201
reconstruction as a post-processing tool of direct reconstruction 202
in computed tomography [10]. U-Net is based on: (1) multi- 203
level decomposition by dyadic scale decomposition based on 204
max pooling, so that the effective filter size in the middle layers is 205
larger than that of the early and late layers, and (2) multichannel 206
filtering, such that there are multiple feature maps at each layer. 207
More precisely, the U-Net architecture consists of downscaling 208
and upscaling parts that give it the U-shaped network structure. 209
The downscaling follows the typical architecture of a convo- 210
lutional neural network. It consists of the repeated application 211
of convolutions with 3× 3 filters, each followed by a ReLU 212
activation function, batch normalization layer, and then a 2× 2 213
max pooling operation with stride 2 for downsampling. At each 214
downsampling step, the number of feature channels is doubled. 215
On the other side, the upscaling part consists of an upsampling 216
of the feature map with a 3× 3 up-convolution that halves 217
the number of feature channels and a concatenation with the 218
correspondingly cropped feature map from the downscaling 219
path, from which we apply two convolutions with 3× 3 filters, 220
each followed by ReLU and batch normalization. At the final 221
layer, a 1× 1 convolution is used to learn a linear combination 222
of all feature maps to reach the desired output. The two main 223
parameters that influence performance are the number of down- 224
scaling (and subsequent upscaling) operations and the number 225
of channels per feature map. 226

E. Datasets 227

To compare the performance of the MS-D network and the 228
CTF, we generated synthetic x-ray phase contrast images. 229
The x-ray energy was set to 13 keV for a wavelength of 230
λ= 0.095 nm, and the pixel size in object space was set to 231
6 nm. We created projection datasets from 3D objects created 232
from random combinations of one to 10 shapes, consisting 233
of either one homogeneous material (to create homogenous 234
objects) or three different materials (to create heterogeneous 235
objects). The refractive indices (1) used for the materials are 236
given in Table 1. 237

The shapes used were ellipsoids and paraboloids with ran- 238
dom positions and orientations. 2D analytical tomographic 239
projections of the real and imaginary parts of the refractive 240
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Table 1. Complex Refractive Index Materials at
13 keV

Material Symbol µ(cm−1) 2π
λ
δr(cm−1) δr/β

Gold Au 2 790 11 395 8.16
Palladium Pd 615 8 251 26.83
Zinc Zn 859 5 270 12.27

index, corresponding to the phase (4) and the attenuation (3),241
respectively, were obtained from the 3D objects for an image size242
of 2048× 2048 pixels. Objects and projections were generated243
using the software TomoPhantom [22]. Phase contrast images244
were generated from the projection images according to (7) at245
propagation distances D= [10.1, 15.5, 17.8, 19, 20.3]mm246
and downsampled to 512× 512 to avoid aliasing in the calcu-247
lation of the diffraction patterns. The datasets were generated248
using different levels of white Gaussian noise to yield a cer-249
tain peak to peak signal to noise ratio (PPSNR) in the longest250
distance. The noise level was kept the same at all distances,251
corresponding to usual experimental conditions. We generated252
two datasets. The first consisted of only homogeneous objects,253
and the material used was gold, The second consisted of hetero-254
geneous objects using the three materials given in Table 1. Each255
dataset consisted of 12,000 pairs of five input images (phase256
contrast images at different propagation distances) and two out-257
put images (attenuation and phase). From each dataset, 10,000258
images were used for training, 1000 for validation during train-259
ing, and 1000 for evaluation. An augmentation of the training260
data was performed by random 90 deg rotations or flipping, to a261
factor of two, yielding a total of 20,000 training images.262

3. EXPERIMENTS263

For the simulations, we trained different MS-D networks264
corresponding to different inputs: (1) a single diffraction pat-265
tern (the position closest to the focus among the five available,266
i.e., D= 10.1 mm), (2) all five diffraction patterns, and (3)267
an initialization with the adjoint of the Fréchet derivative (see268
Section 3.C). This was done for each dataset, i.e., for both269
homogeneous and heterogeneous objects. Thus, a total six270
MS-D networks were trained. Overall, we used the same MS-D271
network architecture composed of 100 layers and 3× 3 dilated272
convolutional kernel. The dilation rates were selected in the273
list [1, 2, . . . , 10, 1, 2, . . . , 10, 1, 2 . . .]. The networks were274
trained using the 3ADAM optimizer with l2 norm between labels275
and predictions as a loss function. An independent set of image276
pairs was used as a validation set to monitor the network quality277
during training and provide a stopping criterion. The network278
parameters that yielded the lowest validation error were saved as279
output from the training procedure.280

A. Simulation Results281

In this section, we evaluate the different trained MS-D net-282
works on synthetic data. We compare results of trained MS-D283
networks with the U-Net architecture and to CTF using the284
normalized mean square error (NMSE) defined by285

NMSE(x )=
‖x − xtrue‖2

‖xtrue‖2
. (16)

Table 2. Normalized Mean Square Error and Standard
Deviation (in %) for 1000 Test Images, Heterogeneous
Objects

# Distances # Parameters Attenuation Phase

CTF 5 – 42.4 (19.7) 30.3 (8.99)
U-Net 5 31× 106 11.1 (12.3) 7.65 (9.35)
MS-D Net 5 49× 103 7.67 (10.6) 5.33 (6.74)
MS-D Net 1 45× 103 11.8 (9.05) 7.76 (6.36)

Table 3. Normalized Mean Square Error and Standard
Deviation (in %) for 1000 Test Images, Homogeneous
Objects

# Distances # Parameters Attenuation Phase

CTFHomo 5 – 13.5 (3.92) 13.5 (3.92)
CTFHomo 1 – 21.4 (14.0) 21.4 (14.0)
U-Net 5 31× 106 4.29 (4.82) 4.29 (4.82)
MS-D Net 5 49× 103 3.95 (4.41) 3.95 (4.41)
MS-D Net 1 45× 103 4.37 (5.50) 4.37 (5.50)

As quantitative measures of reconstruction quality, we com- 286
puted the average NMSE on 1000 images that were not used in 287
training or validation. In all cases, the regularization parameter 288
for the CTF method was optimized upstream. 289

The results obtained on homogeneous objects are 290
summarized 4in Table 3. The MS-D network correctly recon- 291
structs the attenuation and phase as identical up to a constant 292
factor, as can be seen in the identical reconstruction error in 293
attenuation and phase. On the contrary, U-Net was not able to 294
reconstruct both the attenuation and phase simultaneously. It 295
retrieves only the phase while putting attenuation to zero. This is 296
the reason that we trained only U-Net to output a single channel 297
(phase), and consider the attenuation proportional to the phase, 298
which explains the identical reconstruction error. 299

The results obtained on heterogeneous objects are summa- 300
rized in Table 2. The MS-D network performs somewhat worse 301
on heterogeneous objects because of the diversity of the dataset, 302
but the results remain very good. We find that the network 303
retrieves the phase somewhat better than the attenuation. For 304
qualitative evaluation, some examples of reconstructed phase 305
projections are displayed in Fig. 1. 306

B. Experimental Results 307

In this section, we apply the MS-D networks to experimental 308
data [23] acquired at beamline NanoMAX at the MAX IV 309
synchrotron (Lund, Sweden) [24]. The different diffraction 310
patterns were magnified to have the same pixel size, which was 311
measured to be 6 nm. The x-ray energy was set to 13 keV. The 312
sample was placed at different positions relative to the focus 313
and detector positions for different amounts of magnification 314
and consequently different effective propagation distances 315
corresponding to D= [10.1, 15.5, 17.8, 19, 20.3]mm. Those 316
phase contrast images were not directly used as input; they were 317
magnified to have the same pixel size (Fig. 2). The object in 318
question represents a stack of gold, palladium, and zinc with 319
thicknesses of 163 nm, 32 nm, and 10 nm, respectively; thus the 320
expected values for attenuation and phase are 0.0483 and 0.217, 321
respectively. 322
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Fig. 1. Comparison of the different approaches on simulated heterogeneous objects.

Fig. 2. (A)–(E) Phase contrast images acquired at sample positions progressively further from the focus (and thus closer to the detector) showing
the varying degree of magnification and phase contrast. (F)–(J) Phase contrast images magnified to have the same pixel size (6 nm).

Fig. 3. Comparison of the different approaches on experimental data when trained on heterogeneous objects.

The differents results in the case of heterogenous assump-323
tion are displayed in Fig. 3. We see that the CTF method324
retrieved well the shape of the object but left artifacts on the325

low-frequency range. On the other hand, U-Net seems to 326
reduce those artifacts but recovers the shape of the object some- 327
what roughly. The MS-D network reduces the artifacts while 328
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Fig. 4. Comparison of phase reconstructions using the different approaches on experimental data when trained on homogeneous objects.
(A) CTFHomo (five distances). (B) U-Net. (C) MS-D-Net (five distances). (D) CTFHomo (one distance). (E) MS-D-Net (one distance).

Table 4. Reconstruction Quality for the Different Algorithms for Experimental Data when Trained on
Homogeneous/Heterogeneous Data

Heterogeneous

Attenuation Phase

# Distances NE (RSD) in % Resolution (nm) NE (RSD) in % Resolution (nm)

CTF 5 81.3 (177) 102 21.6 (30.0) 213
U-Net 5 6.83 (35.5) 96 2.30 (16.0) 159
MS-D Net 5 33.7 (40.6) 98 3.22 (14.2) 202
MS-D Net 1 48.2 (32.0) 92 –11.5 (15.2) 208

Homogeneous

Attenuation Phase

# Distances NE (RSD) in % Resolution (nm) NE (RSD) in % Resolution (nm)

CTFHomo 5 4.14 (11.5) 197 4.14 (11.5) 197
CTFHomo 1 25.3 (16.0) 128 25.3 (16.0) 128
U-Net 5 14.7 (27.5) 140 14.7 (27.5) 140
MS-D Net 5 2.03 (11.6) 165 1.84 (11.2) 165
MS-D Net 1 2.96 (12.5) 93 2.76 (12.3) 93

reconstructing well the shape of the object, even when a single329
distance is given as input.330

Assuming homogeneous object composition, we compare331
the homogeneous version of CTF with the networks. We see332
in Fig. 4 that both CTF and MS-D networks outperformed333
the U-Net approach, whether we use one or several distances.334
The MS-D network reconstructs with fewer artifacts in the335
low-frequency range than the linearized method, and both are336
able to recover well the shape of the object compared to U-Net.337

For the experimental data, we used as quantitative evaluation338
the normalized error (NE) and relative standard deviation339
(RSD) calculated as340

NE=
lt − lm

lt
and RSD=

s m

lm
, (17)

where lt is the expected value, lm the measured mean value,341
and s m the standard deviation in the corresponding material.342
Calculation of lm and s m was done inside the object to avoid the343
influence of blur at the edges. We also measured the resolution344
by fitting an error function to a line profile across an object edge,345
and then calculating the corresponding Gaussian full width at346
half maximum (FWHM) based on the error function fitting347
parameters [3]. The result for experimental data are presented in348
Table 4.349

For heterogeneous data, the CTF yields a reconstruction350
with strong low-frequency noise. All the networks achieve a351
quantitatively more accurate reconstruction than the CTF. Note352

that although U-net achieves the best reconstruction quanti- 353
tatively in terms of reconstructed values, the reconstruction is 354
qualitatively not as good: the shapes of the stars are not correctly 355
reconstructed with some disconnections, rounded corners, and 356
wavy contours. U-net also yields a better resolution since the 357
reconstructions tend to approach a piecewise constant and thus 358
work well for this particular sample. 359

For homogeneous data, the CTFHomo algorithm yields a 360
quantitatively very good reconstruction with some remaining 361
low-frequency noise, and the edges are more blurred than in 362
the reconstructions from the networks. It can be noted that this 363
algorithm is perfectly adapted to the imaged object and that 364
we explicitly give the δr /β ratio as input, whereas the networks 365
learn this parameter implicitly. Surprisingly, U-net does some- 366
what worse than for heterogeneous objects, again with some 367
parts of the star incorrectly reconstructed, despite yielding a very 368
clean background. The MS-D networks on the other hand yield 369
very good reconstructions, using both five distances and a single 370
distance. 371

Overall, the MS-D network when trained using a single dis- 372
tance propagation achieves better resolution than using several 373
distances. This may be due to uncertainty in the measurement 374
of the physical propagation distances and difficulty to exactly 375
align this kind of phase contrast image. The same remark applies 376
if we compare the results obtained by CTFHomo with one or 377
five distances, albeit with greater improvement in quantitative 378
results when using several distances. 379
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Table 5. Normalized Mean Square Error and Standard
Deviation for 1000 Test Images (in %), Initialized
with (19)

Homogeneous Heterogeneous

Attenuation Phase Attenuation Phase

U-Net 9.60 (13.8) 4.74 (8.85) 16.2 (12.3) 5.77 (7.94)
MS-D Net 1.96 (3.05) 1.96 (3.05) 8.19 (6.68) 4.83 (5.17)

C. MS-D Network as Post-Processing380

Finally, we trained the networks in the reconstruction domain381
by performing a preliminary reconstruction by applying the382
adjoint of the Fréchet derivative [5] of the forward operator (7)383 [

I ′D(B, ϕ)
]∗
(u)=

{[(
−ueB−iϕ

∗ PD
)
∗ PD

]
e−B+iϕ,

×
[(

ueB−iϕ
∗ PD

)
∗ PD

]
ie−B+iϕ} (18)

directly on the data as initialization.384
The inputs to the networks then consist of the average of (18)385

over all distances at the point (B, ϕ)= (0, 0):386

(B0, ϕ0)=

ND∑
i=1

[
I ′Di
(0, 0)

]∗
(I obs

Di
). (19)

Performing this operation before training allows us to take into387
account prior knowledge on the physics of the inverse problem,388
and transforms the input data to the same domain as the output.389

On simulated data, we see that initializing with this direct390
reconstruction using the adjoint of the derivative improves391
the reconstruction quality of the phase, but makes the recon-392
struction quality of the attenuation somewhat worse (Table 5).393
Initialization given by (19), as well as the reconstruction for the394
networks are displayed in Fig. 5.395

Quantitative evaluation of the networks on the experimental396
data, trained by initializing with the adjoint of the derivative,397
are given in Table 6. When trained on heterogeneous data, the398
MS-D network yields better reconstruction quantitatively and399
in terms of resolution for the phase, while U-Net performs400
better for the attenuation reconstruction, and the reconstructed401
images no longer show the artifacts mentioned in Section 3.B.402
On the other hand, on homogeneous data, we see that the MS-403
D network yields a very good reconstruction quantitatively and404
achieves better resolution than U-Net.405

Table 6. Reconstruction Quality for the Different
Algorithms for Experimental Data when Trained on
Objects Initialized with the Adjoint of Fréchet Derivative

Heterogeneous

Attenuation Phase

NE (RSD)
in %

Resolution
(nm)

NE (RSD)
in %

Resolution
(nm)

Initialization 31.6(93.9) 371 22.5(19.6) 192
U-Net 15.1(24.3) 72 7.37(12.9) 135
MS-D Net −27.5(34.2) 107 −4.14(11.5) 116

Homogeneous

Attenuation Phase

NE (RSD)
in %

Resolution
(nm)

NE (RSD)
in %

Resolution
(nm)

Initialization 31.6(93.9) 371 22.5(19.6) 192
U-Net 7.04(11.6) 133 8.34(8.64) 133
MS-D Net 1.45(7.18) 122 1.38(7.15) 122

4. DISCUSSION 406

We used MS-D networks to perform attenuation and phase 407
retrieval from x-ray in-line near-field phase contrast images. 408
The network was trained and evaluated on simulated data with 409
noise using relatively simple objects consisting of combinations 410
of ellipsoids and paraboloids, involving one or several materi- 411
als. None of the parameters of the physical model such as the 412
energy of the x ray, propagation distance, or pixel size was given 413
explicitly to the network. They were implicitly captured in the 414
intensity images. The aim of the network was to learn an inverse 415
without such information. 416

We illustrated the MS-D network’s potential on synthetic 417
data generated with TomoPhantom software and compared the 418
results with the linearized CTF method and another neural net- 419
work implementation using U-Net. The results are reported in 420
Tables 2 and 3 and in Fig. 1. Both the MS-D network and U-Net 421
performed better than the CTF method, both quantitatively 422
and qualitatively. The MS-D network was able to retrieve both 423
attenuation and phase from a single diffraction pattern with 424
similar quality as U-Net when using five measured intensities. 425
On homogeneous objects, the MS-D network retrieves phase 426
and attenuation as identical up to a constant factor, which 427
means that it learned the constant δr /β ratio while U-Net did 428
not. Since U-net yielded zeros in the attenuation channel, we 429

Fig. 5. Comparison of the different approaches on experimental data when initialized with the adjoint of Fréchet derivative.
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implemented a single output channel for this network and430
calculated the corresponding attenuation image by multiply-431
ing with the δr /β ratio. Both networks performed better than432
the homogeneous version of CTF whose δr /β ratio was given433
explicitly. On heterogeneous objects, both networks performed434
better than the CTF, and recovered the phase better than the435
attenuation.436

The different networks were also applied on experimental437
data (Figs. 3 and 4, Tables 2 and 3). Although U-Net per-438
formed very well quantitatively—the reconstructed values439
very close to the expected ones in the interior region of the440
sample—qualitatively, it reconstructed the shape of the stars441
in an unsatisfactory manner with rounded corners, some dis-442
connections, and wavy contours. The low-frequency noise443
compared to CTF reconstruction was substantially improved,444
however. On the other hand, the reconstructions from the445
MS-D network, while yielding a quantitatively less accurate446
reconstruction with some ringing artifacts in the background,447
qualitatively reconstructed correctly the shape of the sample and448
also improved substantially the low-frequency artifacts com-449
pared to the CFT. The MS-D network correctly reconstructed450
the shape of the sample despite this kind of shape not being451
explicitly present in the training data. Note that U-net used452
approximately a factor 600 more coefficients than the MS-D453
networks.454

Additionally, we showed using the methods as post-455
processing of images from a simple direct reconstruction456
using directly the adjoint of the Fréchet derivative. The results457
(Fig. 5, Table 5) show that the MS-D network performed better458
than U-Net in this case. For U-net, the qualitative aspect of the459
reconstruction was substantially improved, but quantitatively, it460
performed somewhat worse. The MS-D network performance461
was improved in all aspects using this initialization. For the462
presented data, the reconstruction using the MS-D network463
trained on homogeneous objects and initialized as described464
yielded the best reconstruction in quantitative terms.465

5. CONCLUSION466

We used MS-D networks, an architecture of convolutional467
neural networks, to perform phase retrieval from x-ray in-line468
phase contrast images. The MS-D network combines short and469
long range information, which seems to be appropriate with470
respect to the action of the Fresnel propagator. We compared471
the reconstruction results obtained with the MS-D network to472
a classical linearized algorithm, the CTF method, as well as to473
another deep learning method based on the U-net architecture.474
The MS-D network performed better than the CTF and U-net475
on simulated data.476

On simulated data, the MS-D networks give better recon-477
structions than the CTF method and U-Net, despite U-net478
using a factor of 600 more parameters. Moreover, the MS-D479
networks were able to simultaneously reconstruct the phase and480
attenuation of heterogeneous objects from a single distance,481
with similar reconstruction errors to U-Net using five distances.482
The MS-D network was able to learn the correct δr /β ratio483
when trained on homogeneous data and performed better than484
U-Net, despite that U-net was trained with a single output and485
the correct δr /β ratio was applied to this reconstruction.486

On experimental data, all three methods performed well, 487
with a trade-off between the high-frequency artifacts of neural 488
networks and the low-frequency artifacts of CTF. When using 489
networks trained on heterogeneous objects, the MS-D network 490
and the CTF method give the qualitatively best reconstruc- 491
tions with the morphology of the object well preserved. The 492
U-Net reconstruction, while quantitatively very accurate, was 493
qualitatively less acceptable with some disconnections and 494
less accurate reconstruction of the object shape. When using 495
networks trained on homogeneous objects, the MS-D network 496
yields qualitatively and quantitatively the best reconstruction, 497
while U-Net performed somewhat worse, with some parts of the 498
object not reconstructed and values in the interior reconstructed 499
less accurately. 500

Finally, we compared networks trained in the image domain 501
by making a simple initialization reconstruction using the 502
adjoint of the Fréchet derivative. The MS-D network showed 503
excellent performance for phase and attenuation retrieval 504
on both experimental and simulated data and improved the 505
reconstruction compared to both the CTF and U-net. 506

As with all learning approaches, the reconstruction quality is 507
limited by the quality and precision of the training data. Here, 508
the networks are dependent on the training data to learn differ- 509
ent physical parameters such as energy, propagation distance, 510
and pixel size. The implementation of the simulation might also 511
introduce its own artifacts, for example, from implementation 512
issues such as sampling and numerical precision, and from 513
incomplete modeling of the physics, for example, not taking 514
into account scattering in the sample [25]. In future work, we 515
will consider including networks in iterative schemes that incor- 516
porate some knowledge of the direct model into a data driven 517
model. This will be done by unrolling a knowledge-driven 518
iterative scheme and replacing the iterations with CNNs taking 519
into account the forward operator. We will also investigate the 520
case of a partially known forward operator by including some of 521
the physical parameters in the optimization scheme. 522
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