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Plasmonic excitation of metallic nanoparticles can trigger chemical
reactions at the nanoscale. Such optical effects can also be
employed to selectively and locally graft photopolymer layers at
the nanostructure surface, and, when combined with a surface
functionalization agent, new pathways can be explored to modify
the surface of a plasmonic nanoparticle. Among these approaches,
diazonium salt chemistry is seen as an attractive strategy due to
the high photoinduced reactivity of these salts. In this work, we
demonstrate that it is possible to trigger the site-selective grafting
of aryl films derived from diazonium salts on distinct nano-localized
area of single gold nanotriangles, by taking advantage of their
multipolar localized surface plasmon modes. It is shown the
aryl film will preferentially graft in areas where the electric field
enhancement is maximum, independently of the considered excited
surface plasmon mode. These experimental findings are in very
good qualitative agreement with the calculations of the local
electric field, using the finite-difference time-domain (FDTD)
method. We believe that this plasmonic-based approach will
not only pave a new way for the spatially controlled surface
functionalization of plasmonic nanoparticles, but also provide a
general strategy to attach distinct molecules to hot spot regions
on a single nanoparticle, opening promising prospects in sensing
and multiplexing, and optically nano-scale patterning of functional
groups.
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1 Introduction
Plasmonic nanoparticles with subwavelength size exhibit remark-
able optical properties since they can support localized surface
plasmon (LSP) resonances.1 These LSP resonances are related to
a collective oscillation of conduction electrons at the particle sur-
face, the frequency of which depends on the size, the shape and
the chemical composition of the particles, the inter-particle dis-
tance, and the refractive index of the surrounding medium.2–4

LSP excitation results in an enhanced extinction in the far-field,
mostly located in the visible and near-infrared spectral range for
metals such as gold and silver, and a huge enhancement of the
local electromagnetic field at the particle surface.5–7 Therefore,
plasmonic nanoparticles are particularly important for their high
potential in non linear optics,8 chemo-sensors9,10 or substrates
for surface-enhanced spectroscopies, such as surface-enhanced
Raman scattering (SERS).11,12

In the last decade, it has been shown that metal nanoparticles
can also act as reactive elements due to their ability to gener-
ate hot carriers, through plasmon decay.13,14 When nanoparti-
cles are in the vicinity of molecular compounds, hot electrons are
extracted from the metal into available molecular orbitals of the
adsorbates (i.e., injection of electrons into an anti-bonding state),
causing, for instance, the dissociation of a bond in the molecular
adsorbate.15–17 It has been shown that the transient ions can then
react on the metal surface.18 Through such plasmon-induced pro-
cesses, many reactions have been controlled at the particle scale,
such as the dissociation of H2 or other photocatalytic reactions
some of them being of societal importance such as water splitting
and carbon dioxide reduction.19,20. Interestingly, the mapping
of the particle reactivity at the nanometer scale can be achieved,
following precisely the spatial distribution of the electric field en-
hancement, under LSP excitation.18,21

In the context of plasmon-induced chemical surface function-
alization, a major challenge exists in the ability to trigger the
site-selective grafting of functional layers on distinct nanoscale
areas around plasmonic nanostructures. Recently, we developed
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an original route, based on aryl diazonium salt chemistry, to spa-
tially control the surface functionalization of gold nanostructures
under LSP excitation22. These molecules present the advantage
to create strong covalent Au–C bonds with the surface, promoting
stable interfacial links between the nanoparticles (NPs) and the
organic functional layers.23 In addition, they offer a wide range
of terminal functional groups for future post-functionalization re-
actions24,25. The grafting mechanism relies on a two-step process
involving (i) the reduction of diazonium salts yielding reactive
aryl radicals able to attach covalently to the surface and (ii) the
reaction of the aryl radicals on the already grafted layers.23 The
thickness of the polyaryl layers can thus be monitored from mono-
layers to multilayers up to a few tens of nanometers.26 Using
plasmon-driven reduction of aryl diazonium salts, it is possible to
pattern the surface chemical properties of lithographic gold nan-
odisks with different types of functional polyaryl layers, through a
change of the incident light polarization (from 0 to 90°).26 Inter-
estingly, the grafting takes place specifically in the regions where
the local field is enhanced.27,28

Compared to isotropic shapes, triangular and pyramidal
nanoparticles display even more intense electromagnetic fields
due to their sharp corners.29–31 In addition, their tunable opti-
cal properties as a function of the edge length can lead to various
multipolar LSP modes at distinct wavelengths, with a high con-
centration of electromagnetic field at different locations of the
triangular nanoparticles as well as the arrays composed of adja-
cent nanotriangles.31,32 Therefore, such triangular-shaped parti-
cles could provide various spatially resolved grafting areas, via
the excitation of distinct multipolar LSP modes.33

To our knowledge, the excitation of diverse multipolar LSP
modes in order to give access to a wide range of reactive
nanoscale areas for the versatile site-selective surface function-
alization of gold NPs has never been reported so far. In this
work, we address this issue by considering regular arrays of gold
triangular nanostructures with spectrally resolved in-plane mul-
tipolar LSP modes. Such structures, designed through electron
beam lithography (EBL), display distinct intense bands in the vis-
ible and near infrared spectral range, depending on their lateral
size.33 Herein, we focused our attention on the first three low-
est energy multipolar LSP modes, corresponding to the dipolar,
quadrupolar and sextupolar LSP modes. These three modes are
particularly interesting since they are characterized in the near-
field by strong field enhancements located at distinct places, de-
pending on the excited multipolar LSP mode. Plasmon-induced
grafting of diazonium salts has proved to be very efficient in the
case of salts bearing various functionalities such as carboxylic
acid or hydroxyethyl, which can be easily post-functionalized, as
already demonstrated in previous papers.26 The diazonium salt
which was used to induce the plasmon-mediated grafting of aryl
films is 4- nitrobenzenediazonium tetrafluoroborate (4NBDT).34

By taking advantage of the multipolar localized surface plasmon
modes, we explored the possibility to expand the limits of surface
chemistry by confining the grafted aryl layers in a wide variety of
nanoscale regions of maximum electric field enhancement around
the gold nanostructures, as schematized in the figure 1 (and dis-
played later in Figs. 3, 4,and 6). The experimental findings were

compared to the calculations of the local electric field performed
using the finite-difference time-domain (FDTD) method,35 in or-
der to reveal the close relationship between near-field enhance-
ment and surface grafting. We believe that this plasmonic-based
approach will not only pave an easy way for the functionalization
of plasmonic nanoparticles, but also provide a general strategy
to attach molecules to hot spot regions and further improve their
SERS detection and analysis for (bio)sensing applications.36

Fig. 1 Scheme of the strategy of multipolar plasmon-mediated surface
functionalization. The location of the aryl film grafting will depend on
the excited multipolar plasmon mode. It is expected that the grafting will
take place specifically on the area sustaining the maximum intensity of
local electric field. It will be mainly located at the tips of the triangle for a
dipolar excitation (left), on the lateral sides for a quadrupolar excitation
(center), and slightly on the edges and the apexes at the basis of the
triangle for the sextupolar excitation (right).

2 Results and discussion
Gold nanotriangle arrays were fabricated by electron beam lithog-
raphy in order to control precisely their LSP wavelengths.37,38 An
SEM image of such structures, referred as array A, is shown in the
Fig. 2a. It corresponds to a square array of gold equilateral tri-
angles, with edge lengths of 170 nm, a thickness of 50 nm, and
an interparticle distance of 340 nm (grating constant, center to
center). The experimental optical response of the array revealed
two distinctive LSP bands (Fig. 2b, spectrum A): a dominant one
at 822 nm, identified as the dipolar LSP mode (1st order), and
a less intense one at 614 nm, attributed to the quadrupolar LSP
mode (2nd order). The lower intensity observed in the case of the
quadrupolar mode, compared to the dipolar one, is due to the spe-
cific distribution of oscillating charges limiting a re-radiation in
the far-field optical response. The experimental extinction spec-
trum was compared to the calculated extinction cross section us-
ing the FDTD method (Fig. 2b, spectrum B), highlighting a good
qualitative agreement between the experimental and theoretical
far-field optical response.

The plasmon-induced grafting of aryl layers derived from di-
azonium salts was performed by simply immersing the nanos-
tructures in a diazonium salt aqueous solution (3 mM), and ir-
radiating the sample during 10 seconds using the appropriate
laser. The 785 nm laser line was used to excite the dipolar mode,
with maximum extinction resonance located at 822 nm, while
the quadrupolar mode at 614 nm was excited using the 633 nm
laser line. The optical exposure was performed in normal inci-
dence, and the laser was focused on the array through an im-
mersion microscope objective (100× numerical aperture N.A. 1),
resulting in a circular laser spot of 3 µm diameter at the surface.
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Fig. 2 (a) SEM image of lithographic gold equilateral nanotriangles
(170 nm side length, height 50 nm, grating contant 340 nm) over a glass
substrate covered by a thin layer of ITO; (b) Far-field optical response
(in water): experimental extinction spectrum (spectrum A); extinction
cross section calculated by the FDTD method (spectrum B). The laser
lines are indicated as vertical dashed lines (at 633 and 785 nm).

Light polarization was tailored in order to be along the base of
the triangles (X-polarization), or perpendicular (Y-polarization).
After the optical exposure, the grafting was characterized using
scanning electron microscopy (SEM), and surface-enhanced Ra-
man spectroscopy (SERS).39 Fig. 3(a) and Fig. 3(c) display the
SEM images of the particles after an exposure of 10 sec. with
the 785 nm laser and a polarization along the X- axis and Y- axis,
respectively. The laser power was set at 0.13 mW/µm2, corre-
sponding to an energy dose, defined as the product of the laser
power by the optical exposure time, of 1.3 mJ/µm2. Remark-
ably, independently of the incident polarization, the SEM images
clearly show a nano-localized grafting of organic layers. For the
X-polarization, the organic spots are observed mainly at the two
apexes of the base of the triangles with identical spatial extent on
both sides. In contrast, for the Y-polarization, the grafted layers
appear mostly at the top of the triangles. It is noteworthy that
the grafting is uniform over the whole sample, as shown in the
Fig. SI 1 displaying a SEM image containing more triangles, than
the ones showed in Fig. 3(c). Although the mechanism of graft-
ing is still in debate in the literature, it has been shown theoreti-
cally that the probability of chemical reactions (such as bonding,
or chemical reduction,. . . ) is maximum precisely where there is
a maximum of electric field enhancement.18 A thermal process
alone is excluded since it would have had the effect of deposit-
ing the organic layer over the entire surface of the particle. The
chemical nature of these organic patches has been characterized
by SERS, confirming the presence of polyaryl layers derived from
nitrobenzene diazonium salts, as shown in the SI (Fig. SI 2a). In
addition, after each aryl film grafting, we systematically observed
a red-shift of the LSP band, attributed to the increase of the re-
fractive index of the surrounding medium due to the presence of
the aryl film (see Fig. SI 2b).

In order to interpret these results, the local electric field dis-
tribution was calculated by the FDTD method, with an incident
illumination at 803 nm corresponding to the maximum of the
dipolar LSP band). The mapping of the local electric field inten-
sity displays maxima situated mainly at the apexes of the struc-
tures, with a location depending on the incident polarization. For
a polarization parallel to the base of the triangle (X-polarization),
the two maxima are located at the apexes located on the base

Fig. 3 (a) SEM image of the triangles (array A: 170 nm side length,
height 50 nm, and grating constant 340 nm), after immersion in an
aqueous solution of diazonium salt (3 mM) and optical exposure at 785
nm for a polarization along the X axis; (b) mapping of the intensity of
the electric field at 803 nm for a polarization along the X axis, calculated
by the FDTD method for a triangular target with 170 nm side length,
height 50 nm (bar scale: 50nm); (c) SEM image of the same array of
triangles after an optical exposure at 785 nm for a polarization along the
Y axis; (d) FDTD mapping of the intensity of the electric field at 803
nm or a polarization along the Y axis (bar scale: 50nm).

(Fig. 3b). For a perpendicular polarization (Y-polarization), one
maximum appears on the apex on the top of the triangle and two
other enhanced electric field regions are observed on the base
apexes (Fig. 3d). The comparison between the spatial extent of
the grafted layers observed by SEM ( Fig. 3a and Fig. 3c) and
the mapping of the calculated electric field intensity around the
triangles (Fig. 3b and Fig. 3d) emphasizes that the distribution
of the polyaryl patches is a clear replica of the dipolar near-field
intensity.

The quadrupolar mode could also be used to trigger the nano-
localized grafting of polyaryl layers derived from diazonium salts,
in different nanoscale area. Fig. 4a displays the SEM image of
the triangles after an exposure time of 120 sec. with the 633 nm
laser line, an incident Y-polarization, and a laser power of 0.06
mW/µm2. It shows that the aryl patch distribution is radically
different from that observed under excitation of the dipolar mode
at 785 nm (Fig. 3), with organic layers mainly observed at the
three edges of the triangles. As evidenced in Fig. 4b, the spatial
extent of the grafting nicely follows the mapping of the electric
field intensity using the FDTD method, for an incident illumina-
tion at 600 nm, related to the excitation of the quadrupolar LSP
mode. It is worth noting that both X- and Y-polarization of inci-
dent light result here in comparable patterns (Fig. 4a and Fig.
4c) due to the similarity of the electric field intensity distribu-
tion of these configurations (Fig. 4b and Fig. 4d). In contrast to
the dipolar mode, the choice of the incident polarization (X- or
Y-polarization) for the quadrupolar mode does not change signif-
icantly the location of the aryl film.

In order to confirm that the location of the plasmon-induced
grafting is not governed by the excitation line, but rather by the
excitation of the distinct LSP modes, two new arrays of triangles
were designed. The first one (array B) with a dipolar LSP mode
matching the laser line at 633 nm, is made of equilateral trian-
gles, with edge lengths of 90 nm, a thickness of 50 nm, and a
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Fig. 4 (a) SEM image of the triangles (array A), after immersion in an
aqueous solution of diazonium salt (3 mM) and optical exposure at 633
nm for a polarization along the Y axis; (b) mapping of the intensity of
the incident electric field at 600 nm, calculated by the FDTD method for
a triangular target with 170 nm side length, height 50 nm, and a grating
constant of 340 nm (polarization along the Y axis); (c) SEM image of
the triangles, after optical exposure at 633 nm for a polarization along
the X axis; (d) FDTD mapping of the intensity of the incident electric
field at 600 nm, for the same triangular target (polarization along the X
axis) - bar scale: 50 nm.

grating constant of 400 nm (see inset of Fig. 5a). As a result, a
single LSP band is emerging at 668 nm in the extinction spectrum
recorded in water, associated with the dipolar mode (see Fig. 5a,
spectrum B). This is in accordance with the FDTD calculations,
showing a single extinction cross section band at 690 nm, and a
mapping of the electric field associated with a dipolar character
(Fig. 5b, and Fig. SI3). It is thus expected that, for a laser line at
633 nm, the excitation of the dipolar mode induces an aryl film
grafting at the apexes of the triangles, and not at the edges. The
experimental results obtained after an exposure time of 60 sec. at
633 nm, with an energy dose of 0.5 mJ/µm2 and a polarization
along the Y-axis, confirm this hypothesis, with polyaryl patches
appearing exclusively at the apexes of the triangles (Fig. 5c). For
the array A (spectrum A), an excitation at 633 nm, upon exci-
tation of its quadrupolar mode, leads to a site-selective organic
coating located at the edges, and not at the apexes (Fig. 4a and
Fig. 4b).

We considered an additional array (array C), displaying a
quadrupolar mode close to 785 nm. This array C was made of
equilateral triangles, with edge lengths of 250 nm, a thickness of
40 nm, and a grating constant of 400 nm (Fig. 6a, inset). As a
result, a LSP band is emerging (in water) at 740 nm in the extinc-
tion spectrum, attributed to the quadrupolar mode (Fig. 6a). For
a density of energy of 9 mJ/µm2 at 785 nm, and a polarization
along the Y-axis, the aryl film grafting is located at the edges of
the triangles, in agreement with the excitation of the quadrupo-
lar mode (Fig. 6b). The location of the grafting nicely follows the
mapping of the electric field intensity associated to the quadrupo-
lar mode calculated at 725 nm (Fig. 6c), and can be compared
to the mapping of array A, for which the grafting, at 785 nm, fol-

Fig. 5 (a) Experimental extinction spectrum of equilateral triangles:
spectrum A, with edge lengths of 170 nm, a thickness of 50 nm, and
grating constant of of 340 nm (in inset, SEM image of a single triangle),
and spectrum B, with edge lengths of 90 nm, a thickness of 50 nm, and
grating constant of of 400 nm (in inset, SEM image of a single triangle).
The spectrum is recorded in water; (b) FDTD mapping of the intensity
of the electric field at 690 nm, and a polarization along the Y axis for the
triangle of 90 nm edge; (c) SEM image of a 90 nm edge triangle, after
immersion in an aqueous solution of diazonium salt (3 mM) and optical
exposure at 633 nm for a polarization along the Y axis.

lows the mapping of the dipolar mode (Fig. 3). It can thus be
concluded that the location of the aryl film grafting is only gov-
erned by the order of the chosen multipolar mode, and not by the
laser line.

Interestingly, the array C displays an additional LSP band lo-
cated at 590 nm, attributed to the 3rd order of the LSP mode,
the so-called sextupolar mode. The mapping of the associated
calculated electric field reveals a slightly distinct electric field dis-
tribution (calculated at 610 nm), compared to the dipolar and
quadrupolar ones, with an assymetric distribution of the electric
field along the lateral edges, and two maxima at the apexes of
the triangle base (Fig. 6e). To investigate the possibility to in-
duce site-selective surface grafting of aryl layers under excitation
of this sextupolar mode, array C was immersed in the diazonium
salt solution and exposed to irradiation at 633 nm, close to the
wavelength of the sextupolar mode. With a density of energy of 7
mJ/µm2 and a polarization along the Y-axis, yielded a distinctive
pattern with a maximum grafting at the apexes of the triangles,
and an asymmetric distribution along the edges (Fig. 6d and 6e).
The location of the grafting thus qualitatively follows the map-
ping of the electric field associated to the sextupolar mode.

Some differences have to be pointed out between the location
of the aryl film grafting and the electric field mapping for the
sextupolar mode (Fig. 6d and Fig. 6e). The grafting along the
edges is not as obvious, in comparison with the mapping of the
electric field, althougth it slightly appears at the top of the two
edges. However, the two other grafting locations are clearly ob-
served at the two apexes of the base of the triangles, in good qual-
itative agreement from the FDTD calculations. Despite the poor
matching conditions of the excitations wavelengths, these pre-
resonances conditions appear effective to photoinduce the onset
of spatially controlled polymerization that mimic the FDTD map-
ping calculated at the resonances. This is clearly shown in 6b and
Fig. 6c for the quadrupolar mode and for 6d and Fig. 6e for the
sextupolar mode. Better matching conditions would presumably
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Fig. 6 (a) Experimental extinction spectrum in water of gold nanotri-
angles (array C): lateral size: 250 nm, height: 40 nm, grating constant:
400 nm. Inset: SEM image of the corresponding triangles; (b) SEM
image of a triangle, after immersion in an aqueous solution of diazonium
salt (3 mM) and optical exposure at 785 nm for a polarization along the
Y axis (exposure conditions: 9 mJ/µm2). (c): mapping of electric field
intensity at 725 nm irradiation, calculated by the FDTD method. Scale
bar: 50 nm; (d): SEM image of a triangle, after optical exposure at 633
nm for a polarization along the Y axis (exposure conditions: 7 mJ/µm2);
(e): mapping of electric field intensity at 610 nm irradiation, calculated
by the FDTD method. Scale bar: 50 nm.

yield more effective spatial localization with shorter irradiation or
lower irrandiance. It can be also noted that the grafting, through
the sextupolar mode, leads to a pattern similar to the one ob-
tained for a dipolar mode. This similarity precisely points out the
versatility of our strategy: being able to position the organic layer
at any locations, regardless the size of the triangles.

One critical aspect deals with the control of the thickness of
the aryl film layer, which is of main importance in the context of
biosensing applications or surface-enhanced spectroscopy analy-
ses to adjust the distance between the particle surface and the
probed analytes.40 In order to tune the organic patch thickness
and spatial extent, the energy dose was varied, from 0.69 to 8.3
mJ/µm2. The SEM images of array A, after quadrupolar mode-
induced grafting (at 633 nm) and a dipolar mode illumination
(at 785 nm) respectively, are displayed in Fig. 7a at increas-
ing energy doses. An average thickness was measured as the
distance between the particle surface and the upper end of the
thicker area of the aryl film layers versus the energy dose for both
modes. From these SEM images, it appears that the thickness of
the grafted organic layers increases progressively with the energy
dose, inducing a higher degree of polymerization, while remain-
ing strongly confined in intense electric field area. As reported
in Fig. 7b, the average film thickness reaches ca. 50-60 nm at
high energy dose (8.3 mJ/µm2) with a tendency to plateau, at
least for the dipolar mode. This plateau is attributed to the fact
that the near-field enhancement is maximum at the particle sur-
face, but decreases rapidly exponentially with the distance from
the surface.26 Interestingly, it can be noted that for a given inci-
dent energy dose, the layer thickness is systematically higher for a
dipolar excitation, compared to the quadrupolar one. This trend
can be attributed to the fact that the intensity of the dipolar elec-
tric field is higher than the intensity of the quadrupolar one, for a
given intensity of the incident electric field.6 The thickness of the
polyaryl film can thus be controlled by both the energy dose and

the selected multipolar LSP mode.

Fig. 7 (a) SEM images of the array A after immersion in aqueous
diazonioum salt solution (3 mM), and optical exposure at various energy
doses ranging from (1) 0.69 mJ/µm2, (2) 2.08 mJ/µm2 (3) 4.1 mJ/µm2

to (4) 8.3 mJ/µm2 Exposures were made at 633 nm, corresponding to
the excitation of the quadrupolar mode (top frame surrounded in red),
and at 785 nm, corresponding to the excitation of the dipolar mode
(bottom frame surrounded in blue); (b) Average thickness, measured as
the distance between the particle surface and the upper end of the thicker
area of the aryl film layers versus the energy dose for the dipolar (blue
squares) and quadrupolar (red squares) LSP modes.

3 Conclusion
In summary, we have shown that the excitation of multipolar LSP
modes expands the possibilities of plasmon-driven surface func-
tionalization with aryl diazonium salts and opening new routes
of surface chemistry and patterning. By playing on various mul-
tipolar modes, different chemical patterns could be accessible,
from the nano-localized grafting of organic patches exclusively
on the apexes of triangular NPs upon dipolar mode excitation,
to the confinement of organic layers specifically on the edges by
illuminating the quadrupolar mode. Interestingly, the sextupo-
lar mode could also be used to trigger a different chemical pat-
tern. By systematically comparing the experimental results with
the mapping of the electric field intensity calculated by the FDTD
method, it appears that the multipolar plasmon-induced grafting
occurs specifically in the regions of maximum field enhancement,
leaving the other areas of the nanostructure’s surface chemically
passive. In addition, the thickness of the organic patches can be
tailored by changing the energy dose and the selected LSP mode,
from few nm up to 50-60 nm, opening promising prospects for
nanosensing.

4 Experimental section
Gold nanotriangle arrays were fabricated by electron beam lithog-
raphy in order to achieve a precise monitoring of their LSP wave-
lengths, and to ensure that the LSP modes match well with
the available excitation lines at 633 nm (He-Ne laser), and 785
nm (Laser diode). For their fabrication, a 190 nm thick layer
of poly(methyl methacrylate) (PMMA) electron resist was spin
coated on glass substrates covered with a 80 nm layer of transpar-
ent conducting indium tin oxide (ITO). In the exposure step, the
substrates were exposed to an electron beam which was scanned
over the sample. Chemical development, thermal vacuum coating
with gold and a lift-off procedure followed, which led to regular
arrays of gold triangular structures exhibiting 35-50 nm height
and variable edge lengths and inter-particle distances (grating
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constant, center to center).

The diazonium salt which was used to induce the plasmon-
mediated grafting of aryl films is 4- nitrobenzenediazonium
tetrafluoroborate (4NBDT). The plasmon-induced grafting of aryl
layers derived from diazonium salts was performed by simply
immersing the nanostructures in a diazonium salt aqueous so-
lution (3 mM), and irradiating the sample at various times using
the a 633 or 785 nm laser lines. The optical exposure was per-
formed in normal incidence, and the laser was focused on the
array through an immersion microscope objective (100× numer-
ical aperture N.A. 1), resulting in a circular laser spot of 3 µm
diameter at the surface.

The LSP resonance of the samples was probed by far-
field visible-NIR extinction micro-spectroscopy in the range of
500–900 nm, with irradiation by using a halogen lamp at nor-
mal incidence from the glass side. The spectrometer was coupled
to an optical microscope equipped with a 50× objective (numer-
ical aperture N.A.0.75). The investigated area was a circle of ap-
proximately 80 µm diameter, which was covering the entire ar-
ray (100×100 µm2). The spectra were recorded in water, since
the LSP-induced grafting of the diazonium salt takes place in this
medium.

The Raman and SERS experiments were carried out by using
a Jobin-Yvon LABRAM HR 800 Raman micro spectrometer. The
incident sources are a He–Ne laser (632.8 nm), and a laser diode
(785 nm) focused on the sample, through a microscope equipped
with a 100× objective (Olympus, NA 0.8).

Finite-difference time-domain (FDTD) modelling (Lumerical
FDTD Solutions) was used to simulate the extinction cross-section
and the electric field at the surface of the triangular nanoparticles.
The gold triangular nanoparticles were of size and thickness as
indicated. The structures were modelled on a substrate of refrac-
tive index 1.78 to match the ITO substrate,41 and the surrounding
medium of refractive index of 1.33 to match the surrounding wa-
ter.42 The gold was modelled using the dielectric functions of gold
from Palik.43 To match the array fabricated experimentally, peri-
odic boundary conditions were set along the X- and Y-boundaries,
set to match the grating constant of the array. In order to truncate
the simulation area, perfectly matched layers were applied along
the Z-boundary. The structures were meshed by a grid of 2 nm
in the X-, Y- and Z-directions. A maximum of 10 mesh cells per
wavelength was applied outside of the triangular nanoparticles.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
The author thanks ANR-IDEX "double culture" (Université de
Paris) for its financial support.

Notes and references
1 M. Pelton, J. Aizpurua and G. Bryant, Laser & Photonics Reviews, 2008, 2, 136–

159.
2 J. A. Creighton and D. G. Eadon, Journal of the Chemical Society, Faraday Trans-

actions, 1991, 87, 3881–3891.
3 V. G. Kravets, A. V. Kabashin, W. L. Barnes and A. N. Grigorenko, Chemical

Reviews, 2018, 118, 5912–5951.

4 R. Hong, W. Shao, W. Sun, C. Deng, C. Tao and D. Zhang, Optical Materials,
2018, 83, 212–219.

5 S. A. Maier, Plasmonics: fundamentals and applications, Springer Science & Busi-
ness Media, 2007.

6 E. Hao and G. C. Schatz, The Journal of chemical physics, 2004, 120, 357–366.
7 A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn and A. Hohenau,

Physical Review B, 2014, 89, 165409.
8 J. Butet, P.-F. Brevet and O. J. Martin, ACS nano, 2015, 9, 10545–10562.
9 X. Wu, C. Hao, J. Kumar, H. Kuang, N. A. Kotov, L. M. Liz-Marzán and C. Xu,

Chem. Soc. Rev., 2018, 47, 4677–4696.
10 J. Zhou, T. Yang, J. Chen, C. Wang, H. Zhang and Y. Shao, Coordination Chem-

istry Reviews, 2020, 410, 213218.
11 I. Haidar, G. Lévi, L. Mouton, J. Aubard, J. Grand, S. Lau-Truong, D. R. Neuville,

N. Félidj and L. Boubekeur-Lecaque, Physical Chemistry Chemical Physics, 2016,
18, 32272–32280.

12 C. Matricardi, C. Hanske, J. L. Garcia-Pomar, J. Langer, A. Mihi and L. M. Liz-
Marzan, ACS Nano, 2018, 12, 8531–8539.

13 E. Kazuma and Y. Kim, Angewandte Chemie International Edition, 2019, 58,
4800–4808.

14 G. Baffou and R. Quidant, Chemical Society Reviews, 2014, 43, 3898–3907.
15 C. Boerigter, U. Aslam and S. Linic, ACS nano, 2016, 10, 6108–6115.
16 E. Miliutina, O. Guselnikova, N. S. Soldatova, P. Bainova, R. Elashnikov, P. Fitl,

T. Kurten, M. S. Yusubov, V. Svorcik, R. R. Valiev et al., The Journal of Physical
Chemistry Letters, 2020, 11, 5770–5776.

17 A. Olshtrem, O. Guselnikova, P. Postnikov, A. Trelin, M. Yusubov, Y. Kalachyova,
L. Lapcak, M. Cieslar, P. Ulbrich, V. Svorcik et al., Nanoscale, 2020, 12, 14581–
14588.

18 N. H. Kim, C. D. Meinhart and M. Moskovits, The Journal of Physical Chemistry
C, 2016, 120, 6750–6755.

19 Y. Kim, J. G. Smith and P. K. Jain, Nature Chemistry, 2018, 10, 763–769.
20 C. Lu, J. Li, J. Yan, B. Li, B. Huang and Z. Lou, Applied Materials Today, 2020,

20, 100744.
21 B. B. Rajeeva, D. S. Hernandez, M. Wang, E. Perillo, L. Lin, L. Scarabelli, B. Pin-

gali, L. M. Liz-Marzán, A. K. Dunn, J. B. Shear et al., Advanced Science, 2015, 2,
1500232.

22 M. Nguyen, A. Lamouri, C. Salameh, G. Lévi, J. Grand, L. Boubekeur-Lecaque,
C. Mangeney and N. Félidj, Nanoscale, 2016, 8, 8633–8640.

23 J. Pinson and F. Podvorica, Chem. Soc. Rev., 2005, 34, 429–439.
24 Y. Luo, Y. Xiao, D. Onidas, L. Iannazzo, M. Etheve-Quelquejeu, A. Lamouri,

N. Félidj, S. Mahouche, T. Brulé, N. Eilstein et al., Chemical Communications,
2020.
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