

Sub-seasonal forcing drives year-to-year variations of Southern Ocean primary productivity

Channing J. Prend, Madhavan Girijakumari Keerthi, Marina Lévy, Olivier Aumont, Sarah T. Gille, Lynne D. Talley

► To cite this version:

Channing J. Prend, Madhavan Girijakumari Keerthi, Marina Lévy, Olivier Aumont, Sarah T. Gille, et al.. Sub-seasonal forcing drives year-to-year variations of Southern Ocean primary productivity. Global Biogeochemical Cycles, 2022, 36 (7), pp.e2022GB007329. 10.1029/2022GB007329. hal-03705774

HAL Id: hal-03705774 https://hal.science/hal-03705774v1

Submitted on 27 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 2	Sub-seasonal forcing drives year-to-year variations of Southern Ocean primary productivity
3	Channing J. Prend ¹ , M. G. Keerthi ² , Marina Lévy ² , Olivier Aumont ² , Sarah
4	T. Gille ¹ , Lynne D. Talley ¹
5	¹ Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
6	² Sorbonne Université, CNRS, LOCEAN-IPSL, Paris, France
7	Key Points:
8	• Year-to-year variations of annual mean chlorophyll in the Southern Ocean are weakly
9	correlated with the Southern Annular Mode
10	• Non-seasonal chlorophyll fluctuations are driven by intermittent sub-seasonal events,
11	which dominate the changes in the annual mean
12	• The spatial autocorrelation for the chlorophyll seasonal cycle is much larger than
13	for variations in the annual mean chlorophyll

 $Corresponding \ author: \ Channing \ J. \ Prend, \ {\tt cprend@ucsd.edu}$

14 Abstract

Primary productivity in the Southern Ocean plays a key role in global biogeochemical 15 cycles. While much focus has been placed on phytoplankton production seasonality, non-16 seasonal fluctuations exceed the amplitude of the seasonal cycle across large swaths of 17 the Antarctic Circumpolar Current. This non-seasonal variability comprises a broad range 18 of timescales from sub-seasonal (<3 months) to multi-annual (>1 year), all of which can 19 project onto the annual mean value. However, year-to-year variations of surface chloro-20 phyll (SChl), a proxy for phytoplankton biomass, are typically attributed to ocean cir-21 culation changes associated with the Southern Annular Mode (SAM), which implicitly 22 assumes that sub-seasonal variability averages to near-zero over long timescales. Here, 23 we test this assumption by applying a timeseries decomposition method to satellite-derived 24 SChl in order to separate the low-frequency and high-frequency contributions to the non-25 seasonal variability. We find that throughout most of the Southern Ocean, year-to-year 26 SChl variations are dominated by the sub-seasonal component, which is not strongly cor-27 related with the SAM. The multi-annual component, while correlated with the SAM, only 28 accounts for about 10% of the total SChl variance. This suggests that changes in annual 29 mean SChl are related to intermittent forcing at small scales, rather than low-frequency 30 climate variability, and thus do not remain correlated over large regions. 31

32

Plain Language Summary

Microalgae called phytoplankton are the foundation of marine food webs and play 33 a large role in the carbon cycle. Therefore, understanding the mechanisms that drive phy-34 toplankton variability is of critical importance to marine ecosystems and global climate. 35 Phytoplankton growth is known to exhibit a strong seasonal cycle. In addition to this, 36 phytoplankton biomass also varies between years. This variability is often linked to multi-37 year climate oscillations like El Niño. On short timescales, phytoplankton are also in-38 fluenced by processes such as storms and eddies, which alter the supply of nutrients and 39 light that they need to grow. In this study, we use satellite measurements to untangle 40 the different timescales of phytoplankton variability in the Southern Ocean, which sur-41 rounds Antarctica. We find that year-to-year fluctuations in phytoplankton biomass are 42 driven by intermittent events associated with storms and eddies, rather than multi-year 43 climate oscillations. Therefore, processes occurring at small scales must be considered 44

⁴⁵ in order to understand long-term phytoplankton variability and trends related to climate

46 change.

47 **1 Introduction**

The Southern Ocean is a high-nutrient low-chlorophyll environment where phyto-48 plankton growth is limited primarily by iron and light (Mitchell et al., 1991; de Baar et 49 al., 1995). Physical processes in the ocean impact these controls, subsequently affecting 50 the distribution of phytoplankton across a wide range of spatial and temporal scales (Lévy 51 et al., 2012; Rousseaux & Gregg, 2014; Ardyna et al., 2017; Rohr et al., 2017; Li et al., 52 2021). Indeed, phytoplankton biomass, inferred from satellite-derived surface chlorophyll 53 (SChl), exhibits variability from sub-seasonal (<3 months) to multi-annual (>1 year) 54 timescales (Arrigo et al., 2008; Thomalla et al., 2011; Frenger et al., 2018; Keerthi et al., 55 2020). Untangling these disparate scales is necessary to develop a quantitative model of 56 spatiotemporal chlorophyll variability and identify long-term trends associated with cli-57 mate change, which are currently eclipsed by natural year-to-year variations in most re-58 gions globally (Behrenfeld et al., 2006; Martinez et al., 2009; Henson et al., 2010; Gregg 59 & Rousseaux, 2019). 60

In the Southern Ocean, changes in annual mean SChl have been linked to the South-61 ern Annular Mode (SAM), the leading mode of atmospheric variability in the Southern 62 Hemisphere (Thompson & Wallace, 2000). SAM influences the ocean circulation and strat-63 ification in the region, which in turn impacts primary productivity by modulating nu-64 trient and light availability (Lovenduski & Gruber, 2005; Boyd et al., 2008; Sallée et al., 65 2010). For example, Lovenduski and Gruber (2005) regressed non-seasonal satellite chloro-66 phyll anomalies onto the SAM index; their results suggest that SChl is positively cor-67 related with the SAM south of the Polar Front (PF) due to increased iron supply by anoma-68 lous upwelling, and negatively correlated with the SAM north of the PF due to stronger 69 light limitation stemming from deeper mixed layers. 70

While this type of analysis has helped discern mechanisms of non-seasonal SChl
variability (i.e. the variability that remains after removing the seasonal cycle), there are
limitations to this approach. First, using the SAM index as a measure of climate variability neglects significant regional differences in Southern Ocean winds, air-sea heat fluxes,
mixed-layer depth (MLD), and the MLD response to forcing (Sallée et al., 2010; Tam-

-3-

sitt et al., 2015; Rintoul, 2018; Keppler & Landschützer, 2019). Second, relating non-76 seasonal SChl variations to low-frequency climate modes presumes that high-frequency 77 variability averages to near-zero on annual and longer timescales. However, many stud-78 ies have documented large amplitude sub-seasonal SChl fluctuations throughout the global 79 ocean (Bonhomme et al., 2007; Resplandy et al., 2009), and particularly in the South-80 ern Ocean (Fauchereau et al., 2011; Joubert et al., 2014; Little et al., 2018). Therefore, 81 here we investigate whether these transient processes imprint on the annual mean and 82 year-to-year variations of Southern Ocean primary production (Little et al., 2018). 83

Following Keerthi et al. (2020), we decompose satellite-derived SChl into three fre-84 quency ranges: sub-seasonal (~ 0.5 -3 months), seasonal (~ 3 -12 months), and multi-annual 85 (>12 months). We show that there are distinct regional differences in the dominant timescale 86 of SChl variability. For example, the seasonal cycle accounts for most of the variance in 87 the subtropics, while non-seasonal variability dominates in most other parts of the South-88 ern Ocean. This non-seasonal SChl variability primarily reflects sub-seasonal fluctuations, 89 which occur over small spatial scales (\sim 50-150 km) and are not strongly correlated with 90 the SAM. The importance of high-frequency events is related, in part, to the non-Gaussianity 91 of chlorophyll. The multi-annual component of SChl, by contrast, is correlated with the 92 SAM, but only explains about 10% of the total SChl variance across most of the Antarc-93 tic Circumpolar Current (ACC). This suggests that year-to-year variations in annual mean 94 SChl are related to intermittency resulting from localized forcing such as storms and ed-95 dies, rather than low-frequency climate modes (Lévy et al., 2014). Consequently, the spa-96 tial scales associated with consistent variations in the annual mean are small ($\sim 100-300$ 97 km), which implies that SChl should not be averaged over large regions to investigate 98 year-to-year changes. 99

Complementary to satellite ocean color data, recent advances in autonomous ob-100 serving platforms have dramatically increased the number of subsurface biogeochemi-101 cal measurements in the Southern Ocean (Johnson et al., 2017; Talley et al., 2019). Flu-102 orescence measurements from autonomous floats have shown good agreement with satellite-103 derived SChl products, and provide data under clouds and during polar night (Haëntjens 104 et al., 2017). However, given the complex vertical structure of phytoplankton biomass 105 in the Southern Ocean (Carranza et al., 2018; Uchida et al., 2019), fluctuations in SChl 106 do not necessarily reflect changes in the vertically integrated chlorophyll column inven-107 tory (Chl_{tot}) . Therefore, we also apply the same timeseries decomposition as we used 108

-4-

¹⁰⁹ for the satellite data to float SChl and Chl_{tot} to show that strong sub-seasonal variabil-

- ¹¹⁰ ity in SChl is representative of the integrated signal. These results highlight the impor-
- tance of small-scale processes in determining the annual mean SChl and its variability.

112 **2** Data and Methods

113

2.1 Observational Datasets

In this study, we use a merged SChl data product from the European Space Agency 114 Ocean Color Climate Change Initative (ESA OC-CCI) that combines data from mul-115 tiple ocean color satellites (Sathyendranath et al., 2017) including Moderate Resolution 116 Imaging Spectroradiometer (MODIS), Sea-Viewing Wide Field-of-View Sensor (SeaW-117 iFS), MEdium Resolution Imaging Spectrometer (MERIS) and Visible Infrared Imag-118 ing Radiometer Suite (VIIRS). We use the Level 3 Mapped 25×25 km version at 8-day 119 temporal resolution, which spans 20 years from January 1999 to December 2018 and is 120 publicly available (http://www.oceancolour.org/). This merged data product captures 121 a longer time period than any individual satellite, and thus is well-suited for investiga-122 tions of year-to-year variability. However, as with all ocean color products, there are many 123 data gaps in the Southern Ocean due to cloudiness, ice cover and low sun angles (Arrigo 124 et al., 2008). Locations with less than 50% data coverage over the full record are masked 125 out in this analysis, although we note that most of the missing data are from austral win-126 ter when SChl levels are near-zero due to light limitation. 127

To evaluate the relationship between temporal variability in SChl and Chl_{tot}, we 128 also use in situ data from autonomous biogeochemical floats deployed by the Southern 129 Ocean and Climate Field Studies with Innovative Tools (SOCLIM) project. SOCLIM 130 floats measure temperature, salinity, pressure, dissolved oxygen, nitrate, fluorescence, backscat-131 ter, and photosynthetically available radiation (Pellichero et al., 2020). Here, we ana-132 lyze quality-controlled data from three SOCLIM floats (float IDs: 6902735, 6902736, 6902737) 133 that sampled in the Kerguelen Plateau region for three years, from September 2016 to 134 September 2019 (http://soclim.com/). These floats were selected since they are higher 135 resolution in time and depth than the standard biogeochemical Argo float (10-day cy-136 cle time and 5 m resolution in the upper ocean). Data processing is described by Johnson 137 et al. (2017); the raw fluorometer data are transformed to engineering units using the 138 manufacturer calibration coefficients, the dark counts are adjusted using a gain correc-139

tion, and the profiles are also corrected for nonphotochemical quenching following Xing 140 et al. (2017). SOCLIM floats sampled unevenly in the vertical with roughly 1 m reso-141 lution in the upper ocean, and all profiles are linearly interpolated onto a regular depth 142 axis with 5 m resolution. SChl is taken to be the average chlorophyll over the top 20 m, 143 which is approximately the first optical depth (Morel, 1988). While Chl_{tot} is calculated 144 as the vertical integral over the top 200 m of the water column (Grenier et al., 2015; von 145 Berg et al., 2020), results are not sensitive to the precise integration depth. Floats also 146 sampled unevenly in time, with profiles taken daily, every 2 days, and every 4 days at 147 different points during the float lifetime. Here, we take 8-day means of the float data to 148 match the temporal resolution of the satellite SChl product. 149

Figure 1. (a) 1999-2018 annual mean surface chlorophyll (mg/m^3) and (b) standard deviation of the annual mean (mg/m^3) from the ESA OC-CCI merged ocean color product. (c) 1979-2015 mean eddy kinetic energy (m^2/s^2) from surface drifters (Laurindo et al., 2017) (d) 1999-2018 summer (DJF) mean wind speed (m/s) from the CCMP merged data product. Colored points in all panels mark the stations whose timeseries are plotted in Figure 2: Subtropical Pacific (STP; magenta), ACC (orange), and Argentine Basin (AB; cyan). Black lines in all panels mark the mean position of the ACC fronts from Kim and Orsi (2014), which are from north to south: Subtropical front, Subantarctic front, Polar front, and Sea Ice Edge.

150 151 Wind data from the Cross-Calibrated Multi Platform (CCMP) product are used to examine some of the forcings that drive SChl variability. CCMP combines wind data

from several satellite scatterometers, moored buoys, and a reanalysis product (Atlas et 152 al., 2011). CCMP winds have been shown to be more reliable at high frequencies than 153 any single scatterometer, and have higher correlations with MLD than other wind prod-154 ucts (Atlas et al., 2011; Carranza & Gille, 2015). The merged wind product is available 155 on the same 25×25 km horizontal grid as the SChl data from ESA OC-CCI. Here, we 156 take 8-day means of the daily winds from 1999 to 2018 (i.e. the ESA OC-CCI period) 157 to correspond directly with the ocean color data. The daily Antarctic Oscillation index 158 (i.e. SAM index) from the NOAA/NCEP Climate Prediction Center from 1999 to 2018 159 (http://www.cpc.ncep.noaa.gov/) was also averaged into 8-day periods to calculate cor-160 relations of different fields with the SAM. 161

Figure 2. SChl timeseries decomposition for three stations marked in Figure 1: (a) Subtropical Pacific (34°S, 152°W), (b) Antarctic Circumpolar Current (52°S, 170°W), and (c) Argentine Basin (46°S, 45°W). The full signal (X_t) is plotted in (a) magenta, (b) orange, and (c) cyan. In all panels the multi-annual component (T_t) is blue, the seasonal component (S_t) is black, and the sub-seasonal component (I_t) is green.

162

2.2 Decomposition Method

Here, we decompose SChl timeseries at each grid point into three frequency bands
 following the method in Keerthi et al. (2020), which is based on the Census X11 iter-

- ative algorithm (Vantrepotte & Mélin, 2009). This decomposition uses a series of filters
- to separate the full SChl signal (X_t) into multi-annual (T_t) , seasonal (S_t) , and sub-seasonal
- I_{167} (I_t) components such that $X_t = T_T + S_t + I_t$. The multi-annual component, T_t , is de-

termined by a centered annual running mean and a Henderson filter of weight represent-168 ing one year, also applied iteratively. The seasonal component, S_t , captures variability 169 with a period of \sim 3-12 months and is isolated by taking multiple weighted running means 170 over three consecutive timesteps and then applying an 88-day (i.e. approximately 3 months 171 given the temporal resolution of the data) low-pass filter, iteratively. To account for year-172 to-year variations in the seasonal cycle, this decomposition method does not assume an 173 annually repeating S_t . The sub-seasonal component, I_t , is found by applying a band-174 pass filter of 8-88 days. Finally, the residual is attributed to the sub-seasonal component, 175 such that the timeseries is exactly decomposed into the sum of the three components. 176 Note that this method does not have sharp frequency cut-offs in order to allow for vari-177 ations in the dominant period of the seasonal cycle and multiple harmonics in S_t . Fur-178 ther details of the decomposition method are provided in Keerthi et al. (2020). Figure 179 2 illustrates the timeseries decomposition at three grid points whose locations are marked 180 in Figure 1. 181

The total SChl variance is partitioned into the sum of the variance in the multi-182 annual, seasonal, and sub-seasonal components, as well as the covariances between the 183 terms: $\operatorname{var}(X_t) = \operatorname{var}(T_t) + \operatorname{var}(S_t) + \operatorname{var}(I_t) + 2\operatorname{cov}(S_t, T_t, I_t)$. The covariance terms are small 184 (explaining only a few percent of the total variance), so examining the individual vari-185 ances of T_t , S_t , and I_t directly quantifies the contribution of each frequency band to the 186 total SChl variance (Figure 3). We also estimate the spatial scales associated with each 187 component of SChl variability by cross-correlating T_t , S_t , and I_t at a given grid cell with 188 the corresponding components at all other grid cells (Figure S1). From the number of 189 cells where the correlation coefficient exceeds a threshold of 0.8, we then compute the 190 area over which each signal remains consistent and take the length scale to be $\sqrt{\text{Area}}$. 191 This threshold value was chosen following Keerthi et al. (2020), although the length scales 192 are similar for a range of threshold values from 0.5 to 0.9 (Figure S2): namely, 200-400 193 km, 500-600 km, 50-150 km for the multi-annual, seasonal, and sub-seasonal components, 194 respectively. 195

196

2.3 Synthetic Data

In order to probe the statistical nature of the results, we also produced two synthetic timeseries with different probability distributions. Both artificial variables have red spectra, which are common for geophysical quantities, weighted toward low frequen-

-8-

Figure 3. Percentage of the total SChl variance explained by the (a) multi-annual, (b) seasonal, and (c) sub-seasonal components of the SChl decomposition.

cies without a preferred period (Torrence & Compo, 1998; Maraun et al., 2007; Schulte 200 et al., 2015). We generated red noise using an auto-regressive process with a lag-1 au-201 tocorrelation coefficient of 0.85, following Allen and Smith (1996). The first artificial vari-202 able is zero-mean with a Gaussian distribution (Figure 5a), which is representative of 203 many normally distributed oceanic tracers. SChl, however, has been observed to follow 204 a log-normal distribution; this is presumably because bio-optical properties in the ocean 205 can be represented as the product of light attenuation coefficients, which would imply 206 that SChl obeys the law of proportionate effect (Campbell, 1995). Therefore, our sec-207 ond artificial variable is taken to be the exponential of the first (Figure 5b), meaning that 208 it is positive-valued and log-normally distributed, like SChl. We then apply the same de-209 composition method to the synthetic timeseries (Figure S3), although the three compo-210 nents simply represent high, mid, and low frequency bands since the timesteps are es-211 sentially arbitrary (i.e. the red noise cannot be interpreted as having sub-seasonal, sea-212 sonal, and multi-annual components). Comparing the results for the two synthetic vari-213 ables allows us to assess the extent to which the importance of sub-seasonal events to 214 the total SChl variance stems from the log-normality of chlorophyll. 215

216 3 Results

217

3.1 Satellite Analysis

Southern Ocean primary production is heterogeneous in space and time. Still, distinct bloom phenology regimes have been identified from satellite SChl, as well as largescale patterns in the mean (Thomalla et al., 2011; Sallée et al., 2015; Ardyna et al., 2017).

-9-

Namely, higher annual mean SChl (Figure 1a) is observed in boundary current regions, 221 near fronts, and downstream of islands or topographic features in the path of the ACC 222 (Sokolov & Rintoul, 2007; Meredith et al., 2003; Rosso et al., 2016; Prend et al., 2019). 223 These patterns are related to heterogeneities in iron sources and the pathways that sup-224 ply iron to the euphotic zone (Lancelot et al., 2009; Tagliabue et al., 2012; Graham et 225 al., 2015). There is also significant spatial variability in the standard deviation of the 226 annual mean (Figure 1b), which somewhat mirrors the structure in the annual mean it-227 self (Figure S4). Year-to-year variations of SChl are larger within the ACC and in en-228 ergetic boundary currents with high EKE (Figure 1c). The subtropics (north of the Sub-229 tropical front), by contrast, have low SChl values and less variability between years, which 230 coincides with weaker eddy activity and winds (Figure 1d). 231

Temporal SChl variability also demonstrates major regional differences, which is 232 illustrated by the timeseries in Figure 2. In the subtropics (Figure 2a), SChl resembles 233 a sinusoidal seasonal cycle with little change in amplitude between years, whereas in the 234 open ACC (Figure 2b), SChl fluctuations occurring on weekly timescales greatly exceed 235 the amplitude of the seasonal cycle. Finally, in boundary current regions such as the Brazil-236 Malvinas confluence (Figure 2c), the seasonal cycle is more prominent than in the open 237 ACC (Figure 2b) but is punctuated by sub-seasonal pulses that significantly increase the 238 magnitude of the annual maximum. These regional patterns in the dominant timescale 239 of SChl variability lead to a fundamentally different interpretation of the annual mean 240 SChl value itself. For example, in the subtropics, where SChl is driven by seasonal vari-241 ability, annual mean SChl reflects the integrated seasonal bloom. In contrast, in the open 242 ACC, where sub-seasonal variability dominates, annual mean SChl is manifested through 243 the sum of transient bursts that take place throughout spring and summer. 244

While the details of the timeseries plotted in Figure 2 are unique, we demonstrate 245 that these stations are representative of larger regional regimes by showing maps of the 246 percentage of total SChl variance explained by each frequency range (Figure 3). North 247 of the Subtropical front, the seasonal component explains >70% of the total variance (Fig-248 ure 3b), consistent with the timeseries in Figure 2a. Moving southward into the ACC, 249 sub-seasonal variability is significantly stronger (Figure 3c), exceeding even the variance 250 explained by the seasonal cycle in many locations, such as the station shown in Figure 251 2b. This is consistent with Thomalla et al. (2011), who showed the greatest seasonal cy-252 cle reproducibility in the subtropics. Across the entire Southern Ocean, the multi-annual 253

-10-

component is weak except in a narrow band spanning the Subantarctic Mode Water for-

²⁵⁵ mation sites in the Pacific, where the deepest winter mixed layers in the entire South-

ern Ocean are found (Hanawa & Talley, 2001). The comparatively large share of SChl

- variance explained by the multi-annual component in the mode water formation region
- ²⁵⁸ may be due to the substantial variations in maximum winter MLD observed there, which
- have been linked to the SAM (Meijers et al., 2019) and could influence nutrient supply
- to the euphotic zone.

Figure 4. (a) 1999-2018 monthly SAM index from NOAA/NCEP Climate Prediction Center. (b-d) Correlation coefficient between the 8-day averages of the daily SAM index (to match the temporal resolution of the satellite SChl data) and the (b) multi-annual, (c) seasonal, and (d) sub-seasonal components of the SChl decomposition. In all panels, cross-hatching indicates where the correlations are not significant at the 95% level.

261	Non-seasonal SChl variability in the Southern Ocean is dominated by high-frequency
262	rather than low-frequency fluctuations (Figure 3). Averaged across the entire ACC, sub-
263	seasonal variations constitute 47% of the total SChl variance, and 81% of the non-seasonal
264	SChl variance. This helps explain the relatively modest correlations between non-seasonal
265	chlorophyll anomalies and the SAM index (Lovenduski & Gruber, 2005). To further ex-
266	plore this, Figure 4 shows the correlation coefficients between the SAM index and each
267	individual component of the SChl decomposition. The seasonal and sub-seasonal com-
268	ponents of SChl are not strongly correlated with the SAM (Figure 4c,d). The multi-annual
269	component, while much more highly correlated with the SAM (Figure 4b), only accounts

- for about 10% of the total SChl variance (Figure 3a). The broad zonal pattern in Fig-
- ure 4b is consistent with results from Lovenduski and Gruber (2005). However, it is dif-
- ficult to extract a relationship between satellite SChl and the SAM because the low-frequency
- ²⁷³ SChl variability associated with SAM forcing is overwhelmed by the much larger SChl
- ²⁷⁴ fluctuations occurring at high frequencies.

Figure 5. Synthetic timeseries of red noise generated by an auto-regressive process with (a) zero-mean and Gaussian distribution and (b) positive-valued and log-normal distribution. In both panels, insets show the percent variance explained (VE) by low (blue), mid (black), and high (green) frequency bands. These values are $T_t=33\%$, $S_t=32\%$, $I_t=34\%$ in (a), and $T_t=27\%$, $S_t=26\%$, $I_t=46\%$ in (b).

275

3.2 Synthetic Data Analysis

The large contribution of high frequencies to the total SChl variance could result 276 from the non-Gaussianity of chlorophyll, since log-normally distributed variables (such 277 as SChl) are known to be heavy tailed (Campbell, 1995). Therefore, synthetic timeseries 278 (Figure 5) with varied probability distributions were used to assess this. Figure S3 gives 279 the decomposition of the Gaussian and log-normal red noise, and the insets in Figure 280 5 show the percent variance explained by high, mid, and low frequency bands. The zero-281 mean, Gaussian red noise has its variance evenly divided between the three components 282 of the decomposition (inset in Figure 5a), whereas the positive-valued, log-normal red 283 noise has a greater portion of its variance, 46%, explained by the high-frequency com-284 ponent (inset in Figure 5b). The sensitivity of these results to the details of the noise 285 formulation have not been explored fully. Our intent is simply to demonstrate that the 286 large magnitude of sub-seasonal SChl variability seen in the satellite data is connected, 287

in part, to its probability distribution, which lends more weight to extreme events due to its heavy tail. However, the partitioning of variance from the satellite SChl data does not appear to result solely from the log-normality of chlorophyll, since the same decomposition method applied to log(SChl) also indicates a disproportionate importance of subseasonal variability (Figure S5).

293

3.3 Float Analysis

Given the sparsity of historical measurements in the Southern Ocean, remote sens-294 ing is an invaluable tool to study the region. However, satellite algorithms have been shown 295 to underestimate SChl in the Southern Ocean compared to in situ measurements (Kahru 296 & Mitchell, 2010). Furthermore, changes in SChl do not necessarily reflect changes in 297 the integrated biomass (Carranza et al., 2018; Uchida et al., 2019). It is possible, for ex-298 ample, that sub-seasonal SChl variability is simply due to dilution of the surface signal 299 by episodic mixing, rather than high-frequency changes in phytoplankton biomass. To 300 assess this, we analyze subsurface data from three autonomous floats deployed near Ker-301 guelen Plateau by the SOCLIM project (Pellichero et al., 2020). Figure 6 shows the ver-302 tical chlorophyll section from float 6902735, as well as the comparison of SChl and Chl_{tot} 303 timeseries. 304

Figure 6. Float 6902735 (a) SChl (gold) and Chl_{tot} (purple) timeseries, as well as (b) vertical chlorophyll section with inlay showing float trajectory.

While much of the chlorophyll signal is subsurface, the SChl and Chl_{tot} timeseries 305 are reasonably well correlated (R=0.81), albeit less so at sub-seasonal timescales (R=0.66). 306 This was found by applying the same decomposition method outlined in Section 2.2 to 307 float SChl and Chl_{tot} (Figure 7). For SChl, the percentages of variance explained by the 308 multi-annual, seasonal, and sub-seasonal components are 9%, 46%, and 44%, respectively, 309 while for Chl_{tot}, the percentages of variance explained by the multi-annual, seasonal, and 310 sub-seasonal components are 8%, 55%, and 36%, respectively. In other words, sub-seasonal 311 variability is stronger for SChl compared to Chl_{tot}, which implies larger variations in bi-312 ological rates and concentrations near the surface than at depth. This could be, in part, 313 due to dilution of the surface signal rather than changes in total biomass. Although, sub-314 seasonal Chl_{tot} variability still contributes a large share to the total variance and exceeds 315 the multi-annual component, as we see for SChl. The same conclusion was drawn from 316 the other two SOCLIM floats analyzed (floats IDs: 6902736 and 6902737); analogous plots 317 are shown in the Supporting Information (Figures S6-S9). This suggests that the results 318 based on satellite SChl data (Section 3.1) are relevant to the vertically integrated chloro-319 phyll, although possibly slightly overestimating the contribution of sub-seasonal timescales 320 to the total variability. 321

Figure 7. Timeseries decomposition of float 6902735 (a) SChl, full signal in gold, and (b) Chl_{tot} , full signal in purple. In both panels the multi-annual component is blue, the seasonal component is black, and the sub-seasonal component is green.

4 Discussion and Conclusions

Satellite data and autonomous float measurements analyzed here show that sub-323 seasonal SChl variability exceeds multi-annual variability in the Southern Ocean. As a 324 result, year-to-year variations of annual mean SChl primarily reflect high-frequency events 325 rather than low-frequency variability (Little et al., 2018). This is because, within the ACC, 326 the annual mean SChl value itself results from the sum of intermittent pulses occurring 327 at weekly timescales (or at shorter timescales not resolved by the satellite dataset). There-328 fore, the annual mean SChl is higher in years with more or larger pulses, which is con-329 firmed by high correlations between annual mean SChl and annual variance of the sub-330 seasonal component of SChl (Figure 8a). The inverse cascade toward low frequencies could 331 result from ecological fluctuations or from changes in the prevalence of extreme wind events 332 or eddy activity (Cravatte et al., 2021), which in turn may be connected to climate vari-333 ability (Busecke & Abernathey, 2019; Hell et al., 2021), although sub-seasonal SChl vari-334 ations were only weakly correlated with the SAM index (Figure 4d). 335

Figure 8. (a) Correlation coefficient between annual mean SChl and annual variance in the sub-seasonal component of SChl. Cross-hatching indicates where the correlations are not significant at the 95% level. (b) Length scale (km) associated with consistent variations in annual mean SChl.

336	The link between annual mean SChl and high-frequency events is important be-
337	cause sub-seasonal SChl variability occurs at spatial scales of ${\sim}50\text{-}150$ km (Figure S1c),
338	which leads to a similarly small spatial autocorrelation for variations in annual mean SChl
339	(Figure 8b). In the ACC, the average length scale associated with correlated fluctuations
340	in annual mean SChl is only 260 km. This is in contrast to the seasonal cycle of SChl,
341	which is forced, to leading order, by large-scale changes in solar irradiance and surface
342	stratification, and thus has much larger spatial scales, ${\sim}600$ km (Figure S1b). For ex-

ample, vast bloom phenology regimes have been defined based on SChl seasonality, and 343 approximately correspond to the frontal zones of the ACC (Thomalla et al., 2011; Sallée 344 et al., 2015; Ardyna et al., 2017). Indeed, averaging the satellite data over the Subtrop-345 ical Zone (STZ), Subantarctic Zone (SAZ), and the ACC—as defined by the mean frontal 346 positions from Kim & Orsi (2014), see Supporting Information—shows that, in a given 347 frontal zone, the seasonal component of SChl (S_t) has a small standard error (Figure 9a); 348 this means that the seasonal cycle is relatively consistent across all grid cells, although 349 note that the calculation of standard error assumes Gaussian statistics. However, the 350 full SChl signal (X_t) has larger standard errors within a frontal zone (Figure 9b), par-351 ticularly in the SAZ and ACC where sub-seasonal variability is strong. This is also re-352 flected in the fluctuations of annual mean SChl, which have large standard errors in the 353 SAZ and in the ACC (Figure 9c), despite the regularity of the seasonal cycle over these 354 zones. In other words, the bioregions defined based on phytoplankton seasonality or time-355 mean SChl are not necessarily meaningful in the context of year-to-year variations. 356

Figure 9. (a) Seasonal component of SChl (S_t) averaged over the Subtropical Zone (STZ), Subantarctic Zone (SAZ), and ACC, as defined by the Kim & Orsi (2014) fronts. (b) Full SChl signal (X_t) averaged over the same frontal zones as in (a). (c) Annual mean SChl (SChl) for each frontal zone plotted at the mid-point of each respective year (i.e. July 2). Error bars reflect the standard error of all grid cells within each frontal zone.

These results suggest that changes in annual mean SChl are tied to the forcing that 357 drives sub-seasonal SChl fluctuations. This includes anomalies in wind stress or surface 358 buoyancy forcing (Swart et al., 2015; Carranza & Gille, 2015; Keerthi et al., 2021), oceanic 359 mesoscale and sub-mesoscale variability (Frenger et al., 2018; Whitt, Lévy, & Taylor, 2019; 360 McGillicuddy, 2016), or ecosystem interactions such as top-down controls from grazing 361 (Behrenfeld & Boss, 2014; Arteaga et al., 2020), competition for multiple resources (Huisman 362 & Weissing, 2001), and interactions between the two (Mayersohn et al., 2021). It is dif-363 ficult to separate the effects of these mechanisms for several reasons. First, the timescales 364 associated with mesoscale and submesoscale physical processes overlap with those of in-365 trinsic ecosystem variability. Second, the sign of the SChl response to wind or MLD per-366 turbations exhibits significant seasonal and regional variability (Le Quéré et al., 2002; 367 Llort et al., 2019). For example, several studies have observed a seasonal progression from 368 light limitation to nutrient limitation in the Southern Ocean (Ryan-Keogh et al., 2018; 369 von Berg et al., 2020; Li et al., 2021). In a light-limited regime, phytoplankton growth 370 is associated with restratification due to decreased winds and/or submesoscale buoyancy 371 fluxes (Swart et al., 2015; Thomalla et al., 2015; du Plessis et al., 2017; Pellichero et al., 372 2020). In contrast, in a nutrient-limited regime, increases in SChl are driven by transient 373 nutrient entrainment from storm-driven mixing (Carranza & Gille, 2015), eddy activ-374 ity (Uchida et al., 2020), or wind-eddy interactions (Gille et al., 2014; du Plessis et al., 375 2019). 376

Untangling these mechanisms has important implications for year-to-year variabil-377 ity. For example, if sub-seasonal SChl fluctuations are driven primarily by wind-driven 378 nutrient entrainment from synoptic storms, then annual mean SChl could presumably 379 be linked to storm frequency. In contrast, if sub-seasonal SChl fluctuations are forced 380 by oceanic (sub-)mesocale variability, then annual mean SChl would possibly be connected 381 to changes in EKE. Finally, some studies suggest that the surface iron supply is set by 382 wintertime mixing (Tagliabue et al., 2014; Nicholson et al., 2019), in which case annual 383 mean SChl would potentially be related to the previous winter's maximum MLD. Test-384 ing these hypotheses is difficult using observations. We tried, for example, to correlate 385 annual mean SChl with summer storm frequency (Figure S10), defined as the percent-386 age of days in summer (DJF) with daily mean wind speed greater than 10 m/s (Carranza 387 et al., 2018). The correlations are relatively modest, but this could be due to inaccuracy 388 in the wind product at high frequencies, decoupling in time between mixing and wind 389

-17-

stress at sub-seasonal timescales (Whitt et al., 2017), the nonlinear relationship between MLD and surface forcing (Whitt, Nicholson, & Carranza, 2019), or variability in the phytoplankton response to MLD perturbations (Llort et al., 2019). Other studies (e.g. Li et al., 2021) have additionally shown a weak relationship between annual mean production and MLD. However, further work is needed to quantify the contribution of these different processes to the total year-to-year variability.

While many previous studies have examined sub-seasonal SChl variability and have 396 highlighted the complex mechanisms at play, the role of high-frequency fluctuations in 397 driving the annual mean SChl and its variability is not widely recognized. Non-seasonal 398 SChl variability in the Southern Ocean has often been attributed to the SAM (Lovenduski 399 & Gruber, 2005; Greaves et al., 2020). However, here we have shown that low-frequency 400 SChl fluctuations, which show a relationship to the SAM index, are dwarfed by the much 401 larger amplitude sub-seasonal variability. Therefore, year-to-year changes in annual mean 402 SChl reflect episodic forcing, such as storms and eddies, rather than multi-annual cli-403 mate variability. Although future work should investigate the role of climate modes in 404 modulating the prevalence and magnitude of synoptic events and (sub-)mesoscale mix-405 ing (Busecke & Abernathey, 2019; Hell et al., 2021). One implication of these results is 406 that annual mean SChl only varies consistently over small spatial scales. Consequently, 407 developing a mechanistic understanding of year-to-year variations in Southern Ocean pri-408 mary production is an inherently local question that requires resolving sub-seasonal, small-409 scale processes. 410

411 Acknowledgments

CJP, STG, and LDT are supported by NSF OPP-1936222. CJP was also supported by 412 a National Science Foundation Graduate Research Fellowship under Grant DGE-1650112 413 and a Chateaubriand Fellowship from the Office for Science & Technology of the Em-414 bassy of France in the United States. MGK is supported by a postdoctoral fellowship 415 from CNRS. ML and OA acknowledge support from ANR-SOBUMS under contract num-416 ber ANR-16-CE01-0014. 8-day composites of satellite surface chlorophyll are available 417 from ESA OC-CCI (http://www.oceancolour.org/). Profiling float data were collected 418 and made freely available by the Southern Ocean and Climate Field Studies with Inno-419 vative Tools (SOCLIM) project (http://soclim.com/). Daily wind speeds from the merged 420 CCMP product are available online (http://www.remss.com/measurements/ccmp/). The 421

- 422 daily Antarctic Oscillation index is available from the NOAA/NCEP Climate Predic-
- tion Center (http://www.cpc.ncep.noaa.gov/). Mean EKE is calculated from a NOAA
- ⁴²⁴ surface drifter climatology (http://www.aoml.noaa.gov/phod/gdp/mean_tvelocity.php).

425 References

451

452

453

- Allen, M. R., & Smith, L. A. (1996). Monte Carlo SSA: Detecting irregular oscilla tions in the presence of colored noise. *Journal of Climate*, 9, 3373–3404.
- Ardyna, M., Claustre, H., Sallée, J.-B., D'Ovidio, F., Gentili, B., van Dijken, F., G.
 aand D'Ortenzio, & Arrigo, K. (2017). Delineating environmental control of phytoplankton biomass and phenology in the Southern Ocean. *Geophysical Research Letters*, 44, 5016–5024.
- Arrigo, K. R., van Dijken, G. L., & Bushinsky, S. (2008). Primary production in
 the Southern Ocean, 1997–2006. Journal of Geophysical Research, 113(C8),
 C08004.
- Arteaga, L. A., Boss, E., Behrenfeld, M. J., Westberry, T. K., & Sarmiento, J. L.
 (2020). Seasonal modulation of phytoplankton biomass in the Southern Ocean.
 Nature Communications, 11, 5364.
- Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K.,
 & Gombos, D. (2011). A cross-calibrated, multiplatform ocean surface wind
 velocity product for meteorological and oceanographic applications. Bulletin of
 the American Meteorological Society, 92, 157–174.
- Behrenfeld, M. J., & Boss, E. S. (2014). Resurrecting the ecological underpinnings of ocean plankton blooms. *Annual Review of Marine Science*, 6(1), 167–194.
- Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L.,
 Feldman, G. C., ... Boss, E. S. (2006). Climate-driven trends in contemporary
 ocean productivity. *Nature*, 444, 752–755.
- Bonhomme, C., Aumont, O., & Echevin, V. (2007). Advective transport caused by
 intraseasonal Rossby waves: A key player of the high chlorophyll variability
 off the Peru upwelling region. Journal of Geophysical Research: Oceans, 112,
 C09018.
 - Boyd, P. W., Doney, S. C., Strzepek, R., Dusenberry, J., Lindsay, K., & Fung, I.
 (2008). Climate-mediated changes to mixed-layer properties in the Southern Ocean: assessing the phytoplankton response. *Biogeosciences*, 5, 847–864.
- ⁴⁵⁴ Busecke, J. J. M., & Abernathey, R. P. (2019). Ocean mesoscale mixing linked to climate variability. *Science Advances*, *5*, eaav5014.
- Campbell, J. W. (1995). The lognormal distribution as a model for bio-optical variability in the sea. Journal of Geophysical Research: Oceans, 100, 13237–13254.
- Carranza, M. M., & Gille, S. T. (2015). Southern Ocean wind-driven entrainment
 enhances satellite chlorophyll-a through the summer. Journal of Geophysical
 Research: Oceans, 120(1), 304–323.
- Carranza, M. M., Gille, S. T., Franks, P. J. S., Johnson, K. S., Pinkel, R., & Girton,
 J. B. (2018). When mixed layers are not mixed. Storm-driven mixing and
 bio-optical vertical gradients in mixed layers of the Southern Ocean. Journal of
 Geophysical Research: Oceans, 123(10), 7264–7289.
- Cravatte, S., Serazin, G., Penduff, T., & Menkes, C. (2021). Imprint of chaotic ocean
 variability on transports in the southwestern Pacific at interannual timescales.
 Ocean Science, 17, 487–507.
- de Baar, H. J. W., de Jong, J. T. M., Bakker, D. C. E., Löscher, B. M., Veth,
- 470C., Bathmann, U., & Smetacek, V. (1995). Importance of iron for plank-
ton blooms and carbon dioxide drawdown in the Southern Ocean. Nature,
373(6513), 412–415.
- du Plessis, M., Swart, S., Ansorge, I. J., & Mahadevan, A. (2017). Submesoscale
 processes promote seasonal restratification in the Subantarctic Ocean. Journal
 of Geophysical Research: Oceans, 122, 2960–2975.
- ⁴⁷⁶ du Plessis, M., Swart, S., Ansorge, I. J., Mahadevan, A., & Thompson, A. F. (2019).
 ⁴⁷⁷ Southern Ocean seasonal restratification delayed by submesoscale wind-front
 ⁴⁷⁸ interactions. *Journal of Physical Oceanography*, 49, 1035–1053.

479	Fauchereau, N., Tagliabue, A., Bopp, L., & Monteiro, P. M. (2011). The response of
480	phytoplankton biomass to transient mixing events in the Southern Ocean. Geo-
481	physical Research Letters, 38, L17601.
482	Frenger, I., Münnich, M., & Gruber, N. (2018). Imprint of Southern Ocean
483	mesoscale eddies on chlorophyll. Biogeosciences, 15, 4781–4798.
484	Gille, S. T., Carranza, M. M., Cambra, R., & Morrow, R. (2014). Wind-induced up-
485	welling in the Kerguelen Plateau region. <i>Biogeosciences</i> , 11, 6389–6400.
486	Graham, R. M., De Boer, A. M., van Sebille, E., Kohfeld, K. E., & Schlosser, C.
487	(2015). Inferring source regions and supply mechanisms of iron in the Southern
488	Ocean from satellite chlorophyll data. Deep Sea Research Part I: Oceano-
489	araphic Research Papers, 104, 9–25.
490	Greaves, B. L., Davidson, A. T., Fraser, A. D., McKinlay, J. P., Martin, A.,
491	McMinn, A., & Wright, S. W. (2020). The Southern Annular Mode (SAM)
492	influences phytoplankton communities in the seasonal ice zone of the Southern
493	Ocean. <i>Biogeosciences</i> , 17, 3815–3835.
494	Gregg, W. W., & Rousseaux, C. S. (2019). Global ocean primary production trends
495	in the modern ocean color satellite record (1998-2015). Environmental Re-
496	search Letters, 1/, 124011.
407	Grenier M Della Penna A & Trull T W (2015) Autonomous profiling float
497	observations of the high-biomass plume downstream of the Kerguelen Plateau
490	in the Southern Ocean <i>Biogeosciences</i> 12, 27072735
499 500	Haëntiens N Boss E & Talley L D (2017) Bevisiting Ocean Color algorithms
500	for chlorophyll a and particulate organic carbon in the Southern Ocean us-
501	ing biogeochemical floats Journal of Geophysical Research: Oceans 199
502	
503	Hanawa K & Talley L D (2001) Mode waters In G Siedler J Church &
504	I Gould (Eds.) Ocean Circulation and Climate (Vol. 77, pp. 373–386) Aca-
303	
506	demic Press
506	demic Press. Hell M. Cornuelle B. D. Gille S. T. & Lutsko, N. I. (2021). Time-varying empir-
506 507	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading
506 507 508	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences <i>Journal of Climate</i>
506 507 508 509	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. <i>Journal of Climate</i>, 34, 5497–5522.
506 507 508 509 510	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson S. A. Sarmiento, J. L. Dunne, J. P. Bopp, L. Lima, L. Doney, S. C.
506 507 508 509 510 511	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. <i>Journal of Climate</i>, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite
506 507 508 509 510 511 512 513	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. <i>Journal of Climate</i>, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. <i>Biogeosciences</i>, 7, 621–640.
506 507 508 509 510 511 512 513	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman J. & Weissing F. J. (2001). Biological conditions for oscillations and
506 507 508 509 510 511 512 513 514	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682–2695.
506 507 508 509 510 511 512 513 514 515 516	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682–2695. Johnson K. S. Plant, J. N. Coletti, L. Jannasch, H. W. Sakamoto, C. M.
506 507 508 509 510 511 512 513 514 515 516 517	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682–2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Biser S. C. Sarmiento, J. L. (2017). Biogeochemical sensor performance in
506 507 508 509 511 512 513 514 515 516 517 518	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682–2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans.
506 507 508 510 511 512 513 514 515 516 517 518 519	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682–2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 122(8), 6416–6436.
506 507 508 510 511 512 513 514 515 516 517 518 519 520	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682–2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 122(8), 6416–6436. Joubert, W. B., Swart, S., Tagliabue, A., Thomalla, S. J. & Monteiro, P. M. S.
506 507 508 510 511 512 513 514 515 516 517 518 519 520 521	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682–2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 122(8), 6416–6436. Joubert, W. R., Swart, S., Tagliabue, A., Thomalla, S. J., & Monteiro, P. M. S. (2014). The sensitivity of primary productivity to intra-seasonal mixed layer
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682–2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 122(8), 6416–6436. Joubert, W. R., Swart, S., Tagliabue, A., Thomalla, S. J., & Monteiro, P. M. S. (2014). The sensitivity of primary productivity to intra-seasonal mixed layer variability in the sub-Antarctic Zone of the Atlantic Ocean. Biogeosciences
506 507 508 509 511 512 513 514 516 516 517 518 519 520 521 522 523	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682–2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 122(8), 6416–6436. Joubert, W. R., Swart, S., Tagliabue, A., Thomalla, S. J., & Monteiro, P. M. S. (2014). The sensitivity of primary productivity to intra-seasonal mixed layer variability in the sub-Antarctic Zone of the Atlantic Ocean. Biogeosciences Discussions, 11, 4335–4358.
506 507 508 509 511 512 513 514 514 515 516 517 518 519 520 521 522 523	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682–2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 122(8), 6416–6436. Joubert, W. R., Swart, S., Tagliabue, A., Thomalla, S. J., & Monteiro, P. M. S. (2014). The sensitivity of primary productivity to intra-seasonal mixed layer variability in the sub-Antarctic Zone of the Atlantic Ocean. Biogeosciences Discussions, 11, 4335–4358. Kahru, M., & Mitchell, B. G. (2010). Blending of ocean colour algorithms applied to
506 507 508 510 511 512 513 514 515 516 517 518 520 521 522 522 523	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497-5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621-640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682-2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 122(8), 6416-6436. Joubert, W. R., Swart, S., Tagliabue, A., Thomalla, S. J., & Monteiro, P. M. S. (2014). The sensitivity of primary productivity to intra-seasonal mixed layer variability in the sub-Antarctic Zone of the Atlantic Ocean. Biogeosciences Discussions, 11, 4335-4358. Kahru, M., & Mitchell, B. G. (2010). Blending of ocean colour algorithms applied to the Southern Ocean. Remote Sensing Letters 1, 119-124
506 507 508 510 511 512 513 514 515 516 517 518 520 521 522 523 524 525	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497-5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621-640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682-2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 122(8), 6416-6436. Joubert, W. R., Swart, S., Tagliabue, A., Thomalla, S. J., & Monteiro, P. M. S. (2014). The sensitivity of primary productivity to intra-seasonal mixed layer variability in the sub-Antarctic Zone of the Atlantic Ocean. Biogeosciences Discussions, 11, 4335-4358. Kahru, M., & Mitchell, B. G. (2010). Blending of ocean colour algorithms applied to the Southern Ocean. Remote Sensing Letters, 1, 119-124.
506 507 508 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682–2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 122(8), 6416–6436. Joubert, W. R., Swart, S., Tagliabue, A., Thomalla, S. J., & Monteiro, P. M. S. (2014). The sensitivity of primary productivity to intra-seasonal mixed layer variability in the sub-Antarctic Zone of the Atlantic Ocean. Biogeosciences Discussions, 11, 4335–4358. Kahru, M., & Mitchell, B. G. (2010). Blending of ocean colour algorithms applied to the Southern Ocean. Remote Sensing Letters, 1, 119–124. Keerthi, M. G., Lévy, M., & Aumont, O. (2021). Intermittency in phytoplankton for the southern Ocean. Remote Sensing Letters, 1, 119–124.
506 507 508 509 510 511 512 513 514 515 516 517 520 521 522 523 524 522 523 524 525 526 527	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682–2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 122(8), 6416–6436. Joubert, W. R., Swart, S., Tagliabue, A., Thomalla, S. J., & Monteiro, P. M. S. (2014). The sensitivity of primary productivity to intra-seasonal mixed layer variability in the sub-Antarctic Zone of the Atlantic Ocean. Biogeosciences Discussions, 11, 4335–4358. Kahru, M., & Mitchell, B. G. (2010). Blending of ocean colour algorithms applied to the Southern Ocean. Remote Sensing Letters, 1, 119–124. Keerthi, M. G., Lévy, M., & Aumont, O. (2021). Intermittency in phytoplankton bloom triggered by modulations in vertical stability. Scientific Reports, 11, 1285.
506 507 508 509 510 511 512 513 514 515 516 517 518 520 521 522 523 524 523 524 525 526 527 528	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497-5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621-640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682-2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 122(8), 6416-6436. Joubert, W. R., Swart, S., Tagliabue, A., Thomalla, S. J., & Monteiro, P. M. S. (2014). The sensitivity of primary productivity to intra-seasonal mixed layer variability in the sub-Antarctic Zone of the Atlantic Ocean. Biogeosciences Discussions, 11, 4335-4358. Kahru, M., & Mitchell, B. G. (2010). Blending of ocean colour algorithms applied to the Southern Ocean. Remote Sensing Letters, 1, 119-124. Keerthi, M. G., Lévy, M., & Aumont, O. (2021). Intermittency in phytoplankton bloom triggered by modulations in vertical stability. Scientific Reports, 11, 1285.
506 507 508 509 510 511 512 513 514 514 515 516 517 518 520 521 522 523 524 525 526 527 528 529 530	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682–2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 122(8), 6416–6436. Joubert, W. R., Swart, S., Tagliabue, A., Thomalla, S. J., & Monteiro, P. M. S. (2014). The sensitivity of primary productivity to intra-seasonal mixed layer variability in the sub-Antarctic Zone of the Atlantic Ocean. Biogeosciences Discussions, 11, 4335–4358. Kahru, M., & Mitchell, B. G. (2010). Blending of ocean colour algorithms applied to the Southern Ocean. Remote Sensing Letters, 1, 119–124. Keerthi, M. G., Lévy, M., & Aumont, O. (2021). Intermittency in phytoplankton bloom triggered by modulations in vertical stability. Scientific Reports, 11, 1285. Keerthi, M. G., Lévy, M., Aumont, O., Lengaigne, M., & Antoine, D. (2020). Contrasted contribution of intraseasonal time scales to surface chlorophyll varia.
506 507 508 509 510 511 512 513 514 514 515 516 517 518 520 521 522 523 524 523 524 525 526 527 528 529 530	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497–5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621–640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682–2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 122(8), 6416–6436. Joubert, W. R., Swart, S., Tagliabue, A., Thomalla, S. J., & Monteiro, P. M. S. (2014). The sensitivity of primary productivity to intra-seasonal mixed layer variability in the sub-Antarctic Zone of the Atlantic Ocean. Biogeosciences Discussions, 11, 4335–4358. Kahru, M., & Mitchell, B. G. (2010). Blending of ocean colour algorithms applied to the Southern Ocean. Remote Sensing Letters, 1, 119–124. Keerthi, M. G., Lévy, M., & Aumont, O. (2021). Intermittency in phytoplankton bloom triggered by modulations in vertical stability. Scientific Reports, 11, 1285. Keerthi, M. G., Lévy, M., Aumont, O., Lengaigne, M., & Antoine, D. (2020). Contrasted contribution of intraseasonal time scales to surface chlorophyl variations in a bloom and an oligotrophic regime. Loweral of Geophysical Research
506 507 508 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 525 526 527 528 529 530 531	 demic Press. Hell, M., Cornuelle, B. D., Gille, S. T., & Lutsko, N. J. (2021). Time-varying empirical probability densities of Southern Ocean surface winds: linking the leading mode to SAM and quantifying wind product differences. Journal of Climate, 34, 5497-5522. Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621-640. Huisman, J., & Weissing, F. J. (2001). Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82, 2682-2695. Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Sarmiento, J. L. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 122(8), 6416-6436. Joubert, W. R., Swart, S., Tagliabue, A., Thomalla, S. J., & Monteiro, P. M. S. (2014). The sensitivity of primary productivity to intra-seasonal mixed layer variability in the sub-Antarctic Zone of the Atlantic Ocean. Biogeosciences Discussions, 11, 4335-4358. Kahru, M., & Mitchell, B. G. (2010). Blending of ocean colour algorithms applied to the Southern Ocean. Remote Sensing Letters, 1, 119-124. Keerthi, M. G., Lévy, M., & Aumont, O. (2021). Intermittency in phytoplankton bloom triggered by modulations in vertical stability. Scientific Reports, 11, 1285. Keerthi, M. G., Lévy, M., Aumont, O., Lengaigne, M., & Antoine, D. (2020). Contrasted contribution of intraseasonal time scales to surface chlorophyll variations in a bloom and an oligotrophic regime. Journal of Geophysical Research: Oceans. Oceans, 125, e2019/C015701

⁵³³ Keppler, L., & Landschützer, P. (2019). Regional wind variability modulates the

534	Southern Ocean carbon sink. Scientific Reports, 9, 7384.
535	Kim, Y. S., & Orsi, A. H. (2014). On the variability of Antarctic Circumpolar Cur-
536	rent fronts inferred from 1992-2011 altimetry. Journal of Physical Oceanogra-
537	puy, 44, 3034-3071. Langelet C. de Montety A. Coosse H. Becquevert S. Schoomann V. Pacquer
538	B. & Vancenpanelle M. (2000) Spatial distribution of the iron supply to
539	b., & Valicoppendie, M. (2009). Spatial distribution of the fion supply to
540	2861_2878
541	Laurindo I Mariano A & Lumpkin B (2017) An improved near surface ve
542	locity climatology for the global ocean from drifter observations Deen-Sea Re-
543	search I 12/ 73–02
544	Le Quéré C Bopp L & Tegen I (2002) Antarctic circumpolar wave impact
545	on marine biology: A natural laboratory for climate change study. <i>Geophysical</i>
547	Research Letters, 29, 1407.
548	Lévy, M., Ferrari, R., Franks, P. J. S., Martin, A. P., & Rivière, P. (2012). Bringing
549	physics to life at the submesoscale. <i>Geophysical Research Letters</i> , 39, L14602.
550	Lévy, M., Resplandy, L., & Lengaigne, M. (2014). Oceanic mesoscale turbulence
551	drives large biogeochemical interannual variability at middle and high lati-
552	tudes. Geophysical Research Letters, 41, 2467–2474.
553	Li, Z., Lozier, M. S., & Cassar, N. (2021). Linking Southern Ocean mixed-layer dy-
554	namics to Net Community Production on various timescales. Journal of Geo-
555	physical Research: Oceans, 126, e2021JC017537.
556	Little, H. J., Vichi, M., Thomalla, S. J., & Swart, S. (2018). Spatial and tempo-
557	ral scales of chlorophyll variability using high-resolution glider data. Journal of
558	Marine Systems, 187, 1–12.
559	Llort, J., Lévy, M., Sallée, JB., & Tagliabue, A. (2019). Nonmonotonic response of
560	primary production and export to changes in mixed-layer depth in the South-
561	ern Ocean. Geophysical Research Letters, 46, 3368–3377.
562	Lovenduski, N. S., & Gruber, N. (2005). Impact of the Southern Annular Mode
563	on Southern Ocean circulation and biology. Geophysical Research Letters, 32,
564	L11603.
565	Maraun, D., Kurths, J., & Holschneider, M. (2007). Nonstationary Gaussian pro-
566	cesses in wavelet domain: Synthesis, estimation, and significance testing. <i>Phys-</i>
567	<i>ical Review E</i> , <i>75E</i> , 016707.
568	Martinez, E., Antoine, D., D'Ortenzio, F., & Gentili, B. (2009). Climate-driven
569	basin-scale decadal oscillations of oceanic phytoplankton. Science, 326, 1253–
570	
571	Mayersohn, B., Smith, S. K., Mangolte, I., & Levy, M. (2021). Intrinsic timescales of
572	variability in a marine plankton model. <i>Ecological Modelling</i> , 443, 109446.
573	McGilliculdy, D. J. (2016). Mechanisms of physical-biological-biol
574	150
575	109. Majiara A. I. S. Carovački I. King B. A. & Tamaitt V. (2010). A goo gaw in Pa
576	aifia Subantaratia Mode Water formation driven by atmospheria modes
577	nhusical Research Letters /6 13152–13160
578	Morodith M P Watkins I I Murphy F I Cunningham N I Wood A C
579	Korb B Vivier E (2003) An anticyclonic circulation above the North-
580	west Georgia Bise Southern Ocean Geonbusical Research Letters 30, 2061
501	Mitchell B G Brody E A Holm-Hansen O McClain C & Bishon I (1991)
582	Light limitation of phytoplankton biomass and macronutrient utilization in the
584	Southern Ocean Limpology and Oceanography 36(8) 1662–1677
504	Morel A (1988) Ontical modeling of the upper ocean in relation to its biogenous
586	matter content (Case I waters). Journal of Geonhusical Research 93 10749–
587	10768.
588	Nicholson, SA., Lévy, M., Jouanno, J., Capet, X., Swart, S., & Monteiro, P. M. S.

589	(2019). Iron supply pathways between the surface and subsurface waters of
590	the Southern Ocean: From winter entrainment to summer storms. Geophysical
591	Research Letters, 46, 14567–14575.
592	Pellichero, V., Boutin, J., Claustre, H., Merlivat, L., Salée, JB., & Blain, S. (2020).
593	Relaxation of wind stress drives the abrupt onset of biological carbon uptake
594	in the Kerguelen bloom: A multisensor approach. Geophysical Research Let-
595	ters, 47, e2019GL085992.
596	Prend, C. J., Gille, S. T., Talley, L. D., Mitchell, B. G., Rosso, I., & Mazloff, M. R.
597	(2019). Physical drivers of phytoplankton bloom initiation in the Southern
598	Ocean's Scotia Sea. Journal of Geophysical Research: Oceans, 124(8), 5811-
599	5826.
600	Resplandy, L., Vialard, J., Lévy, M., Aumont, O., & Dandonneau, Y. (2009). Sea-
601	sonal and intraseasonal biogeochemical variability in the thermocline ridge of
602	the southern tropical Indian Ocean. Journal of Geophysical Research: Oceans,
603	<i>114</i> , C07024.
604	Rintoul, S. R. (2018). The global influence of localized dynamics in the Southern
605	Ocean. Nature, 558, 209–218. doi: 10.1038/s41586-018-0182-3
606	Rohr, T., Long, M. C., Kavanaugh, M. T., Lindsav, K., & Donev, S. C. (2017). Vari-
607	ability in the mechanisms controlling Southern Ocean phytoplankton bloom
608	phenology in an ocean model and satellite observations. Global Biogeochemical
609	Cycles, 31, 922-940.
610	Rosso, I., Hogg, A. M., Matear, R., & Strutton, P. G. (2016). Quantifying the
611	influence of sub-mesoscale dynamics on the supply of iron to Southern Ocean
612	phytoplankton blooms. Deep Sea Research Part I: Oceanographic Research
613	Papers, 115, 199–209.
614	Rousseaux, C. S., & Gregg, W. W. (2014). Interannual variation in phytoplankton
615	primary production at a global scale. Remote Sensing, 9, 1–19.
616	Ryan-Keogh, T. J., Thomalla, S. J., Mtshali, T. N., van Horsten, N. R., & Little,
617	H. J. (2018). Seasonal development of iron limitation in the sub-Antarctic
618	zone. Biogeosciences, 15, 4647–4660.
619	Sallée, JB., Llort, J., Tagliabue, A., & Lévy, M. (2015). Characterization of distinct
620	bloom phenology regimes in the Southern Ocean. ICES Journal of Marine Sci-
621	ence, 72, 1985–1998.
622	Sallée, JB., Speer, K. G., & Rintoul, S. R. (2010). Zonally asymmetric response of
623	the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nature
624	Geoscience, 3(4), 273–279. doi: 10.1038/ngeo812
625	Sathyendranath, S., Brewin, R. J., Jackson, T., F., M., & Platt, T. (2017). Ocean-
626	colour products for climate-change studies: What are their ideal characteris-
627	tics? Remote Sensing of Environment, 203, 125–138.
628	Schulte, J. A., Duffy, C., & Najjar, R. G. (2015). Geometric and topologic ap-
629	proaches to significance testing in wavelet analysis. Nonlinear Processes in
630	Geophysics, 22, 139–156.
631	Sokolov, S., & Rintoul, S. R. (2007). On the relationship between fronts of the
632	Antarctic Circumpolar Current and surface chlorophyll concentrations in the
633	Southern Ocean. Journal of Geophysical Research, 112(C7), C07030.
634	Swart, S., Thomalla, S. J., & Monteiro, P. M. S. (2015). The seasonal cycle of mixed
635	layer dynamics and phytoplankton biomass in the Sub-Antarctic Zone: A
636	high-resolution glider experiment. Journal of Marine Systems, 147, 103–115.
637	Tagliabue, A., Mtshali, T., Aumont, O., Bowie, A. R., Klunder, M. B., Roychoud-
638	hury, A. N., & Swart, S. (2012). A global compilation of dissolved iron
639	measurements: focus on distributions and processes in the Southern Ocean.
640	Biogeosciences, 9, 2333-2349.
641	Tagliabue, A., Sallée, JB., Bowie, A. R., Lévy, M., Swart, S., & Boyd, P. W.
642	(2014). Surface-water iron supplies in the Southern Ocean sustained by deep
643	winter mixing. Nature Geoscience, 7(4), 314–320.

644	Talley, L. D., Rosso, I., Kamenkovich, I., Mazloff, M. R., Wang, J., Boss, E.,
645	Sarmiento, J. L. (2019). Southern Ocean biogeochemical float deployment
646	strategy, with example from the Greenwich Meridian line (GO-SHIP A12).
647	Journal of Geophysical Research: Oceans, 124(1), 403–431.
648	Tamsitt, V., Talley, L. D., Mazloff, M. R., & Cerovečki, I. (2015). Zonal variations in
649	the Southern Ocean heat budget. Journal of Climate, 29, 6563–6579.
650	Thomalla, S. J., Faucchereau, N., Swart, S., & Monteiro, P. M. S. (2011). Regional
651	scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean.
652	Biogeosciences, 7, 2849–2866.
653	Thomalla, S. J., Racault, MF., Swart, S., & Monteiro, P. M. S. (2015). High-
654	resolution view of the spring bloom initiation and net community production
655	in the Subantarctic Southern Ocean using glider data. ICES Journal of Marine
656	Science, 72, 1999–2020.
657	Thompson, D. W. J., & Wallace, J. M. (2000). Annular modes in the extratropical
658	circulation. Part I: Month-to-month variability. Journal of Climate, 13, 1000-
659	1016.
660	Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin
661	of the American Meteorological Society, 79, 61–78.
662	Uchida, T., Balwada, D., Abernathey, R., Prend, C. J., Boss, E., & Gille, S. T.
663	(2019). Southern Ocean phytoplankton blooms observed by biogeochemical
664	floats. Journal of Geophysical Research: Oceans, 124(11), 7328–7343.
665	Uchida, T., Balwada, D., Abernathey, R. P., McKinley, G. A., Smith, S. K., & Lévy,
666	M. (2020). Vertical eddy iron fluxes support primary production in the open
667	Southern Ocean. Nature Communications, 11, 1125.
668	Vantrepotte, V., & Mélin, F. (2009). Temporal variability of 10-year global SeaWiFS
669	time-series of phytoplankton chlorophyll a concentration. ICES Journal of Ma-
670	rine Science, 66, 1547–1556.
671	von Berg, L., Prend, C. J., Campbell, E. C., Mazloff, M. R., Talley, L. D., &
672	Gille, S. T. (2020). Weddell Sea phytoplankton blooms modulated by sea
673	ice variability and polynya formation. Geophysical Research Letters, 47,
674	e2020GL087954.
675	Whitt, D. B., Levy, M., & Taylor, J. R. (2019). Submesoscales enhance storm-
676	driven vertical mixing of nutrients: Insights from a biogeochemical Large Eddy
677	Simulation. Journal of Geophysical Research: Oceans, 124, 8140–8165.
678	Whitt, D. B., Nicholson, S. A., & Carranza, M. M. (2019). Global impacts of sub-
679	seasonal (< 60 day) wind variability on ocean surface stress, buoyancy flux, and
680	mixed layer depth. Journal of Geophysical Research: Oceans, 124, 8198–8831.
681	whitt, D. B., Taylor, J. R., & Levy, M. (2017). Synoptic-to-planetary scale wind
682	variability enhances phytoplankton biomass at ocean fronts. Journal of Geo-
683	physical Research: Oceans, 122, 4002–4033. Ving V. Claustre H. Degg F. Deegler, C. Organalli, F. Detagy, A.
684	Aing, A., Olaustre, H., Doss, E., Roesler, O., Organelli, E., Poteau, A., D'Ortanzia, E. (2017). Connection of profiles of in situ chlorophyll former
685	otry for the contribution of fluorescence originating from new algal matter
686	Limpology and Oceanography: Methods, 15, 80, 02
687	Diminology and $O(canography. Menous, 10, 80-95.$