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Abstract 13 

There is a growing interest in developing 3D microscopy for the exploration of thick biological 14 

tissues. Recently, 3D X-ray nano computerized tomography has proven to be a suitable technique 15 

for imaging the bone lacuno-canalicular network. This interconnected structure is hosting the 16 

osteocytes which play a major role in maintaining bone quality through remodeling processes. 3D 17 

images have the potential to reveal the architecture of cellular networks, but their quantitative 18 

analysis remains a challenge due to the density and complexity of nanometer sized structures and the 19 

need to handle and process large datasets, e.g. 20483 voxels corresponding to 32 GB per individual 20 

image in our case. In this work, we propose an efficient image processing approach for the 21 

segmentation of the network and the extraction of characteristic parameters describing the 3D 22 

structure. These parameters include the density of lacunae, the porosity of lacunae and canaliculi, 23 

and morphological features of lacunae (volume, surface area, lengths, anisotropy etc.). We also 24 

introduce additional parameters describing the local environment of each lacuna and its canaliculi. 25 

The method is applied to analyze eight human femoral cortical bone samples imaged by magnified 26 

X-ray phase nano tomography with a voxel size of 120 nm, which was found to be a good 27 

compromise to resolve canaliculi while keeping a sufficiently large field of view of 246 µm in 3D. 28 

The analysis was performed on a total of 2077 lacunae showing an average length, width and depth 29 

of 17.1µm x 9.2µm x 4.4µm, with an average number of 58.2 canaliculi per lacuna and a total lacuno-30 

canalicular porosity of 1.12%. The reported descriptive parameters provide information on the 3D 31 

organization of the lacuno-canalicular network in human bones. 32 
 33 

1 Introduction 34 

Osteoporosis is a bone disease characterized by a decrease of bone mass and density. It affects the 35 

mechanical properties of bone leading to a high risk of fractures even by minor injury or little knock 36 

in some serious cases (Currey, 2005). Moreover, osteoporosis is not only a health problem, but also 37 

a social and economic issue. According to the official reports in the European Union (EU), 22 million 38 

women and 5.5 million men suffered from osteoporosis in 2010 and there were 3.5 million fragility 39 

fractures occurring mainly in the areas of hips, spines and wrists, which represented an economic 40 

burden of 37 billion € to the EU (Kanis et al., 2016). Since cortical bone is a frequent site of fracture, 41 



2 
 

knowledge about its 3D structure is important to understand the bone mechanical properties and to 42 

decipher the mechanisms of bone fragility (Zebaze et al., 2010). 43 

Bone has a hierarchical structure with macro, micro and nano organization, and it is known that 44 

all scales are involved in bone strength (Rho et al., 1998). At the cellular scale, the lacuno-canalicular 45 

network (LCN) forms a complex interconnected porous system deeply embedded in the mineralized 46 

bone matrix (Knothe Tate et al., 2004). Osteocytes, which are the most abundant bone cells, are 47 

located within the lacunae. Osteocytes have been identified as important regulators in bone 48 

remodeling acting as the activator of NF-κB ligand (RANKL) for the recruitment of osteoclasts (Jilka 49 

& O’Brien, 2016) and producing WNT1 to control bone formation through inactivation and 50 

overexpression (Joeng et al., 2017). In the LCN, lacunae function as nodes connected with each other 51 

through the canaliculi which host the cytoplasmic processes of osteocytes enabling communication 52 

with neighboring bone cells (Florencio-Silva et al., 2015). The LCN supports transport of nutrient 53 

and waste products (Bonewald, 2011). The osteocytes are thought to sense local loading and 54 

interstitial fluid flow inside bone matrix, and to produce and exchange stimuli signals for the control 55 

of bone cell activities (Buenzli & Sims, 2015). Therefore, it is crucial to have tools available to 56 

quantify the architecture of the LCN in various conditions to better understand its role in regulating 57 

bone maintenance and strength.  58 

Because of its complex structure, embedded location and fine scale elements, it remains 59 

challenging to investigate the LCN in 3D, and in particular to examine the canaliculi whose diameters 60 

are far below the micrometer. 2D imaging techniques such as light microscopy (LM)  (Marotti et al., 61 

1995, Jordan et al., 2003, Qiu et al., 2006), transmission electron microscopy (TEM) (Rubin & 62 

Jasiuk, 2005) and scanning electron microscopy (SEM) (Shah & Palmquist, 2017) have been 63 

typically used to observe the LCN. The importance of 3D imaging versus 2D imaging was recently 64 

highlighted in a study on age-related changes of the LCN in mouse bone using 3D confocal laser 65 

scanning microscopy (CLSM) (Heveran et al., 2018) as in several previous works (Kamioka et al., 66 

2001, Repp et al., 2017). Recently multiplexed optical imaging techniques offering several contrasts 67 

were also proposed (Kamel-ElSayed et al., 2015, Genthial et al., 2017). Focused ion beam SEM 68 

(serial FIB-SEM) (Schneider et al., 2011) can image the LCN with a high precision but it is 69 

destructive and restricted to a very limited field of view. In previous works, we showed the feasibility 70 

of synchrotron radiation (SR) nano-tomography to image the 3D structure of the LCN at very high 71 

and isotropic spatial resolution (Langer et al., 2012, Pacureanu et al., 2012). X-ray ptychographic 72 

tomography was first demonstrated in (Dierolf et al., 2010) and recently used to analyze the LCN in 73 

rats (Ciani et al., 2018, Sharma et al., 2012, Ciani et al., 2016). However, this technique is limited 74 

to a field of view of around 50 microns with long acquisition times.  75 

Although the 3D microscopic imaging modalities are booming, there have been very few works 76 

addressing the development of image processing tools to segment and analyze such images (Ciani et 77 

al., 2018, Sharma et al., 2012, Ciani et al., 2016, Heveran et al., 2018) . Among the existing general-78 

purpose 3D image processing software, we could not identify any which was suitable to segment and 79 

extract quantitative parameters of the LCN from 3D nano-CT images. Despite a profuse literature on 80 

image segmentation methods, the particular challenges posed by the morphology, slenderness and 81 

organization of canaliculi define a new problem. The canaliculi are vessel -like structures occupying 82 

just one or a few voxels in diameter, with regions lacking contrast or presenting discontinuities. 83 

Methods proposed in the field of vessel segmentation can be of interest (Sato et al., 1998, Moccia et 84 

al., 2018), but need to be adapted. Moreover, the extraction of quantitative characteristics is also 85 

quite specific to the LCN although general-purpose tools may exist for porous materials. The analysis 86 
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of osteocyte lacunae has been previously addressed in a number of papers  (Mader et al., 2013, Dong 87 

et al., 2014a, Heveran et al., 2018), but less work has been devoted to the quantification of canaliculi 88 

(Kollmannsberger et al., 2017). In addition, the methods have to be compatible with the large size 89 

of the data sets. Even with state of art computers, it remains challenging and time -consuming to 90 

handle images larger than 32GB interactively with any software.   91 

Thus, the aim of this work is to present a method including image acquisition and data processing 92 

to extract 3D quantitative parameters of the LCN in human bone. Imaging was performed using 93 

magnified X-ray phase nano computerized tomography (CT) at the beamline ID16A of the European 94 

Synchrotron Radiation Facility (ESRF), Grenoble, France (Yu et al., 2018). The setup provides 95 

reconstructed volumes 20483 with a voxel size of 120nm on a field of view of 246 µm in the three 96 

spatial directions. The first step in the analysis workflow is the segmentation of lacunae and 97 

canaliculi. Then, quantitative parameters for the assessment of the LCN were calculated based on 98 

custom image analysis methods. We also introduce new parameters describing the local environment 99 

of each volume of interest. The potential of the methods is demonstrated by the analysis of eight 100 

femoral bone samples from female donors, providing information about the spatial distribution of 101 

the network. In the present study, we used human bone samples extracted from cadavers without a 102 

specific pathology. This is a preliminary study that allowed us to develop a methodology to assess 103 

the LCN and will be further used to answer dedicated medical questions, in studies on samples from 104 

patients with various conditions, such as osteoporosis or osteoarthritis. 105 

2 Materials and methods 106 

In this section, we first describe the imaged bone samples, and briefly introduce the imaging 107 

technique. In the following subsections we present the image processing methods developed to 108 

segment the lacunae and canaliculi, and extract quantitative parameters of the LCN as well as the 109 

statistical analysis methods. 110 

2.1 Sample description 111 

Eight samples were taken from deceased female donors (between 56 and 95 years old)  provided by 112 

the Centre du Don des Corps (University Paris 5) and the Department of Anatomy Rockefeller, 113 

University Lyon. Except the sex and the age, no other information regarding disease status or 114 

medication history was available in accordance with legal clauses stated in the French Code of Public 115 

Health Ethics (Cai et al., 2017). Femoral diaphyses were extracted from different parts of these 116 

cadaveric subjects and wrapped in gauze soaked with saline to keep hydrated, and stored at ‒20°C 117 

until sample preparation. Rectangular prism shaped samples with cross sections of about 0.4 mm × 118 

0.4 mm (height approx. 4 mm) were cut along the endosteal-periosteal direction with a water-cooled 119 

diamond precision saw (Presi Mecatome T210, Struers Diamond Cut-off Wheel EOD15, Liphy, 120 

Grenoble). We scanned eight samples denoted by A1‒A8 and ordered by ages of people. 121 

2.2 Synchrotron radiation nano-CT 122 

All the samples were imaged by magnified X-ray phase nano-CT at the beamline ID16A of the ESRF. 123 

The X-ray beam was focused to a ~ 30 nm size and the sample was positioned in the divergent beam 124 

downstream the X-ray focus to record magnified in-line holograms (Hubert et al., 2018). The scanned 125 

region was selected about 500 µm below the periosteum, close to a Haversian canal but avoiding the 126 

canal itself to optimize the use of the field-of-view.  127 

After traversing the sample, the X-ray beam is allowed to propagate before being converted into 128 

visible light through a scintillator. Magnified images are recorded by a lens -coupled, 16 Mpixels 129 
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FReLoN (Fast Readout Low Noise) CCD camera developed at ESRF. The camera was used in 130 

binning mode, yielding 2048 × 2048 pixels. The beamline is equipped with 2 phased in air undulators 131 

with a period of 22.4 mm and 18.3 mm. The fundamental harmonics are at 11.2 keV and 16.9 keV. 132 

In order to work at 33.6 keV, the third harmonic of the U22.4 is used. A multilayer monochromator 133 

and multilayer coated Kirkpatrick-Baez mirrors are used to obtained a focused beam with a 134 

monochromaticity ΔE/E=10 -2.  135 

Table 1: Experimental parameters of the beamline ID16A  136 

Undulator Energy Dose Exit window Scintillator Detector Exposure time # projections 

U22.4 33.6 keV 1.4 MGy Polycrystalline 

diamond window 

(500 μm) 

GGG:Eu 

23 μm 

FReLon 

E2V 16 M 

0.5 s 2000 

U18.3 17.05 keV 2.1 MGy 0.35 s 1800 

 137 

A piezo-driven short-range hexapod stage, operated under vacuum, provides accurate position 138 

control during the tomographic rotation (Villar et al., 2018). Each sample was scanned at four 139 

different focus-to-sample distances, which was shown to provide the best image quality for such 140 

samples, see Fig. 1 (Yu et al., 2018). The beam energy was 17 keV and 33.6 keV during different 141 

data collection sessions. For each distance, 1800 or 2000 projections were recorded over the angular 142 

range of 180°. The information on the beamline and the experimental parameters is summarized in 143 

Table 1. 144 

After data acquisition, phase retrieval was performed using an extended Paganin’s method 145 

followed by iterative optimization and the formula in the Frequency domain is shown as following  146 

(Yu et al., 2018): 147 

 𝜑̃(𝒇) =
1

2
⋅
𝛿𝑛

𝛽
⋅

𝐼𝐷𝑘(𝒇)−𝛿𝐷𝑖𝑟𝑎𝑐(𝒇)

𝑐𝑜𝑠(𝜋𝜆𝐷𝑘‖𝒇‖
2)+

𝛿𝑛
𝛽
𝑠𝑖𝑛(𝜋𝜆𝐷𝑘‖𝒇‖

2)
. (1) 148 

where 𝛿𝑛  is the refractive index decrement, 𝛽  the absorption index, 𝜆  the wavelength, 𝐷𝑘  the 149 

propagation distance, 𝐼𝐷𝑘(𝒇) the Fourier transform of the intensity image and 𝛿𝐷𝑖𝑟𝑎𝑐(𝒇) the Dirac 150 

function. 151 

Subsequently, standard Filtered Back-Projection (FBP) was used for tomographic reconstruction 152 

from the phase maps, using the ESRF implementation of PyHST2 (Mirone et al., 2014). The 153 

reconstructed volumes were made of 20483 voxels with a cubic voxel size of 120 nm, yielding a field 154 

of view of 246 μm in the three dimensions. Acquisition time for a complete dataset (i.e. with 4 155 

propagation distances) was approximately 4 hours.  156 

All the processing programs in this work were run on the HPC cluster available at the ESRF 157 

using the OAR batch scheduler. The CPU of the used nodes on the cluster was an Intel(R) Xeon(R) 158 

CPU E5-2670 v2 @ 2.50GHz. We used 20 cores (10 per socket) in total to run the segmentation 159 

programs. 160 

2.3 Image segmentation 161 

The analysis of the LCN requires to segment both the lacunae and the canaliculi. The segmentation 162 

has to be tailored to match the morphological specificities of the lacunae and the thin canaliculi, and 163 

to cope with the noise inherent to the imaging approach. Moreover, we have to design a segmentation 164 

method which can cope with large image sizes, i.e. 32 GB per volume. In order to exploit fully the 165 

knowledge encoded in the images, our aim is to process the entire 3D volume over the entire field 166 
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of view instead of a cropped volume of interest (VOI). Even with state of art computers, it remains 167 

challenging and time-consuming to handle 32 GB images interactively with any software. Thus, we 168 

chose to develop codes that could be run offline without user interaction on series of images. Our 169 

programs are written in C++ based on the open-source ITK library. The workflow of the 170 

segmentation procedure is summarized in Fig. 2, where the top and bottom lines respectively 171 

illustrate the segmentation of lacunae and canaliculi which are merged to get the segmented LCN. 172 

All image processing steps were done in 3D, and not slice by slice.  173 

2.3.1 Segmentation of lacunae 
174 

The aim of this step is to obtain a binary volume of the lacunae only. The dynamic range of our 175 

images, corresponding to the map of 
2𝜋𝛿

𝜆
 (𝛿 the refractive index decrement and 𝜆 the wavelength) 176 

(Yu et al., 2018) was in the range between 0 and 700 with a contrast to noise ratio around 25 for 177 

lacunae. Thus, lacunae are well-contrasted and well-defined objects with a typical ellipsoidal shape. 178 

The main issue is that they are connected to each other via the small canaliculi channels. The 179 

segmentation of lacunae was based on simple thresholding and filtering methods adapted from a 180 

previous work devoted to process absorption SR micro-CT images at 300 nm  (Dong et al., 2014a). 181 

In the first step, a median filter with a radius of 10 voxels was applied  to remove canaliculi while 182 

preserving lacunae. Then, we used hysteresis thresholding to segment the lacunae from the images. 183 

This method involves two thresholds: the lower threshold is the so-called “hard” threshold, which 184 

extracts the voxels of lacunae with high confidence; the other one is a higher threshold, called the 185 

“weak” one, which is used to refine the segmentation. The voxels with gray values between two 186 

thresholds are assigned to the object if they are connected to the high confidence voxels with respect 187 

to the 26-adjacency. The threshold values were adapted from the histograms of each volume. The 188 

low threshold was in the middle of two peaks in the histogram and the high threshold at the front 189 

edge of the second peak. Finally, portions of Haversian canals that could be included in the 190 

segmentation were eliminated after connected component analysis by removing the largest 191 

components (threshold of 1 200 000 voxels in our case).  192 

2.3.2 Segmentation of canaliculi 
193 

Compared to lacunae, the segmentation of canaliculi is more difficult due to their slenderness, the 194 

diameter of canaliculi being estimated in a range between 100‒500 nm (Varga et al., 2015). This 195 

problem presents some similarities, although not completely equivalent, with the segmentation of 196 

vascular networks in medical imaging. In this context, sophisticated image processing methods have 197 

been proposed, summarized within two reviews on the topic (Lesage et al., 2009, Moccia et al., 198 

2018). They include a large variety of techniques such as feature extraction and classification, region 199 

growing methods, active contours (snake or level sets) and tracking approaches. However, there are 200 

still no universally valid segmentation methods; each approach needs to be substantially adapted to 201 

the anatomical structure and to the characteristics of the image in terms of noise, contrast and spatial 202 

resolution. Moreover, many sophisticated methods are computationally prohibitive when applied to 203 

large 3D images. We previously investigated an advanced tracking approach method based on 204 

minimal path and geodesic voting to segment SR micro-CT images acquired at 300 nm (Zuluaga et 205 

al., 2014). This method used the centroids of lacunae as starting-points of a fast-marching front 206 

propagation while the endpoints are chosen as the edge points from each segmented region after 207 

Voronoi tessellation. However, the application of this method was not suitable to the higher 208 

resolution images used here, as it only returns single voxel thickness of canaliculi and the 209 

computational costs are too heavy to enable processing of large data sets.  We have thus resorted to 210 
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a more efficient method based on the shape priors of canaliculi. The method that we propose here is 211 

using a popular filter developed in the context of vessel segmentation, which is dubbed vesselness 212 

(Sato et al., 1998). However, this 3D line enhancement filter combined with thresholding is not 213 

sufficiently precise in our case, thus we introduce a second step based on a customized region 214 

growing approach. 215 

The vesselness enhancement filter uses the eigenvalues of the local Hessian matrix to extract 216 

local shape parameters and enhance slender, elongated structures (Sato et al., 1998, Pacureanu, 2012). 217 

Computation of the Hessian matrix involves the second-order partial derivatives of the image, which 218 

are sensitive to noise. For this reason, smoothing of the image with a 3D Gaussian function of 219 

standard deviation 𝜎 was included in the calculation. The three eigenvalues of the Hessian matrix 220 

which were calculated for all voxel positions 𝒙 = (𝑥, 𝑦, 𝑧), are then sorted in ascending order of 221 

magnitude and denoted 𝜆1, 𝜆2 and 𝜆3 (|𝜆1| ≤ |𝜆2| ≤ |𝜆3|) (for simplicity we omit the 𝒙 dependency 222 

in the eigenvalues). For the bright tubular structures on dark background which we want to segment 223 

as canaliculi, the eigenvalues should meet the conditions: |𝜆1| ≈ 0; 𝜆1 ≪ 𝜆2 ; 𝜆2 ≈ 𝜆3  and both of 224 

them should be negative. If we denote the vesselness enhanced image 𝑙(𝒙), it can be expressed as 225 

(Sato et al., 1998): 226 

 𝑙(𝒙) =

{
 
 

 
 𝜆𝑐 𝑒𝑥𝑝 (

−𝜆1
2

2(𝛼1𝜆𝑐)
2) , 𝜆1 ≤ 0, 𝜆𝑐 > 0

𝜆𝑐 𝑒𝑥𝑝 (
−𝜆1

2

2(𝛼2𝜆𝑐)
2) , 𝜆1 > 0, 𝜆𝑐 > 0

0, otherwise

, (2) 227 

where 𝛼1 = 0.5 and 𝛼2 = 2 are two constant parameters chosen based on a previous report by our 228 

group (Pacureanu et al., 2010). Figure 3 illustrates Minimum Intensity Projections (MIPs) of the 3D 229 

volumes at different steps of the process. The MIPs are calculated along the Z-axis by selecting the 230 

minimum intensity value for each XY coordinate from a selected number of slices (here 256). Fig. 3 231 

(b) shows the output of the vesselness filter.  232 

After this step, the 3D vesselness enhanced image is used as input to a region growing method.  233 

The initialization of the region growing starts from a best guess image dubbed the “seed map”. This 234 

binary image is meant to include parts which belong to the sought-after structure with very high 235 

probability, and which will evolve by aggregating new voxels belonging to the target structure.  The 236 

initialization process should be automatic and efficient to segment as many target voxels as possible 237 

but avoid other objects having similar features like collagen fibers and speckle noise in our case. We 238 

have determined that by thresholding the vesselness map using a rather restrictive criterion we obtain 239 

a binary image containing only voxels belonging to canaliculi. Among various global thresholding 240 

methods, we selected the maximum entropy thresholding method which maximizes the inter -class 241 

entropy (Sahoo et al., 1988). The resulting binary image was used as the seed map of the region 242 

growing method where bright voxels are the starting points of the growth . 243 

We chose a region-growing approach that could consider our priors concerning the line structures 244 

to be segmented. Variational region growing (VRG) permits to build a theoretical framework to 245 

formalize the iterative growing process by minimizing a region-based energy function (Pacureanu et 246 

al., 2010, Rose et al., 2010). If we define the 3D image as 𝑓(𝒙)  in the domain 𝛺 (a subset of the 247 

image), the evolving function can be expressed based on a characteristic function  𝜑𝒙: 248 

 𝜑𝒙 = 𝜑(𝒙) = {
1, 𝑖𝑓 𝒙 ∈ 𝛺in
0, 𝑖𝑓 𝒙 ∈ 𝛺out

, (3) 249 

where 𝛺in is the segmented region in 𝛺, and 𝛺out = 𝛺\𝛺inthe background region. 250 
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The set of candidate voxels 𝐶𝑛 at the iteration 𝑛 are defined as: 251 

 𝐶𝑛(𝛺in, 𝜀) = {𝒖 ∈ 𝛺out, 𝒗 ∈ 𝛺in||𝒖 − 𝒗| ≤ 𝜀}, (4) 252 

where 𝜀 the distance threshold. 253 

At each iteration step, we check the candidate voxels belonging to the background 𝛺outand 254 

connected to the segmented region 𝛺in . If the new energy function decreases, these voxels are 255 

accepted as objects and we update the characteristic function.  256 

If the region-based energy function is noted by 𝐽(𝜑), the optimal solution 𝜑∗  of the energy 257 

minimization can be expressed as: 258 

 𝜑∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽 (𝜑𝒙) (5) 259 

To compute the solution, we define the time-dependent variation of 𝜑𝒙 as 𝛥𝑡𝜑 and estimate the 260 

energy variation 𝛥𝐽(𝜑̃) for a small variation 𝜑̃ as follows: 261 

 𝛥𝑡𝜑 − 𝑐(𝜑) ⋅ 𝐻(−𝛥𝐽(𝜑̃)) = 0 (6) 262 

where 𝑐(𝜑) = 1 − 2𝜑𝒙 is the switch function, and 𝐻 the one-dimensional Heaviside function defined 263 

by:  264 

 𝐻(𝑧) = {
1, 𝑖𝑓 𝑧 < 0
0, 𝑖𝑓 𝑧 ≥ 0

 (7) 265 

Then, the value of the function 𝜑𝒙 at the iteration 𝑛 + 1 can be given by: 266 

 𝜑𝒙
𝑛+1 = 𝜑𝒙

𝑛 + 𝑐(𝜑𝒙
𝑛) ⋅ 𝐻(−𝛥𝐽(𝜑̃𝒙

𝑛)) (8) 267 

Based on the given “region-independent” descriptor 𝑘𝒙 Jehan-Besson et al. has defined a general 268 

expression for the region-based energy function (Jehan-Besson et al., 2003): 269 

 𝐽(𝛺𝒊𝒏) = ∫ 𝑘𝒙𝑑𝒙𝛺𝒊𝒏
 (9) 270 

In our discrete case, we rewrite the energy function as: 271 

 𝐽(𝛺𝒊𝒏) = ∑ 𝑘𝒙 ⋅ 𝜑𝒙
𝑛

𝒙∈𝛺  (10) 272 

Here, we calculate the energy 𝐽(𝜑̃𝑛) when the state of a voxel 𝒗 is switched to the opposite side. 273 

The characteristic function of this voxel turns:  274 

 𝜑̃𝒗
𝑛 = 1 − 𝜑𝒗

𝑛 (11) 275 

The other voxels keep the previous states, so we have:  276 

 𝜑̃𝒙
𝑛 = 𝜑𝒙

𝑛 , 𝑖𝑓 𝒙 ≠ 𝒗 (12) 277 

Then, the energy function after switching can be expressed as:  278 

 𝐽(𝜑̃𝑛) = 𝑘𝒗 ⋅ 𝜑̃𝒗
𝑛 +∑ 𝑘𝒙 ⋅ 𝜑𝒙

𝑛
𝒙∈𝛺,𝒙≠𝒗  (13) 279 

We make an equivalent transformation of this function,  280 

 𝐽(𝜑̃𝑛) = 𝑘𝒗 ⋅ (1 − 𝜑𝒗
𝑛) − 𝑘𝒗 ⋅ 𝜑𝒗

𝑛 + 𝑘𝒗 ⋅ 𝜑𝒗
𝑛 + ∑ 𝑘𝒙 ⋅ 𝜑𝒙

𝑛
𝒙∈𝛺,𝒙≠𝒗⏟                
𝐽(𝜑𝑛)

 (14) 281 

Finally, we can obtain the variation of the energy function  𝛥𝐽(𝜑̃𝑛): 282 

 𝛥𝐽(𝜑̃𝑛) = (1 − 2𝜑𝒗
𝑛) ⋅ 𝑘𝒗 (15) 283 
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Note that this expression is valid for any region-independent descriptor 𝑘𝒗. 284 

This variational formalism can be used for different region-based energy functions such as the 285 

average of gray level (Chan & Vese, 2001) or the estimation of probability distributions (Zhu & 286 

Yuille, 1996). To cope with the complex structure of the LCN, especially with the slender size of 287 

canaliculi, we proposed a region-based energy function which combines information from the 3D 288 

vesselness filter map 𝑙(𝒙)
 
with information from the original image f(x). 𝑙(𝒙)

 
maps the likelihood of 289 

the voxels to belong to a canaliculi, and thus it filters out the lacunae which have elipsoidal shapes. 290 

In order to reconstruct the entire lacuno-canalicular network, the region-growing is governed by the 291 

vessleness map when 𝑙(𝒙) has a high value, that is, the considered voxels belong to canaliculi,  and 292 

conversely, by the original image f(x) offering strong contrast inside lacunae, when l(x) has a low 293 

value. The energy function is written as: 294 

 𝐽(𝑓, 𝑙) = 𝐻(𝑓(𝒙) − 𝛿)𝐽𝑓(𝑓) + (1 − 𝐻(𝑓(𝒙) − 𝛿))𝐽𝑓,𝑙(𝑓, 𝑙), (16) 295 

where  296 

 𝐽𝑓(𝑓) = ∫ (𝑓(𝒙) − 𝜇in)
2𝑑𝒙

𝛺in
+ ∫ (𝑓(𝒙) − 𝜇out)

2𝑑𝒙
𝛺out

, (17) 297 

and 298 

 𝐽𝑓𝑙(𝑓, 𝑙) = ∫ 𝐺𝜇𝑖𝑛,𝜎𝑖𝑛(𝑓, 𝑙)𝑑𝒙𝛺in
+ ∫ 𝐺𝜇𝑜𝑢𝑡,𝜎𝑜𝑢𝑡(𝑓, 𝑙)𝑑𝒙𝛺out

 299 

 𝐺𝜇,𝜎(𝑓, 𝑙) =
1

√2𝜋  𝜎
𝑒𝑥𝑝 (−

(𝑓(𝒙)−𝜇)2

2𝜎2𝑙(𝒙)
) (18) 300 

where 𝜇in and 𝜇out are the average gray values in the domain 𝛺in and 𝛺out of the original image 𝑓(𝒙), 301 

𝜎in and 𝜎out the corresponding standard deviations, 𝐻 the Heaviside function, 𝛿 a threshold value.  302 

Then, the variation of the energy function can be calculated by:  303 

 𝛥𝐽(𝜑𝑛+1) = (1 − 2𝜑𝑛) (𝛥𝐽𝑓(𝑓) + 𝛥𝐽𝑓,𝑙(𝑓, 𝑙)) (19) 304 

where we have 305 

 𝛥𝐽𝑓(𝑓) = (𝑓(𝒙) − 𝜇𝑓𝒊𝒏)
2
− (𝑓(𝒙) − 𝜇𝑓𝒐𝒖𝒕)

2
 (20) 306 

and 307 

 𝛥𝐽𝑓,𝑙(𝑓, 𝑙) =
1

√2𝜋  𝜎𝑓𝒊𝒏
𝑒𝑥𝑝(−

(𝑓(𝒙)−𝜇𝑓𝒊𝒏)
2

2𝜎𝑓𝒊𝒏
2 𝑙(𝒙)

) −
1

√2𝜋 𝜎𝑓𝒐𝒖𝒕
𝑒𝑥𝑝 (−

(𝑓(𝒙)−𝜇𝑓𝒐𝒖𝒕)
2

2𝜎𝑓out
2 (1−𝑙(𝒙))

) (21) 308 

Finally, we filtered out the smallest connected components which could be collagen fibers or 309 

noise. The threshold was set to 100 voxels, corresponding to a volume of 0.17µm3, after examining 310 

the histogram of the component sizes and the residual noise in the image. Since the segmented image 311 

contains both canaliculi and parts of lacunae as shown in Fig. 3 (d), we subtracted the segmented 312 

lacunae from the result to obtain the binary image of canaliculi only , see Fig. 3 (e). 313 

 314 

2.4 Quantitative analysis 315 

In this section, we describe the parameters extracted from both the binary lacunae and canaliculi 316 

images.  317 
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2.4.1 Quantification of lacunae 
318 

The binary lacunae image was first labeled by using a connected component analysis. The labels 319 

were consecutive integer values starting at one, after sorting the objects  (lacunae) by decreasing size. 320 

We used the 26 connectivity in 3D. The number of lacunae 𝐿𝑐. 𝑁 was calculated by counting the total 321 

number of labels. Let us denote 𝐿𝑛an osteocyte lacuna  with label 𝑛. For each specific lacuna 𝐿𝑛, its 322 

volume 𝐿𝑐. 𝑉 can be simply computed by summing all the voxels with label 𝑛. 323 

We used a method based on the second-order central moments to estimate the lengths of three 324 

principal axes of each lacuna by fitting it to an ellipsoid as previously described (Dong et al., 2014a). 325 

The final length, width and depth (𝐿𝑐. 𝐿1, 𝐿𝑐. 𝐿2and 𝐿𝑐. 𝐿3) of the ellipsoid are expressed as a function 326 

of the three eigenvalues of the second-order central moment matrix. Besides, we calculated different 327 

ratios such as 
𝐿𝑐.𝐿1

𝐿𝑐.𝐿2
 and 

𝐿𝑐.𝐿2

𝐿𝑐.𝐿3
 to assess the anisotropy of the lacunae. 328 

We also calculated the intrinsic volumes of lacunae providing interesting characteristics of 329 

shapes, such as the surface area 𝐿𝑐. 𝑆  and the structural model index 𝐿𝑐. 𝑆𝑀𝐼  of each lacuna, 330 

computed by using the Crofton formula (Ohser & Schladitz, 2009).  331 

The density of lacunae 
𝐿𝑐.𝑁

𝐵𝑉
 in the whole volume was computed as the number of total lacunae 332 

divided by the bone volume while the porosity 
𝐿𝑐.𝑇𝑉

𝐵𝑉
 was equal to the total volume of lacunae in the 333 

reconstruction divided by the bone volume.  334 

Moreover, we introduce here local parameters computed in the neighborhood of each lacuna, by 335 

using the 3D Voronoi tessellation of the images after connected components analysis , see Fig. 4. We 336 

calculated the Voronoi diagram associated to the centroids of each lacuna. After this step, we got a 337 

partition of the 3D volume into small regions, that we called𝐶𝑒𝑙𝑙, each of them containing only one 338 

lacuna and its canaliculi. Then, we computed the average volume of each  Voronoi cell (𝐶𝑒𝑙𝑙. 𝑉) and 339 

the local lacunar porosity expressed by the ratio between the average volume of lacuna per Voronoi 340 

cell and the average volume of each Voronoi cell (
𝐿𝑐.𝑉

𝐶𝑒𝑙𝑙.𝑉
). 341 

2.4.2 Quantification of canaliculi 
342 

Similarly, we calculated the 3D porosity of canaliculi 
𝐶𝑎.𝑇𝑉

𝐵𝑉
 in the whole volume expressed as the 343 

total volume of canaliculi divided by the bone volume. To obtain a local measure, we also computed 344 

the local canalicular porosity expressed by the ratio 
𝐶𝑎.𝑉

𝐶𝑒𝑙𝑙.𝑉
 between the average volume of canaliculi 345 

per cell and the average volume of each cell, and the ratio 
𝐶𝑎.𝑉

𝐿𝑐.𝑉
 between the average volume of 346 

canaliculi and lacunae per cell. Moreover, we calculated the total porosity of the LCN (
𝐿𝐶𝑁.𝑇𝑉

𝐵𝑉
) for 347 

the evaluation of the whole network. Besides, to quantify the ramification of canaliculi, we calculated 348 

the number of canaliculi per lacuna (𝐶𝑎.𝑁) (Dong et al., 2014b). 349 

 350 

2.5 Statistical analysis 351 

We provide the average and standard deviation of all parameters. The correlations between 352 

parameters were studied by using the Spearman correlation coefficient (𝑅2) and the p-value by the 353 

Fisher’s r to z transformation. These calculations and analysis were performed by Statview ® (SAS 354 

Institute Inc., Cary, NC, USA). P-values under 0.05 were considered as significant.  355 
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3 Results 356 

In this section, we will give the results of the segmentation workflow and the quantitative LCN 357 

parameters of the eight samples. 358 

3.1 Segmentation method 359 

Figure 5 illustrates results of the segmentation by the VRG method around three selected lacunae. 360 

MIPs are shown for VOIs of 256×256×128 voxels, corresponding to a physical size of 30.7 µm×30.7 361 

µm×15.4 µm. Figure 5 respectively shows the MIPs of: (a)-(d)-(h) the original reconstructed volume; 362 

(b)-(e)-(i) the segmented image by the maximum entropy thresholding; (c)-(f)-(j) the variation region 363 

growing method initialized by (b)-(d)-(h). We can see that the latter detects both the lacunae and 364 

canaliculi voxels. The red circle regions in Fig. 5 show that the connectivity between some canaliculi 365 

is restored after the variational region growing process.  366 

We also compared the result of the region growing segmentation to the geodesic voting method 367 

previously developed in our group (Zuluaga et al., 2014). We compare the running time of the two 368 

methods to segment canaliculi from one reconstructed volume, excluding the pre and post processing 369 

before and after the segmentation, and we check the segmented results visually. The variational 370 

region growing method needed 830 seconds to finish the process, while the geodesic voting took 17  371 

700 seconds, which is 21.3 times longer. Fig. 6 illustrates the segmentation results of the two 372 

methods. To improve the visualization, we overlaid the lacunae segmented by the method mentioned 373 

in the previous section on a region of 2048 × 2048 × 128 voxels. Figure 6 displays the MIP of (a) 374 

the original volume, (b) the LCN segmented by using variational region growing, (c) the LCN 375 

segmented by using geodesic voting; (d), (e), (f) are zooms of the MIPs shown in (a), (b) and (c), 376 

respectively. We can see that both methods achieve the extraction of canaliculi from the 377 

reconstructed volumes. However, when using the geodesic voting, the connectivity between 378 

canaliculi is broken in some regions and the thickness of the extracted canaliculi is intrinsically one 379 

voxel which is smaller than that of variational region growing, see Fig. 6 (e) and (f), and not 380 

representative of the truth at this scale. This observation was confirmed by the computation of the 381 

connectivity in one selected volume segmented from both methods.  The connectivity is defined as 382 

the number of cuts that can be made in an object without breaking it in distinct components. Since it 383 

is a number without unit, it is conventionally normalized by the total volume, thus expressed as a 384 

density of connectivity in mm -3. The connectivity was derived from the Euler number efficiently 385 

computed on discrete grids as described in (Ohser & Schladitz, 2009). The result showed that the 386 

connectivity of the network segmented with the VRG method (4.98 106 mm-3) was about four times 387 

that found from the geodesic voting method (1.21 106 mm-3), showing a better preservation of the 388 

integrity of the LCN. In addition, as expected, the geodesic voting method does not permit to quantify 389 

the thickness since by construction the canaliculi are restricted to one voxel. These results confirm 390 

that the variational region growing method is better suited to segment the canaliculi in the present 391 

study, with the additional advantage of being faster.  392 

In Fig. 7 (a), we show the MIP along the Y-axis of 100 middle slices from the reconstructed 393 

volume of the sample A2 in order to observe the distribution of lacunae surrounding the osteon. The 394 

3D visualization of the segmented lacunae and canaliculi rendered by VGStudioMax® is given in 395 

Fig. 7 (b). 396 

 397 
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3.2 Quantitative analysis of the LCN in human bone 398 

Here, we report the quantitative LCN parameters extracted from the whole images of the eight human 399 

diaphysis bone samples. 400 

3.2.1 Morphometric parameters of lacunae  
401 

Table 2 presents the descriptive statistics of lacunae parameters for each sample. Whenever this 402 

applies, we provide the mean and standard deviation of the parameter within the sample . For such 403 

parameters, the last line of the table provides the mean and standard deviation in all pooled lacunae. 404 

In total, we analyzed 2077 lacunae with an average number of lacunae per volume of 259.6. The 405 

mean lacunar porosity of 0.78%. The average lacunar volume and surface were respectively 315.7 406 

µm3 and 323.3 µm2. The average Voronoi cell volume was found to be 42,000 µm3 and the average 407 

local lacunar porosity was 0.88 %. The average length, width and depth of each lacuna were 17.1 408 

µm, 9.2 µm and 4.4 µm, respectively and showed some dispersion within each volume. The 409 

anisotropy of the lacunae, described by the ratio between the length and the width, was found to be 410 

2.0, the ratio between the width and the depth was found to be 2.2 and the structural model index 411 

found to be 3.1. 412 

Table 2: Morphometric parameters of lacunae  413 

Sample ID Lc.N 
Lc.TV 

(10-5 mm3) 
Lc.TV/BV (%) 

Lc.N/BV 

(104 mm-3) 

Lc.V 

(µm3) 

Cell.V 

(104 µm3) 
Lc.V/Cell.V  (%) 

A1 194 7.6 0.88 2.2 393.4±172.6 5.1±2.8 0.92±0.55 

A2 298 9.3 0.81 2.6 311.1±116.6 3.6±1.3 0.98±0.59 

A3 347 10.1 0.9 3.1 291.5±108.1 3.1±1.1 1.02±0.49 

A4 255 7.2 0.64 2.3 284.1±99.9 4.3±1.6 0.75±0.39 

A5 278 8.3 0.77 2.6 298.8±96.4 3.8±1.3 0.86±0.38 

A6 229 7.6 0.83 2.5 333.4±132.6 5.1±2.7 0.84±0.53 

A7 222 7.6 0.69 2 341.0±168.5 4.6±1.8 0.83±0.47 

A8 254 7.8 0.69 2.3 307.0±161.3 4.3±1.5 0.77±0.36 

Mean All 259.6 8.2 0.78 2.4 315.7 4.2 0.88 

Std. All 44.9 0.9 0.09 0.3 134.8 2.3 0.48 
 414 

Sample 

ID 

Lc.S 

(µm2) 

Lc.L1 

(µm) 

Lc.L2 

(µm) 

Lc.L3 

(µm) 

Lc.L1 

/Lc.L2 

Lc.L2 

/Lc.L3 
Lc.SMI 

A1 365.8±110.7 19.3±4.7 9.1±2.2 4.7±1.2 2.2±0.8 2.0±0.6 3.1±0.3 

A2 334.7±92.8 16.8±4.0 10.0±2.1 4.1±1.0 1.8±0.6 2.6±0.8 3.0±0.4 

A3 298.3±77.2 16.9±4.3 8.2±1.8 4.7±1.0 2.2±0.8 1.8±0.5 3.2±0.4 

A4 301.9±81.7 15.7±3.6 9.3±2.1 4.3±1.0 1.8±0.6 2.3±0.8 3.0±0.4 

A5 317.4±70.0 16.4±3.8 9.3±1.8 4.5±1.0 1.8±0.6 2.2±0.7 3.0±0.4 

A6 329.3±91.4 17.2±4.2 9.2±1.9 4.5±1.1 2.0±0.7 2.1±0.6 3.1±0.3 

A7 335.6±110.5 17.7±4.8 9.1±2.4 4.6±1.3 2.1±0.8 2.1±0.8 3.1±0.4 

A8 323.4±106.5 17.5±5.0 9.1±2.2 4.3±1.0 2.1±0.9 2.2±0.7 3.1±0.4 

Mean All 323.3 17.1 9.2 4.4 2 2.2 3.1 

Std. All 93.8 4.4 2.1 1.1 0.8 0.7 0.4 

Lc.N ‒ number of lacunae   Lc.TV ‒ total volume of lacunae (mm3) 415 
BV ‒ bone volume (mm3)   Lc.TV/BV ‒ lacunar porosity (%) 416 
Lc.N/BV ‒ density of lacunae (mm-3)  Lc.V ‒ average volume of lacuna (µm3) 417 
Cell.V ‒ average volume of each cell (µm3)  Lc.S ‒ average surface area of lacuna (µm2) 418 
Lc.V/Cell.V ‒ local lacunar porosity (%)  Lc.SMI ‒ average structural model index of lacuna 419 
Lc.L1, Lc.L2 and Lc.L3 ‒ average length, width and depth of lacuna (µm) 420 
Lc.L1/Lc.L2 and Lc.L2/Lc.L3 ‒ average anisotropy of lacuna 421 
 422 

3.2.2 Morphometric parameters of canaliculi 
423 

Similarly, Table 3 reports the morphometric parameters calculated on canaliculi for the eight samples. 424 

The average total volume of canaliculi was 3.6×10-5 mm3 and the average canaliculi porosity was 425 
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0.35%. The average volume of canaliculi per cell was 139.3 µm3 with the average local canalicular 426 

porosity of 0.37%. In addition, the average ratio between the volume of canaliculi and the lacuna in 427 

the same cell is 45.8%. The average porosity of the complete LCN was 1.12%.  Close to the lacuna 428 

surface (at 1.2 µm), the average number of canaliculi per lacuna was 58.2. 429 

Table 3: Morphometric parameters of canaliculi  430 

Sample 

ID 

Ca.TV 

(10-5 

mm3) 

LCN.TV 

(10-5 

mm3) 

Ca.TV 

/BV (%) 

LCN.TV

/BV (%) 

Ca.V    

(µm3) 

Ca.V 

/Cell.V (%) 

Ca.V /Lc.V 

(%) 
Ca.N 

A1 3.2 10.9 0.37 1.26 166.9±93.9 0.36±0.21 45.1±22.9 67.8±30.1 

A2 5.2 14.5 0.46 1.27 175.4±89.8 0.52±0.25 58.4±28.8 71.8±28.9 

A3 2.8 12.9 0.25 1.14 80.2±42.1 0.27±0.13 29.4±16.7 49.8±20.3 

A4 3.0 10.2 0.26 0.9 116.8±78.4 0.29±0.18 42.6±28.5 51.4±24.2 

A5 4.2 12.5 0.39 1.16 149.8±103.6 0.42±0.30 50.4±32.4 62.0±28.1 

A6 5.2 12.9 0.57 1.4 228.0±147.5 0.52±0.34 71.7±49.4 59.0±32.7 

A7 3.3 10.9 0.3 0.99 148.2±79.7 0.36±0.19 47.0±25.9 60.4±27.9 

A8 2.0 9.8 0.18 0.87 79.8±43.5 0.20±0.11 27.9±15.2 46.4±24.0 

Mean All 3.6 11.8 0.35 1.12 139.3 0.37 45.8 58.2 

Std. All 1.1 1.5 0.12 0.18 99.9 0.25 31.7 28.1 

Ca.TV ‒ total volume of canaliculi (mm3)  LCN.TV ‒ total volume of the LCN (mm3) 431 
Ca.TV/BV ‒ porosity of canaliculi (%)  LCN.TV/BV ‒ porosity of the LCN (%) 432 
Ca.V ‒ average volume of canaliculi per cell (µm3) Ca.V/Cell.V ‒ local porosity of canaliculi 433 
Ca.V/Lc.V ‒ ratio between the average volume of canaliculi and lacuna per cell (%) 434 
 435 

3.2.3 Statistical analysis 
436 

Table 4 reports the correlation coefficients and p-values of selected quantitative parameters showing 437 

the best correlation (𝑅2 > 0.5and𝑝 < 0.05). For instance, the lacunae volume and surface were the 438 

most correlated traducing some homogeneity in shape. 439 

Table 4: Spearman correlation between morphologic parameters  440 

Parameter 1 Parameter 2 
120 nm 

R2 p-value 

Lc.N/BV Cell.V 0.5390 0.0381 

Lc.TV/BV Lc.V/Cell.V 0.6840 0.0113 

Lc.V Lc.S 0.8757 0.0006 

Lc.L1 Lc.S 0.7469 0.0056 

Lc.L2/Lc.L3 Lc.SMI 0.8375 0.0014 

Ca.TV/BV Ca.V/Cell.V 0.9213 0.0002 

4 Discussion 441 

We presented a dedicated method to measure 3D characteristics of the LCN from X-ray nano-CT 442 

data. The segmentation of lacunae in our images was quite straightforward thanks to their high 443 

contrast (> 80%) and their large size (~ 17, 9 and 4 µm in three directions) compared to the voxel 444 

size (0.12 µm). The corresponding segmentation method relies on standard image processing 445 

operators including filtering, hysteresis thresholding and connected component filtering. In previous 446 

works, thresholding-based methods were also mainly proposed to segment lacunae from CLSM 447 

(Heveran et al., 2018) or micro-CT images (Hemmatian et al., 2017). Specific denoising operations 448 

were applied depending on the type of images and their spatial resolution. In our case, we did not 449 

used morphological operations (erosion and dilatation)  to post process the images as in these 450 

previous works meaning that we kept the raw shape of the lacunae surface. Contrary to lacunae, the 451 

segmentation of canaliculi is more challenging and the methods to tackle it are hardly described in 452 

the previous works. Local or hysteresis thresholding were reported to segment the LCN from CLSM 453 
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images (Roschger et al., 2019) or ptychographic images (Ciani et al., 2018). Here, we investigated 454 

more advanced segmentation methods based on variational region growing and geodesic voting, 455 

which were both applied after a line-enhancement filter. Our results show that the region growing 456 

method preserves better the connectivity and extracts more accurately the thickness of the canaliculi. 457 

The geodesic voting method was developed to extract canaliculi path from CT images obtained at a 458 

lower spatial resolution (voxel size 300 nm) (Zuluaga et al., 2014). Compared to this situation, the 459 

canaliculi may spread on more than one voxel in our case. In addition, the running time of the 460 

geodesic voting method was much larger than that of the region growing and could become 461 

prohibitive in some volumes. In conclusion, we selected the region growing method to segment 462 

canaliculi considering its time-efficiency and efficacy to segment the entire volumes. The VRG 463 

method including vesselness shape prior provides a general framework to segment network-type 464 

structures made of nodes and branches that can be used beyond our application. A close approach 465 

was for instance successfully demonstrated to segment vascular airways in lung CT images (Orkisz 466 

et al., 2014).  467 

Our workflow includes a number of parameters to be set before running. The radius of the median 468 

filter, the limit size of the connected components analysis and the standard deviation in the VRG are 469 

related to the sizes of the anatomical structures of interest and were  kept constant for all volumes. 470 

The two thresholds of the hysteresis thresholding were selected according to the gray histogram of 471 

the original image. Once these parameters are fixed, the workflow is totally automatic.  472 

The quantification of the LCN was performed on eight human femoral cortical bone samples. 473 

Each 3D volume contained on average 257 lacunae and the average density of lacunae was found to 474 

be 24,000 mm-3. The result of the density of lacunae is in the range of previous works 15,000‒35,000 475 

mm-3 (Mader et al., 2013, Bach-Gansmo et al., 2016, Andronowski et al., 2017, Gatti et al., 2018). 476 

Our study provided an estimation of the porosity of the LCN (
𝐿𝐶𝑁.𝑇𝑉

𝐵𝑉
) of 1.12% including both the 477 

lacunar porosity (
𝐿𝑐.𝑇𝑉

𝐵𝑉
) and the canaliculi porosity (

𝐶𝑎.𝑇𝑉

𝐵𝑉
). The 3D lacunar porosity 0.78% is in 478 

agreement with that of previous research in our group using SR-µCT 0.84% (Dong et al., 2014a), 479 

and that obtained from CSLM 0.68% (Repp et al., 2017). There are very few reference values for the 480 

canalicular porosity in the literature. Here, it was found to be 0.37%, which is slightly smaller 481 

compared to 0.57% in (Varga et al., 2015). A value of 0.7% was reported in mice using FIB/SEM 482 

but the calculation was limited to a very small region of interest  (Schneider et al., 2011), and 1.7‒483 

1.9 % in rat tibias using CLSM (Gatti et al., 2018) but in this case the values are likely to be 484 

overestimated by the technique  485 

We also obtained parameters describing the morphology and anisotropy of lacunae.  We followed 486 

an approach based on the second-order moment matrix of each shape in (Dong et al., 2014a). It is 487 

equivalent to the tensor-based approach proposed by (Mader et al., 2013) using the covariance matrix 488 

despite differences in notations (the order of eigenvalues is inverted). The same concept is used in  489 

the work of (Heveran et al., 2018) but they used the inertia matrix instead of the covariance matrix. 490 

The stretch and oblateness were not computed but they can be straightforwardly recovered from the 491 

ratios of the axis length 
𝐿𝑐.𝐿1

𝐿𝑐.𝐿2
 and 

𝐿𝑐.𝐿2

𝐿𝑐.𝐿3
. In this work, we also computed the four intrinsic volumes 492 

including the volume, surface, mean curvature and Euler number of each lacunae. From a 493 

mathematical point of view, these shape features are invariant under rigid transformations 494 

(translations and rotations), additive and continuous. In addition, any shape feature having these 495 
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properties is a linear combination of these four intrinsic volumes (Ohser & Schladitz, 2009).. In this 496 

sense these four intrinsic volumes are basic characteristics of a shape.” 497 

The mean lacunar volume 𝐿𝑐. 𝑉 (315.7 µm3) is consistent with previous reports (~50‒730 µm3) 498 

(Remaggi et al., 1998, Carter et al., 2013). Describing each lacuna as an equivalent ellipsoid, we got 499 

the average lengths of the three axes. The calculated lengths, widths and depths are comparable with 500 

previous works (~ 17 µm, 9 µm and 4 µm) and the ratio between them is about 4:2:1  (van Hove et 501 

al., 2009, Dong et al., 2014a). The average surface area 𝐿𝑐. 𝑆 is 323.3 µm2 which is consistent with 502 

our previous work in human (336.2 µm2) (van Hove et al., 2009, Dong et al., 2014a) and in the same 503 

range as that reported in rats in (Heveran et al., 2018). The average structure model index, around 504 

3.1, did not show a large variability and was comparable with that reported in (Dong et al., 2014a).  505 

Moreover, we introduced some new parameters. The local porosity of the lacuna and canaliculi 506 

was assessed by considering Voronoi cells associated to each lacuna. The average volume of each 507 

Voronoi cell (𝐶𝑒𝑙𝑙. 𝑉) was found to be 42,000 µm3, and represents in a way the volume of influence 508 

of an osteocyte and its processes. The average volume of canaliculi per cell (𝐶𝑎. 𝑉) was 139.3 µm3, 509 

and the ratio 
𝐿𝑐.𝑉

𝐶𝑒𝑙𝑙.𝑉
 (0.88%), 

𝐶𝑎.𝑉

𝐶𝑒𝑙𝑙.𝑉
 (0.37%). The relative volume ratio of canaliculi to lacunae 

𝐶𝑎.𝑉

𝐿𝑐.𝑉
 was 510 

45.8%, which shows that the volume of canaliculi is approximately half that of lacuna. Here we did 511 

not consider the truncation of the Voronoi cells due to the image boundaries. We expect that this 512 

edge effect should have a limited impact with an average of about 259 lacunae per sample. These 513 

parameters could help to assess the properties of the osteocyte system locally within their 514 

environment. Besides, we found an average number of 58.2 primary canaliculi per lacunae, which 515 

was smaller than that found in other studies but in rats and with other imaging techniques  (Sharma 516 

et al., 2012, Ciani et al., 2018). 517 

We found some correlations between the measured parameters. For instance, the total lacunar 518 

(resp canalicular) porosity was significantly correlated to the local lacunar (resp. canalicular) 519 

porosity. The good correlation between 𝐶𝑒𝑙𝑙. 𝑉and 
𝐿𝑐.𝑁

𝐵𝑉
 can be explained by the dependency between 520 

the division of Voronoi cells to the number of lacunae. Since the total volume imaged in each sample 521 

is the same, the average volume of each Voronoi cell is smaller when containing more lacunae. There 522 

was a strong correlation between the lacuna surface and its volume, which traduces some invariance 523 

in the 3D ellipsoidal shape of the lacunae. The length of the long axis 𝐿𝑐. 𝐿1. seems also to dominate 524 

the geometry of the ellipsoid. The correlation between 
𝐿𝑐.𝐿2

𝐿𝑐.𝐿3
 and 𝐿𝑐. 𝑆𝑀𝐼traduces the fact that both 525 

parameters are related to the anisotropy of the lacunae. Besides, there were good linear regressions 526 

between 
𝐿𝑐.𝑉

𝐶𝑒𝑙𝑙.𝑉
 and 

𝐿𝑐.𝑇𝑉

𝐵𝑉
, as well as 

𝐶𝑎.𝑉

𝐶𝑒𝑙𝑙.𝑉
and 

𝐶𝑎.𝑇𝑉

𝐵𝑉
. Nevertheless, since our data set is composed of 527 

only eight samples, the results should be confirmed in further studies.  528 

We acknowledge some limitations of this work. We used bone samples extracted from cadavers 529 

but the medical history of the subject was not available.  Nevertheless, this data set allowed us to 530 

develop a framework that will be further used on more specific groups of samples to answer 531 

dedicated medical questions on bone-related disease. In addition, due to the setup constraints, it was 532 

difficult to select accurately a given zone in the sample  for instance in osteonal tissue. Further work 533 

could be done to analyze the properties of the LCN for instance in osteonal or interstitial tissue. Such 534 

an analysis was performed from confocal laser scanning microscopy images (Repp et al., 2017) or 535 

from SR CT images at 0.7 µm (Gauthier et al., 2019). However, such an analysis requires the 536 

selection of osteonal regions for which there is currently no automatic image analysis procedure 537 
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available, and then remains time-consuming. Other methods could also be of interest to characterize 538 

further the canaliculi network. In future, segmentation methods based on deep learning approaches 539 

could also be investigated, which nevertheless poses the problem of having sufficient and reliable 540 

annotated data sets. 541 

In conclusion, the aim of this work was to present the complete method, going from data 542 

acquisition at very high spatial resolution to the measurement of quantitative parameters of the LCN. 543 

The imaging technique used here, magnified X-ray phase nano-CT, has the advantage to offer an 544 

isotropic spatial resolution, sufficiently high for the observation of the canaliculi, while keeping a 545 

large field of view including more than 250 lacunae per sample. Increasing the image magnification, 546 

which is possible up to a voxel size ~30nm using X-ray phase nano-CT, could permit a better 547 

assessment of canaliculi but at the expense of a smaller field of view.  The proposed segmentation 548 

method is quasi-automatic, efficient and compatible with the very large datasets in terms of 549 

computation time and resources. We calculate 3D quantitative parameters on the entire volumes 550 

instead of cropped sub-volumes as it was generally done previously. Consequently, the values 551 

reported here for the density, the porosity and the morphology of the lacunae and canaliculi are more 552 

statistically representative. The data processing workflow provides a framework that could possibly 553 

be transposable to other 3D imaging modalities (like optical imaging), provided that the parameters 554 

of the method are adapted. This work then opens many perspectives to have a better insight on the 555 

LCN in pathological and healthy bone, both in human and animal models, and is expected to 556 

contribute to a better understanding of the mechanisms of bone fragility.   557 
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 741 

 742 

Figure Captions 743 

 744 

Figure 1: Illustration of the image acquisition in X-ray phase nano-CT : the CT scanning of the 745 

sample is sequentially repeated at 4 different focus-to-sample distances 𝑍1, 𝑍2, 𝑍3 and 𝑍4 (Yu et al., 746 

2018) 747 

 748 

Figure 2: Workflow for the segmentation of the LCN. The top line corresponds to the segmentation 749 

of lacunae and the bottom one to that of canaliculi.  750 

Figure 3: Segmentation of the canaliculi in the 3D volume, illustrated by MIPs of 256 slices along 751 

the Z-axis. (a) MIP of the original volume; (b) MIP of the result after vesselness enhancement; (c) 752 

MIP of the seed map after maximum entropy thresholding; (d) MIP after variational region growing 753 

including segmented lacunae and canaliculi; (e) MIP of the segmented canaliculi  754 

Figure 4: 3D Voronoi tessellation. (a) A slice from the original volume; (b) The corresponding slice 755 

in the 3D Voronoi tessellation image; (c) An overlay of (a) and (b)  756 

Figure 5: Results of the VRG method around three lacunae; (a)-(d)-(h): MIPs along the Z-axis of the 757 

original sub volume at 120 nm; (b)-(e)-(i): MIPs of the corresponding image segmented by the 758 

maximum entropy thresholding; (c)-(f)-(j): MIPs of the segmented image after variational region 759 

growing 760 

Figure 6: Comparison of VRG and geodesic voting, illustrated by MIPs of 128 slices along the Z -761 

axis. (a) MIP of the original volume; (b) MIP of the segmented LCN by variational region growth; 762 

(c) MIP of the segmented LCN by geodesic voting; (d), (e) and (f) zoomed MIPs on the red square 763 

regions corresponding to (a), (b) and (c) respectively.  764 

Figure 7: Segmentation results for the sample A2. (a) MIP along the Y-axis of 100 middle slices 765 

from the reconstructed volume; (b) 3D rendering of the segmented lacunae (yellow) and canaliculi 766 

(green). The white spot corresponds to a Haversian canal.  767 
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