Boliang Yu 
  
Alexandra Pacureanu 
  
Cécile Olivier 
  
Peter Cloetens 
  
Francoise Peyrin 
  
Quantification of the bone lacuno-canalicular network from 3D X-ray phase nano-tomography images

There is a growing interest in developing 3D microscopy for the exploration of thick biological tissues. Recently, 3D X-ray nano computerized tomography has proven to be a suitable technique for imaging the bone lacuno-canalicular network. This interconnected structure is hosting the osteocytes which play a major role in maintaining bone quality through remodeling processes. 3D images have the potential to reveal the architecture of cellular networks, but their quantitative analysis remains a challenge due to the density and complexity of nanometer sized structures and the need to handle and process large datasets, e.g. 2048 3 voxels corresponding to 32 GB per individual image in our case. In this work, we propose an efficient image processing approach for the segmentation of the network and the extraction of characteristic parameters describing the 3D structure. These parameters include the density of lacunae, the porosity of lacunae and canaliculi, and morphological features of lacunae (volume, surface area, lengths, anisotropy etc.). We also introduce additional parameters describing the local environment of each lacuna and its canaliculi.

The method is applied to analyze eight human femoral cortical bone samples imaged by magnified X-ray phase nano tomography with a voxel size of 120 nm, which was found to be a good compromise to resolve canaliculi while keeping a sufficiently large field of view of 246 µm in 3D. The analysis was performed on a total of 2077 lacunae showing an average length, width and depth of 17.1µm x 9.2µm x 4.4µm, with an average number of 58.2 canaliculi per lacuna and a total lacunocanalicular porosity of 1.12%. The reported descriptive parameters provide information on the 3D organization of the lacuno-canalicular network in human bones.

Introduction

Osteoporosis is a bone disease characterized by a decrease of bone mass and density. It affects the mechanical properties of bone leading to a high risk of fractures even by minor injury or little knock in some serious cases [START_REF] Currey | Bone architecture and fracture[END_REF]. Moreover, osteoporosis is not only a health problem, but also a social and economic issue. According to the official reports in the European Union (EU), 22 million women and 5.5 million men suffered from osteoporosis in 2010 and there were 3.5 million fragility fractures occurring mainly in the areas of hips, spines and wrists, which represented an economic burden of 37 billion € to the EU [START_REF] Kanis | A systematic review of intervention thresholds based on FRAX: A report prepared for the National Osteoporosis Guideline Group and the International Osteoporosis Foundation[END_REF]. Since cortical bone is a frequent site of fracture, knowledge about its 3D structure is important to understand the bone mechanical properties and to decipher the mechanisms of bone fragility [START_REF] Zebaze | Intracortical remodelling and porosity in the distal radius and postmortem femurs of women: a cross-sectional study[END_REF].

Bone has a hierarchical structure with macro, micro and nano organization, and it is known that all scales are involved in bone strength [START_REF] Rho | Mechanical properties and the hierarchical structure of bone[END_REF]. At the cellular scale, the lacuno-canalicular network (LCN) forms a complex interconnected porous system deeply embedded in the mineralized bone matrix [START_REF] Knothe Tate | The osteocyte[END_REF]. Osteocytes, which are the most abundant bone cells, are located within the lacunae. Osteocytes have been identified as important regulators in bone remodeling acting as the activator of NF-κB ligand (RANKL) for the recruitment of osteoclasts [START_REF] Jilka | The Role of Osteocytes in Age -Related Bone Loss[END_REF] and producing WNT1 to control bone formation through inactivation and overexpression [START_REF] Joeng | Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis[END_REF]. In the LCN, lacunae function as nodes connected with each other through the canaliculi which host the cytoplasmic processes of osteocytes enabling communication with neighboring bone cells [START_REF] Florencio-Silva | Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells[END_REF]. The LCN supports transport of nutrient and waste products [START_REF] Bonewald | The amazing osteocyte[END_REF]. The osteocytes are thought to sense local loading and interstitial fluid flow inside bone matrix, and to produce and exchange stimuli signals for the control of bone cell activities [START_REF] Buenzli | Quantifying the osteocyte network in the human skeleton[END_REF]. Therefore, it is crucial to have tools available to quantify the architecture of the LCN in various conditions to better understand its role in regulating bone maintenance and strength.

Because of its complex structure, embedded location and fine scale elements, it remains challenging to investigate the LCN in 3D, and in particular to examine the canaliculi whose diameters are far below the micrometer. 2D imaging techniques such as light microscopy (LM) [START_REF] Marotti | Quantitative evaluation on osteocyte canalicular density in human secondary osteons[END_REF][START_REF] Jordan | The Ratio of Osteocytic Incorporation to Bone Matrix Formation in Femoral Neck Cancellous Bone: An Enhanced Osteoblast Work Rate in the Vicinity of Hip Osteoarthritis[END_REF][START_REF] Qiu | Differences in osteocyte and lacunar density between Black and White American women[END_REF], transmission electron microscopy (TEM) [START_REF] Rubin | The TEM characterization of the lamellar structure of osteoporotic human trabecular bone[END_REF] and scanning electron microscopy (SEM) [START_REF] Shah | Evidence that Osteocytes in Autogenous Bone Fragments can Repair Disrupted Canalicular Networks and Connect with Osteocytes in de novo Formed Bone on the Fragment Surface[END_REF] have been typically used to observe the LCN. The importance of 3D imaging versus 2D imaging was recently highlighted in a study on age-related changes of the LCN in mouse bone using 3D confocal laser scanning microscopy (CLSM) [START_REF] Heveran | A new opensource tool for measuring 3D osteocyte lacunar geometries from confocal laser scanning microscopy reveals age-related changes to lacunar size and shape in cortical mouse bone[END_REF] as in several previous works [START_REF] Kamioka | A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy[END_REF], Repp et al., 2017). Recently multiplexed optical imaging techniques offering several contrasts were also proposed [START_REF] Kamel-Elsayed | Novel approaches for two and three dimensional multiplexed imaging of osteocytes[END_REF][START_REF] Genthial | Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy[END_REF]. Focused ion beam SEM (serial FIB-SEM) [START_REF] Schneider | Serial FIB/SEM imaging for quantitative 3D assessment of the osteocyte lacuno-canalicular network[END_REF] can image the LCN with a high precision but it is destructive and restricted to a very limited field of view. In previous works, we showed the feasibility of synchrotron radiation (SR) nano-tomography to image the 3D structure of the LCN at very high and isotropic spatial resolution [START_REF] Langer | X -Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure[END_REF], Pacureanu et al., 2012). X-ray ptychographic tomography was first demonstrated in [START_REF] Dierolf | Ptychographic X-ray computed tomography at the nanoscale[END_REF] and recently used to analyze the LCN in rats [START_REF] Ciani | Ptychographic X-ray CT characterization of the osteocyte lacuno-canalicular network in a male rat's glucocorticoid induced osteoporosis model[END_REF][START_REF] Sharma | Alterations in the osteocyte lacunar-canalicular microenvironment due to estrogen deficiency[END_REF][START_REF] Ciani | Segmentation of nanotomographic cortical bone images for quantitative characterization of the osteoctyte lacuno-canalicular network[END_REF]. However, this technique is limited to a field of view of around 50 microns with long acquisition times.

Although the 3D microscopic imaging modalities are booming, there have been very few works addressing the development of image processing tools to segment and analyze such images [START_REF] Ciani | Ptychographic X-ray CT characterization of the osteocyte lacuno-canalicular network in a male rat's glucocorticoid induced osteoporosis model[END_REF][START_REF] Sharma | Alterations in the osteocyte lacunar-canalicular microenvironment due to estrogen deficiency[END_REF][START_REF] Ciani | Segmentation of nanotomographic cortical bone images for quantitative characterization of the osteoctyte lacuno-canalicular network[END_REF][START_REF] Heveran | A new opensource tool for measuring 3D osteocyte lacunar geometries from confocal laser scanning microscopy reveals age-related changes to lacunar size and shape in cortical mouse bone[END_REF] . Among the existing generalpurpose 3D image processing software, we could not identify any which was suitable to segment and extract quantitative parameters of the LCN from 3D nano-CT images. Despite a profuse literature on image segmentation methods, the particular challenges posed by the morphology, slenderness and organization of canaliculi define a new problem. The canaliculi are vessel -like structures occupying just one or a few voxels in diameter, with regions lacking contrast or presenting discontinuities. Methods proposed in the field of vessel segmentation can be of interest [START_REF] Sato | Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images[END_REF][START_REF] Moccia | Blood vessel segmentation algorithms -Review of methods, datasets and evaluation metrics[END_REF], but need to be adapted. Moreover, the extraction of quantitative characteristics is also quite specific to the LCN although general-purpose tools may exist for porous materials. The analysis of osteocyte lacunae has been previously addressed in a number of papers [START_REF] Mader | A quantitative framework for the 3D characterization of the osteocyte lacunar system[END_REF], Dong et al., 2014a[START_REF] Heveran | A new opensource tool for measuring 3D osteocyte lacunar geometries from confocal laser scanning microscopy reveals age-related changes to lacunar size and shape in cortical mouse bone[END_REF], but less work has been devoted to the quantification of canaliculi [START_REF] Kollmannsberger | The small world of osteocytes: connectomics of the lacuno -canalicular network in bone[END_REF]. In addition, the methods have to be compatible with the large size of the data sets. Even with state of art computers, it remains challenging and time -consuming to handle images larger than 32GB interactively with any software.

Thus, the aim of this work is to present a method including image acquisition and data processing to extract 3D quantitative parameters of the LCN in human bone. Imaging was performed using magnified X-ray phase nano computerized tomography (CT) at the beamline ID16A of the European Synchrotron Radiation Facility (ESRF), Grenoble, France [START_REF] Yu | Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue[END_REF]. The setup provides reconstructed volumes 2048 3 with a voxel size of 120nm on a field of view of 246 µm in the three spatial directions. The first step in the analysis workflow is the segmentation of lacunae and canaliculi. Then, quantitative parameters for the assessment of the LCN were calculated based on custom image analysis methods. We also introduce new parameters describing the local environment of each volume of interest. The potential of the methods is demonstrated by the analysis of eight femoral bone samples from female donors, providing information about the spatial distribution of the network. In the present study, we used human bone samples extracted from cadavers without a specific pathology. This is a preliminary study that allowed us to develop a methodology to assess the LCN and will be further used to answer dedicated medical questions, in studies on samples from patients with various conditions, such as osteoporosis or osteoarthritis.

Materials and methods

In this section, we first describe the imaged bone samples, and briefly introduce the imaging technique. In the following subsections we present the image processing methods developed to segment the lacunae and canaliculi, and extract quantitative parameters of the LCN as well as the statistical analysis methods.

Sample description

Eight samples were taken from deceased female donors (between 56 and 95 years old) provided by the Centre du Don des Corps (University Paris 5) and the Department of Anatomy Rockefeller, University Lyon. Except the sex and the age, no other information regarding disease status or medication history was available in accordance with legal clauses stated in the French Code of Public Health Ethics [START_REF] Cai | Cortical bone elasticity measured by resonant ultrasound spectroscopy is not altered by defatting and synchrotron X-ray imaging[END_REF]. Femoral diaphyses were extracted from different parts of these cadaveric subjects and wrapped in gauze soaked with saline to keep hydrated, and stored at -20°C until sample preparation. Rectangular prism shaped samples with cross sections of about 0.4 mm × 0.4 mm (height approx. 4 mm) were cut along the endosteal-periosteal direction with a water-cooled diamond precision saw (Presi Mecatome T210, Struers Diamond Cut-off Wheel EOD15, Liphy, Grenoble). We scanned eight samples denoted by A1-A8 and ordered by ages of people.

Synchrotron radiation nano-CT

All the samples were imaged by magnified X-ray phase nano-CT at the beamline ID16A of the ESRF. The X-ray beam was focused to a ~ 30 nm size and the sample was positioned in the divergent beam downstream the X-ray focus to record magnified in-line holograms [START_REF] Hubert | Efficient correction of wavefront inhomogeneities in X -ray holographic nanotomography by random sample displacement[END_REF]. The scanned region was selected about 500 µm below the periosteum, close to a Haversian canal but avoiding the canal itself to optimize the use of the field-of-view.

After traversing the sample, the X-ray beam is allowed to propagate before being converted into visible light through a scintillator. Magnified images are recorded by a lens -coupled, 16 Mpixels FReLoN (Fast Readout Low Noise) CCD camera developed at ESRF. The camera was used in binning mode, yielding 2048 × 2048 pixels. The beamline is equipped with 2 phased in air undulators with a period of 22.4 mm and 18.3 mm. The fundamental harmonics are at 11.2 keV and 16.9 keV. In order to work at 33.6 keV, the third harmonic of the U22.4 is used. A multilayer monochromator and multilayer coated Kirkpatrick-Baez mirrors are used to obtained a focused beam with a monochromaticity ΔE/E=10 -2 . A piezo-driven short-range hexapod stage, operated under vacuum, provides accurate position control during the tomographic rotation [START_REF] Villar | Nanopositioning for the ESRF ID16a nano -imaging beamline[END_REF]. Each sample was scanned at four different focus-to-sample distances, which was shown to provide the best image quality for such samples, see Fig. 1 [START_REF] Yu | Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue[END_REF]. The beam energy was 17 keV and 33.6 keV during different data collection sessions. For each distance, 1800 or 2000 projections were recorded over the angular range of 180°. The information on the beamline and the experimental parameters is summarized in Table 1.

After data acquisition, phase retrieval was performed using an extended Paganin's method followed by iterative optimization and the formula in the Frequency domain is shown as following [START_REF] Yu | Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue[END_REF]: .

𝜑 ̃(𝒇) =
(
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where 𝛿 𝑛 is the refractive index decrement, 𝛽 the absorption index, 𝜆 the wavelength, 𝐷 𝑘 the propagation distance, 𝐼 ̃𝐷𝑘 (𝒇) the Fourier transform of the intensity image and 𝛿 𝐷𝑖𝑟𝑎𝑐 (𝒇) the Dirac function.

Subsequently, standard Filtered Back-Projection (FBP) was used for tomographic reconstruction from the phase maps, using the ESRF implementation of PyHST2 [START_REF] Mirone | The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities[END_REF]. The reconstructed volumes were made of 2048 3 voxels with a cubic voxel size of 120 nm, yielding a field of view of 246 μm in the three dimensions. Acquisition time for a complete dataset (i.e. with 4 propagation distances) was approximately 4 hours.

All the processing programs in this work were run on the HPC cluster available at the ESRF using the OAR batch scheduler. The CPU of the used nodes on the cluster was an Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz. We used 20 cores (10 per socket) in total to run the segmentation programs.

Image segmentation

The analysis of the LCN requires to segment both the lacunae and the canaliculi. The segmentation has to be tailored to match the morphological specificities of the lacunae and the thin canaliculi, and to cope with the noise inherent to the imaging approach. Moreover, we have to design a segmentation method which can cope with large image sizes, i.e. 32 GB per volume. In order to exploit fully the knowledge encoded in the images, our aim is to process the entire 3D volume over the entire field of view instead of a cropped volume of interest (VOI). Even with state of art computers, it remains challenging and time-consuming to handle 32 GB images interactively with any software. Thus, we chose to develop codes that could be run offline without user interaction on series of images. Our programs are written in C++ based on the open-source ITK library. The workflow of the segmentation procedure is summarized in Fig. 2, where the top and bottom lines respectively illustrate the segmentation of lacunae and canaliculi which are merged to get the segmented LCN. All image processing steps were done in 3D, and not slice by slice.

Segmentation of lacunae

The aim of this step is to obtain a binary volume of the lacunae only. The dynamic range of our images, corresponding to the map of 2𝜋𝛿 𝜆 (𝛿 the refractive index decrement and 𝜆 the wavelength) [START_REF] Yu | Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue[END_REF] was in the range between 0 and 700 with a contrast to noise ratio around 25 for lacunae. Thus, lacunae are well-contrasted and well-defined objects with a typical ellipsoidal shape. The main issue is that they are connected to each other via the small canaliculi channels. The segmentation of lacunae was based on simple thresholding and filtering methods adapted from a previous work devoted to process absorption SR micro-CT images at 300 nm (Dong et al., 2014a). In the first step, a median filter with a radius of 10 voxels was applied to remove canaliculi while preserving lacunae. Then, we used hysteresis thresholding to segment the lacunae from the images. This method involves two thresholds: the lower threshold is the so -called "hard" threshold, which extracts the voxels of lacunae with high confidence; the other one is a higher threshold, called the "weak" one, which is used to refine the segmentation. The voxels with gray values between two thresholds are assigned to the object if they are connected to the high confidence voxels with respect to the 26-adjacency. The threshold values were adapted from the histograms of each volume. The low threshold was in the middle of two peaks in the histogram and the high threshold at the front edge of the second peak. Finally, portions of Haversian canals that could be included in the segmentation were eliminated after connected component analysis by removing the largest components (threshold of 1 200 000 voxels in our case).

Segmentation of canaliculi

Compared to lacunae, the segmentation of canaliculi is more difficult due to their slenderness, the diameter of canaliculi being estimated in a range between 100-500 nm [START_REF] Varga | Synchrotron X-ray phase nano-tomography-based analysis of the lacunar-canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis[END_REF]. This problem presents some similarities, although not completely equivalent, with the segmentation of vascular networks in medical imaging. In this context, sophisticated image processing methods have been proposed, summarized within two reviews on the topic [START_REF] Lesage | A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes[END_REF][START_REF] Moccia | Blood vessel segmentation algorithms -Review of methods, datasets and evaluation metrics[END_REF]. They include a large variety of techniques such as feature extraction and classification, region growing methods, active contours (snake or level sets) and tracking approaches. However, there are still no universally valid segmentation methods; each approach needs to be substantially adapted to the anatomical structure and to the characteristics of the image in terms of noise, contrast and spatial resolution. Moreover, many sophisticated methods are computationally prohibitive when applied to large 3D images. We previously investigated an advanced tracking approach method based on minimal path and geodesic voting to segment SR micro-CT images acquired at 300 nm (Zuluaga et al., 2014). This method used the centroids of lacunae as starting-points of a fast-marching front propagation while the endpoints are chosen as the edge points from each segmented region after Voronoi tessellation. However, the application of this method was not suitable to the higher resolution images used here, as it only returns single voxel thickness of canaliculi and the computational costs are too heavy to enable processing of large data sets. We have thus resorted to a more efficient method based on the shape priors of canaliculi. The method that we propose here is using a popular filter developed in the context of vessel segmentation, which is dubbed vesselness [START_REF] Sato | Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images[END_REF]. However, this 3D line enhancement filter combined with thresholding is not sufficiently precise in our case, thus we introduce a second step based on a customized region growing approach.

The vesselness enhancement filter uses the eigenvalues of the local Hessian matrix to extract local shape parameters and enhance slender, elongated structures [START_REF] Sato | Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images[END_REF][START_REF] Pacureanu | Imaging the bone cell network with nanoscale synchrotron computed tomography[END_REF]. Computation of the Hessian matrix involves the second-order partial derivatives of the image, which are sensitive to noise. For this reason, smoothing of the image with a 3D Gaussian function of standard deviation 𝜎 was included in the calculation. The three eigenvalues of the Hessian matrix which were calculated for all voxel positions 𝒙 = (𝑥, 𝑦, 𝑧), are then sorted in ascending order of magnitude and denoted 𝜆 1 , 𝜆 2 and 𝜆 3 (|𝜆 1 | ≤ |𝜆 2 | ≤ |𝜆 3 |) (for simplicity we omit the 𝒙 dependency in the eigenvalues). For the bright tubular structures on dark background which we want to segment as canaliculi, the eigenvalues should meet the conditions: |𝜆 1 | ≈ 0; 𝜆 1 ≪ 𝜆 2 ; 𝜆 2 ≈ 𝜆 3 and both of them should be negative. If we denote the vesselness enhanced image 𝑙(𝒙), it can be expressed as [START_REF] Sato | Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images[END_REF]:

𝑙(𝒙) = { 𝜆 𝑐 𝑒𝑥𝑝 ( -𝜆 1 2 2(𝛼 1 𝜆 𝑐 ) 2 ) , 𝜆 1 ≤ 0, 𝜆 𝑐 > 0 𝜆 𝑐 𝑒𝑥𝑝 ( -𝜆 1 2 2(𝛼 2 𝜆 𝑐 ) 2 ) , 𝜆 1 > 0, 𝜆 𝑐 > 0 0, otherwise , (2) 
where 𝛼 1 = 0.5 and 𝛼 2 = 2 are two constant parameters chosen based on a previous report by our group [START_REF] Pacureanu | Vesselness-guided variational segmentation of cellular networks from 3D micro-CT[END_REF]. Figure 3 illustrates Minimum Intensity Projections (MIPs) of the 3D volumes at different steps of the process. The MIPs are calculated along the Z-axis by selecting the minimum intensity value for each XY coordinate from a selected number of slices (here 256). Fig. 3 (b) shows the output of the vesselness filter.

After this step, the 3D vesselness enhanced image is used as input to a region growing method. The initialization of the region growing starts from a best guess image dubbed the "seed map". This binary image is meant to include parts which belong to the sought -after structure with very high probability, and which will evolve by aggregating new voxels belonging to the target structure. The initialization process should be automatic and efficient to segment as many target voxels as possible but avoid other objects having similar features like collagen fibers and speckle noise in our case. We have determined that by thresholding the vesselness map using a rather restrictive criterion we obtain a binary image containing only voxels belonging to canaliculi. Among various global thresholding methods, we selected the maximum entropy thresholding method which maximizes the inter -class entropy [START_REF] Sahoo | A survey of thresholding techniques[END_REF]. The resulting binary image was used as the seed map of the region growing method where bright voxels are the starting points of the growth .

We chose a region-growing approach that could consider our priors concerning the line structures to be segmented. Variational region growing (VRG) permits to build a theoretical framework to formalize the iterative growing process by minimizing a region-based energy function [START_REF] Pacureanu | Vesselness-guided variational segmentation of cellular networks from 3D micro-CT[END_REF], Rose et al., 2010). If we define the 3D image as 𝑓(𝒙) in the domain 𝛺 (a subset of the image), the evolving function can be expressed based on a characteristic function 𝜑 𝒙 :

𝜑 𝒙 = 𝜑(𝒙) = { 1, 𝑖𝑓 𝒙 ∈ 𝛺 in 0, 𝑖𝑓 𝒙 ∈ 𝛺 out , (3) 
where 𝛺 in is the segmented region in 𝛺, and 𝛺 out = 𝛺\𝛺 in the background region.

The set of candidate voxels 𝐶 𝑛 at the iteration 𝑛 are defined as:

𝐶 𝑛 (𝛺 in , 𝜀) = {𝒖 ∈ 𝛺 out , 𝒗 ∈ 𝛺 in ||𝒖 -𝒗| ≤ 𝜀}, (4) where 𝜀 the distance threshold.

At each iteration step, we check the candidate voxels belonging to the background 𝛺 out and connected to the segmented region 𝛺 in . If the new energy function decreases, these voxels are accepted as objects and we update the characteristic function.

If the region-based energy function is noted by 𝐽(𝜑), the optimal solution 𝜑 * of the energy minimization can be expressed as:

𝜑 * = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽 (𝜑 𝒙 ) (5) 
To compute the solution, we define the time-dependent variation of 𝜑 𝒙 as 𝛥 𝑡 𝜑 and estimate the energy variation 𝛥𝐽(𝜑 ̃) for a small variation 𝜑 ̃ as follows:

𝛥 𝑡 𝜑 -𝑐(𝜑) ⋅ 𝐻(-𝛥𝐽(𝜑 ̃)) = 0
(6) where 𝑐(𝜑) = 1 -2𝜑 𝒙 is the switch function, and 𝐻 the one-dimensional Heaviside function defined by:

𝐻(𝑧) = { 1, 𝑖𝑓 𝑧 < 0 0, 𝑖𝑓 𝑧 ≥ 0 (7)
Then, the value of the function 𝜑 𝒙 at the iteration 𝑛 + 1 can be given by:

𝜑 𝒙 𝑛+1 = 𝜑 𝒙 𝑛 + 𝑐(𝜑 𝒙 𝑛 ) ⋅ 𝐻(-𝛥𝐽(𝜑 ̃𝒙 𝑛 )) (8) 
Based on the given "region-independent" descriptor 𝑘 𝒙 Jehan-Besson et al. has defined a general expression for the region-based energy function [START_REF] Jehan-Besson | DREAM2S: Deformable Regions Driven by an Eulerian Accurate Minimization Method for Image and Video Segmentation[END_REF]:

𝐽(𝛺 𝒊𝒏 ) = ∫ 𝑘 𝒙 𝑑𝒙 𝛺 𝒊𝒏 (9)
In our discrete case, we rewrite the energy function as:

𝐽(𝛺 𝒊𝒏 ) = ∑ 𝑘 𝒙 ⋅ 𝜑 𝒙 𝑛 𝒙∈𝛺 (10)
Here, we calculate the energy 𝐽(𝜑 ̃𝑛) when the state of a voxel 𝒗 is switched to the opposite side. The characteristic function of this voxel turns:

𝜑 ̃𝒗 𝑛 = 1 -𝜑 𝒗 𝑛 (11)
The other voxels keep the previous states, so we have:

𝜑 ̃𝒙 𝑛 = 𝜑 𝒙 𝑛 , 𝑖𝑓 𝒙 ≠ 𝒗 (12) 
Then, the energy function after switching can be expressed as:

𝐽(𝜑 ̃𝑛) = 𝑘 𝒗 ⋅ 𝜑 ̃𝒗 𝑛 + ∑ 𝑘 𝒙 ⋅ 𝜑 𝒙 𝑛 𝒙∈𝛺,𝒙≠𝒗 (13) 
We make an equivalent transformation of this function,

𝐽(𝜑 ̃𝑛) = 𝑘 𝒗 ⋅ (1 -𝜑 𝒗 𝑛 ) -𝑘 𝒗 ⋅ 𝜑 𝒗 𝑛 + 𝑘 𝒗 ⋅ 𝜑 𝒗 𝑛 + ∑ 𝑘 𝒙 ⋅ 𝜑 𝒙 𝑛 𝒙∈𝛺,𝒙≠𝒗 ⏟ 𝐽(𝜑 𝑛 ) (14)
Finally, we can obtain the variation of the energy function 𝛥𝐽(𝜑 ̃𝑛):

𝛥𝐽(𝜑 ̃𝑛) = (1 -2𝜑 𝒗 𝑛 ) ⋅ 𝑘 𝒗 (15) 
Note that this expression is valid for any region-independent descriptor 𝑘 𝒗 .

This variational formalism can be used for different region-based energy functions such as the average of gray level [START_REF] Chan | Active contours without edges[END_REF] or the estimation of probability distributions [START_REF] Zhu | Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation[END_REF]. To cope with the complex structure of the LCN, especially with the slender size of canaliculi, we proposed a region-based energy function which combines information from the 3D vesselness filter map 𝑙(𝒙) with information from the original image f(x). 𝑙(𝒙) maps the likelihood of the voxels to belong to a canaliculi, and thus it filters out the lacunae which have elipsoidal shapes. In order to reconstruct the entire lacuno-canalicular network, the region-growing is governed by the vessleness map when 𝑙(𝒙) has a high value, that is, the considered voxels belong to canaliculi, and conversely, by the original image f(x) offering strong contrast inside lacunae, when l(x) has a low value. The energy function is written as:

𝐽(𝑓, 𝑙) = 𝐻(𝑓(𝒙) -𝛿)𝐽 𝑓 (𝑓) + (1 -𝐻(𝑓(𝒙) -𝛿))𝐽 𝑓,𝑙 (𝑓, 𝑙), (16) 
where

𝐽 𝑓 (𝑓) = ∫ (𝑓(𝒙) -𝜇 in ) 2 𝑑𝒙 𝛺 in + ∫ (𝑓(𝒙) -𝜇 out ) 2 𝑑𝒙 𝛺 out , ( 17 
)
and

𝐽 𝑓𝑙 (𝑓, 𝑙) = ∫ 𝐺 𝜇 𝑖𝑛 ,𝜎 𝑖𝑛 (𝑓, 𝑙)𝑑𝒙 𝛺 in + ∫ 𝐺 𝜇 𝑜𝑢𝑡 ,𝜎 𝑜𝑢𝑡 (𝑓, 𝑙)𝑑𝒙 𝛺 out 𝐺 𝜇,𝜎 (𝑓, 𝑙) = 1 √2𝜋 𝜎 𝑒𝑥𝑝 (- (𝑓(𝒙)-𝜇) 2 2𝜎 2 𝑙(𝒙) ) (18) 
where 𝜇 in and 𝜇 out are the average gray values in the domain 𝛺 in and 𝛺 out of the original image 𝑓(𝒙), 𝜎 in and 𝜎 out the corresponding standard deviations, 𝐻 the Heaviside function, 𝛿 a threshold value.

Then, the variation of the energy function can be calculated by:

𝛥𝐽(𝜑 𝑛+1 ) = (1 -2𝜑 𝑛 ) (𝛥𝐽 𝑓 (𝑓) + 𝛥𝐽 𝑓,𝑙 (𝑓, 𝑙)) (19) 
where we have

𝛥𝐽 𝑓 (𝑓) = (𝑓(𝒙) -𝜇 𝑓 𝒊𝒏 ) 2 -(𝑓(𝒙) -𝜇 𝑓 𝒐𝒖𝒕 ) 2 (20) 
and

𝛥𝐽 𝑓,𝑙 (𝑓, 𝑙) = 1 √2𝜋 𝜎 𝑓 𝒊𝒏 𝑒𝑥𝑝 (- (𝑓(𝒙)-𝜇 𝑓 𝒊𝒏 ) 2 2𝜎 𝑓 𝒊𝒏 2 𝑙(𝒙) ) - 1 √2𝜋 𝜎 𝑓 𝒐𝒖𝒕 𝑒𝑥𝑝 (- (𝑓(𝒙)-𝜇 𝑓 𝒐𝒖𝒕 ) 2 2𝜎 𝑓 out 2 (1-𝑙(𝒙)) ) (21) 
Finally, we filtered out the smallest connected components which could be collagen fibers or noise. The threshold was set to 100 voxels, corresponding to a volume of 0.17µm 3 , after examining the histogram of the component sizes and the residual noise in the image. Since the segmented image contains both canaliculi and parts of lacunae as shown in Fig. 3 (d), we subtracted the segmented lacunae from the result to obtain the binary image of canaliculi only , see Fig. 3 (e).

Quantitative analysis

In this section, we describe the parameters extracted from both the binary lacunae and canaliculi images.

Quantification of lacunae

The binary lacunae image was first labeled by using a connected component analysis. The labels were consecutive integer values starting at one, after sorting the objects (lacunae) by decreasing size. We used the 26 connectivity in 3D. The number of lacunae 𝐿𝑐. 𝑁 was calculated by counting the total number of labels. Let us denote 𝐿 𝑛 an osteocyte lacuna with label 𝑛. For each specific lacuna 𝐿 𝑛 , its volume 𝐿𝑐. 𝑉 can be simply computed by summing all the voxels with label 𝑛.

We used a method based on the second-order central moments to estimate the lengths of three principal axes of each lacuna by fitting it to an ellipsoid as previously described (Dong et al., 2014a). The final length, width and depth (𝐿𝑐. 𝐿 1 , 𝐿𝑐. 𝐿 2 and 𝐿𝑐. 𝐿 3 ) of the ellipsoid are expressed as a function of the three eigenvalues of the second-order central moment matrix. Besides, we calculated different ratios such as to assess the anisotropy of the lacunae.

We also calculated the intrinsic volumes of lacunae providing interesting characteristics of shapes, such as the surface area 𝐿𝑐. 𝑆 and the structural model index 𝐿𝑐. 𝑆𝑀𝐼 of each lacuna, computed by using the Crofton formula [START_REF] Ohser | 3D images of materials structures: processing and analysis[END_REF]. Moreover, we introduce here local parameters computed in the neighborhood of each lacuna, by using the 3D Voronoi tessellation of the images after connected components analysis , see Fig. 4. We calculated the Voronoi diagram associated to the centroids of each lacuna. After this step, we got a partition of the 3D volume into small regions, that we called 𝐶𝑒𝑙𝑙, each of them containing only one lacuna and its canaliculi. Then, we computed the average volume of each Voronoi cell (𝐶𝑒𝑙𝑙. 𝑉) and the local lacunar porosity expressed by the ratio between the average volume of lacuna per Voronoi cell and the average volume of each Voronoi cell ( 𝐿𝑐.𝑉

The density of lacunae

𝐶𝑒𝑙𝑙.𝑉

).

Quantification of canaliculi

Similarly, we calculated the 3D porosity of canaliculi ) for the evaluation of the whole network. Besides, to quantify the ramification of canaliculi, we calculated the number of canaliculi per lacuna (𝐶𝑎. 𝑁) (Dong et al., 2014b).

Statistical analysis

We provide the average and standard deviation of all parameters. The correlations between parameters were studied by using the Spearman correlation coefficient (𝑅 2 ) and the p-value by the Fisher's r to z transformation. These calculations and analysis were performed by Statview ® (SAS Institute Inc., Cary, NC, USA). P-values under 0.05 were considered as significant.

Results

In this section, we will give the results of the segmentation workflow and the quantitative LCN parameters of the eight samples.

Segmentation method

Figure 5 illustrates results of the segmentation by the VRG method around three selected lacunae. MIPs are shown for VOIs of 256×256×128 voxels, corresponding to a physical size of 30.7 µm×30.7 µm×15.4 µm. Figure 5 d)-(h). We can see that the latter detects both the lacunae and canaliculi voxels. The red circle regions in Fig. 5 show that the connectivity between some canaliculi is restored after the variational region growing process.

We also compared the result of the region growing segmentation to the geodesic voting method previously developed in our group [START_REF] Zuluaga | Bone canalicular network segmentation in 3D nano-CT images through geodesic voting and image tessellation[END_REF]. We compare the running time of the two methods to segment canaliculi from one reconstructed volume, excluding the pre and post processing before and after the segmentation, and we check the segmented results visually. The variational region growing method needed 830 seconds to finish the process, while the geodesic voting took 17 700 seconds, which is 21.3 times longer. Fig. 6 illustrates the segmentation results of the two methods. To improve the visualization, we overlaid the lacunae segmented by the method mentioned in the previous section on a region of 2048 × 2048 × 128 voxels. Figure 6 displays the MIP of (a) the original volume, (b) the LCN segmented by using variational region growing, (c) the LCN segmented by using geodesic voting; (d), (e), (f) are zooms of the MIPs shown in (a), (b) and (c), respectively. We can see that both methods achieve the extraction of canaliculi from the reconstructed volumes. However, when using the geodesic voting, the connectivity between canaliculi is broken in some regions and the thickness of the extracted canaliculi is intrinsically one voxel which is smaller than that of variational region growing, see Fig. 6 (e) and (f), and not representative of the truth at this scale. This observation was confirmed by the computation of the connectivity in one selected volume segmented from both methods. The connectivity is defined as the number of cuts that can be made in an object without breaking it in distinct components. Since it is a number without unit, it is conventionally normalized by the total volume, thus expressed as a density of connectivity in mm -3 . The connectivity was derived from the Euler number efficiently computed on discrete grids as described in [START_REF] Ohser | 3D images of materials structures: processing and analysis[END_REF]. The result showed that the connectivity of the network segmented with the VRG method (4.98 10 6 mm -3 ) was about four times that found from the geodesic voting method (1.21 10 6 mm -3 ), showing a better preservation of the integrity of the LCN. In addition, as expected, the geodesic voting method does not permit to quantify the thickness since by construction the canaliculi are restricted to one voxel. These results confirm that the variational region growing method is better suited to segment the canaliculi in the present study, with the additional advantage of being faster.

In Fig. 7 (a), we show the MIP along the Y-axis of 100 middle slices from the reconstructed volume of the sample A2 in order to observe the distribution of lacunae surrounding the osteon. The 3D visualization of the segmented lacunae and canaliculi rendered by VGStudioMax® is given in Fig. 7 (b).

Quantitative analysis of the LCN in human bone

Here, we report the quantitative LCN parameters extracted from the whole images of the eight human diaphysis bone samples.

Morphometric parameters of lacunae

Table 2 presents the descriptive statistics of lacunae parameters for each sample. Whenever this applies, we provide the mean and standard deviation of the parameter within the sample . For such parameters, the last line of the table provides the mean and standard deviation in all pooled lacunae. In total, we analyzed 2077 lacunae with an average number of lacunae per volume of 259.6. The mean lacunar porosity of 0.78%. The average lacunar volume and surface were respectively 315.7 µm 3 and 323.3 µm 2 . The average Voronoi cell volume was found to be 42,000 µm 3 and the average local lacunar porosity was 0.88 %. The average length, width and depth of each lacuna were 17.1 µm, 9.2 µm and 4.4 µm, respectively and showed some dispersion within each volume. The anisotropy of the lacunae, described by the ratio between the length and the width, was found to be 2.0, the ratio between the width and the depth was found to be 2.2 and the structural model index found to be 3.1. BV -bone volume (mm 3 ) Lc.TV/BV -lacunar porosity (%)

Lc.N/BV -density of lacunae (mm -3 ) Lc.V -average volume of lacuna (µm 3 )

Cell.V -average volume of each cell (µm 3 ) Lc.S -average surface area of lacuna (µm 2 )

Lc.V/Cell.Vlocal lacunar porosity (%) Lc.SMI -average structural model index of lacuna Lc.L1, Lc.L2 and Lc.L3 -average length, width and depth of lacuna (µm)

Lc.L1/Lc.L2 and Lc.L2/Lc.L3 -average anisotropy of lacuna

Morphometric parameters of canaliculi

Similarly, Table 3 reports the morphometric parameters calculated on canaliculi for the eight samples. The average total volume of canaliculi was 3.6×10 -5 mm 3 and the average canaliculi porosity was 0.35%. The average volume of canaliculi per cell was 139.3 µm 3 with the average local canalicular porosity of 0.37%. In addition, the average ratio between the volume of canaliculi and the lacuna in the same cell is 45.8%. The average porosity of the complete LCN was 1.12%. Close to the lacuna surface (at 1.2 µm), the average number of canaliculi per lacuna was 58.2. Ca.V -average volume of canaliculi per cell (µm 3 ) Ca.V/Cell.Vlocal porosity of canaliculi Ca.V/Lc.V -ratio between the average volume of canaliculi and lacuna per cell (%)

Statistical analysis

Table 4 reports the correlation coefficients and p-values of selected quantitative parameters showing the best correlation (𝑅 2 > 0.5and𝑝 < 0.05). For instance, the lacunae volume and surface were the most correlated traducing some homogeneity in shape. 

Discussion

We presented a dedicated method to measure 3D characteristics of the LCN from X-ray nano-CT data. The segmentation of lacunae in our images was quite straightforward thanks to their high contrast (> 80%) and their large size (~ 17, 9 and 4 µm in three directions) compared to the voxel size (0.12 µm). The corresponding segmentation method relies on standard image processing operators including filtering, hysteresis thresholding and connected component filtering. In previous works, thresholding-based methods were also mainly proposed to segment lacunae from CLSM [START_REF] Heveran | A new opensource tool for measuring 3D osteocyte lacunar geometries from confocal laser scanning microscopy reveals age-related changes to lacunar size and shape in cortical mouse bone[END_REF] or micro-CT images [START_REF] Hemmatian | Accuracy and reproducibility of mouse cortical bone microporosity as quantified by desktop microcomputed tomography[END_REF]. Specific denoising operations were applied depending on the type of images and their spatial resolution. In our case, we did not used morphological operations (erosion and dilatation) to post process the images as in these previous works meaning that we kept the raw shape of the lacunae surface. Contrary to lacunae , the segmentation of canaliculi is more challenging and the methods to tackle it are hardly described in the previous works. Local or hysteresis thresholding were reported to segment the LCN from CLSM images [START_REF] Roschger | The contribution of the pericanalicular matrix to mineral content in human osteonal bone[END_REF] or ptychographic images [START_REF] Ciani | Ptychographic X-ray CT characterization of the osteocyte lacuno-canalicular network in a male rat's glucocorticoid induced osteoporosis model[END_REF]. Here, we investigated more advanced segmentation methods based on variational region growing and geodesic voting, which were both applied after a line-enhancement filter. Our results show that the region growing method preserves better the connectivity and extracts more accurately the thickness of the canaliculi. The geodesic voting method was developed to extract canaliculi path from CT images obtained at a lower spatial resolution (voxel size 300 nm) [START_REF] Zuluaga | Bone canalicular network segmentation in 3D nano-CT images through geodesic voting and image tessellation[END_REF]. Compared to this situation, the canaliculi may spread on more than one voxel in our case. In addition, the running time of the geodesic voting method was much larger than that of the region growing and could become prohibitive in some volumes. In conclusion, we selected the region growing method to segment canaliculi considering its time-efficiency and efficacy to segment the entire volumes. The VRG method including vesselness shape prior provides a general framework to segment network-type structures made of nodes and branches that can be used beyond our application. A close approach was for instance successfully demonstrated to segment vascular airways in lung CT images [START_REF] Orkisz | Segmentation of the pulmonary vascular trees in 3D CT images using variational region-growing[END_REF].

Our workflow includes a number of parameters to be set before running. The radius of the median filter, the limit size of the connected components analysis and the standard deviation in the VRG are related to the sizes of the anatomical structures of interest and were kept constant for all volumes. The two thresholds of the hysteresis thresholding were selected according to the gray histogram of the original image. Once these parameters are fixed, the workflow is totally automatic.

The quantification of the LCN was performed on eight human femoral cortical bone samples. Each 3D volume contained on average 257 lacunae and the average density of lacunae was found to be 24,000 mm -3 . The result of the density of lacunae is in the range of previous works 15,000-35,000 mm -3 [START_REF] Mader | A quantitative framework for the 3D characterization of the osteocyte lacunar system[END_REF][START_REF] Bach-Gansmo | Osteocyte lacunar properties and cortical microstructure in human iliac crest as a function of age and sex[END_REF][START_REF] Andronowski | Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach[END_REF][START_REF] Gatti | Microstructural changes associated with osteoporosis negatively affect loading-induced fluid flow around osteocytes in cortical bone[END_REF].

Our study provided an estimation of the porosity of the LCN ( ). The 3D lacunar porosity 0.78% is in agreement with that of previous research in our group using SR-µCT 0.84% (Dong et al., 2014a), and that obtained from CSLM 0.68% [START_REF] Repp | Spatial heterogeneity in the canalicular density of the osteocyte network in human osteons[END_REF]. There are very few reference values for the canalicular porosity in the literature. Here, it was found to be 0.37%, which is slightly smaller compared to 0.57% in [START_REF] Varga | Synchrotron X-ray phase nano-tomography-based analysis of the lacunar-canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis[END_REF]. A value of 0.7% was reported in mice using FIB/SEM but the calculation was limited to a very small region of interest [START_REF] Schneider | Serial FIB/SEM imaging for quantitative 3D assessment of the osteocyte lacuno-canalicular network[END_REF], and 1.7-1.9 % in rat tibias using CLSM [START_REF] Gatti | Microstructural changes associated with osteoporosis negatively affect loading-induced fluid flow around osteocytes in cortical bone[END_REF] but in this case the values are likely to be overestimated by the technique We also obtained parameters describing the morphology and anisotropy of lacunae. We followed an approach based on the second-order moment matrix of each shape in (Dong et al., 2014a). It is equivalent to the tensor-based approach proposed by [START_REF] Mader | A quantitative framework for the 3D characterization of the osteocyte lacunar system[END_REF] using the covariance matrix despite differences in notations (the order of eigenvalues is inverted). The same concept is used in the work of [START_REF] Heveran | A new opensource tool for measuring 3D osteocyte lacunar geometries from confocal laser scanning microscopy reveals age-related changes to lacunar size and shape in cortical mouse bone[END_REF] but they used the inertia matrix instead of the covariance matrix. The stretch and oblateness were not computed but they can be straightforwardly recovered from the ratios of the axis length . In this work, we also computed the four intrinsic volumes including the volume, surface, mean curvature and Euler number of each lacunae. From a mathematical point of view, these shape features are invariant under rigid transformations (translations and rotations), additive and continuous. In addition, any shape feature having these properties is a linear combination of these four intrinsic volumes [START_REF] Ohser | 3D images of materials structures: processing and analysis[END_REF].. In this sense these four intrinsic volumes are basic characteristics of a shape."

The mean lacunar volume 𝐿𝑐. 𝑉 (315.7 µm 3 ) is consistent with previous reports (~50-730 µm 3 ) [START_REF] Remaggi | Histomorphometric study on the osteocyte lacuno-canalicular network in animals of different species. I. Woven-fibered and parallelfibered bones[END_REF][START_REF] Carter | Femoral osteocyte lacunar density, volume and morphology in women across the lifespan[END_REF]. Describing each lacuna as an equivalent ellipsoid, we got the average lengths of the three axes. The calculated lengths, widths and depths are comparable with previous works (~ 17 µm, 9 µm and 4 µm) and the ratio between them is about 4:2:1 (van [START_REF] Van Hove | Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density -Is there a role for mechanosensing[END_REF], Dong et al., 2014a). The average surface area 𝐿𝑐. 𝑆 is 323.3 µm 2 which is consistent with our previous work in human (336.2 µm 2 ) [START_REF] Van Hove | Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density -Is there a role for mechanosensing[END_REF], Dong et al., 2014a) and in the same range as that reported in rats in [START_REF] Heveran | A new opensource tool for measuring 3D osteocyte lacunar geometries from confocal laser scanning microscopy reveals age-related changes to lacunar size and shape in cortical mouse bone[END_REF]. The average structure model index, around 3.1, did not show a large variability and was comparable with that reported in (Dong et al., 2014a).

Moreover, we introduced some new parameters. The local porosity of the lacuna and canaliculi was assessed by considering Voronoi cells associated to each lacuna. The average volume of each Voronoi cell (𝐶𝑒𝑙𝑙. 𝑉) was found to be 42,000 µm 3 , and represents in a way the volume of influence of an osteocyte and its processes. The average volume of canaliculi per cell (𝐶𝑎. 𝑉) was 139.3 µm 3 , and the ratio 𝐿𝑐.𝑉 𝐶𝑒𝑙𝑙.𝑉 (0.88%), 𝐶𝑎.𝑉 𝐶𝑒𝑙𝑙.𝑉 (0.37%). The relative volume ratio of canaliculi to lacunae 𝐶𝑎.𝑉 𝐿𝑐.𝑉 was 45.8%, which shows that the volume of canaliculi is approximately half that of lacuna. Here we did not consider the truncation of the Voronoi cells due to the image boundaries. We expect that this edge effect should have a limited impact with an average of about 259 lacunae per sample. These parameters could help to assess the properties of the osteocyte system locally within their environment. Besides, we found an average number of 58.2 primary canaliculi per lacunae, which was smaller than that found in other studies but in rats and with other imaging techniques [START_REF] Sharma | Alterations in the osteocyte lacunar-canalicular microenvironment due to estrogen deficiency[END_REF][START_REF] Ciani | Ptychographic X-ray CT characterization of the osteocyte lacuno-canalicular network in a male rat's glucocorticoid induced osteoporosis model[END_REF].

We found some correlations between the measured parameters. For instance, the total lacunar (resp canalicular) porosity was significantly correlated to the local lacunar (resp. canalicular) porosity. The good correlation between 𝐶𝑒𝑙𝑙. 𝑉and 𝐿𝑐.𝑁 𝐵𝑉 can be explained by the dependency between the division of Voronoi cells to the number of lacunae. Since the total volume imaged in each sample is the same, the average volume of each Voronoi cell is smaller when containing more lacunae. There was a strong correlation between the lacuna surface and its volume, which traduces some invariance in the 3D ellipsoidal shape of the lacunae. The length of the long axis 𝐿𝑐. 𝐿 1 . seems also to dominate the geometry of the ellipsoid. The correlation between We acknowledge some limitations of this work. We used bone samples extracted from cadavers but the medical history of the subject was not available. Nevertheless, this data set allowed us to develop a framework that will be further used on more specific groups of samples to answer dedicated medical questions on bone-related disease. In addition, due to the setup constraints, it was difficult to select accurately a given zone in the sample for instance in osteonal tissue. Further work could be done to analyze the properties of the LCN for instance in osteonal or interstitial tissue. Such an analysis was performed from confocal laser scanning microscopy images [START_REF] Repp | Spatial heterogeneity in the canalicular density of the osteocyte network in human osteons[END_REF] or from SR CT images at 0.7 µm [START_REF] Gauthier | 3D analysis of the osteonal and interstitial tissue in human radii cortical bone[END_REF]. However, such an analysis requires the selection of osteonal regions for which there is currently no automatic image analysis procedure available, and then remains time-consuming. Other methods could also be of interest to characterize further the canaliculi network. In future, segmentation methods based on deep learning approaches could also be investigated, which nevertheless poses the problem of having sufficient and reliable annotated data sets.

In conclusion, the aim of this work was to present the complete method, going from data acquisition at very high spatial resolution to the measurement of quantitative parameters of the LCN. The imaging technique used here, magnified X-ray phase nano-CT, has the advantage to offer an isotropic spatial resolution, sufficiently high for the observation of the canaliculi, while keeping a large field of view including more than 250 lacunae per sample. Increasing the image magnification, which is possible up to a voxel size ~30nm using X-ray phase nano-CT, could permit a better assessment of canaliculi but at the expense of a smaller field of view. The proposed segmentation method is quasi-automatic, efficient and compatible with the very large datasets in terms of computation time and resources. We calculate 3D quantitative parameters on the entire volumes instead of cropped sub-volumes as it was generally done previously. Consequently, the values reported here for the density, the porosity and the morphology of the lacunae and canaliculi are more statistically representative. The data processing workflow provides a framework that could possibly be transposable to other 3D imaging modalities (like optical imaging), provided that the parameters of the method are adapted. This work then opens many perspectives to have a better insight on the LCN in pathological and healthy bone, both in human and animal models, and is expected to contribute to a better understanding of the mechanisms of bone fragility. 

  volume was computed as the number of total lacunae divided by the bone volume while the porosity 𝐿𝑐.𝑇𝑉 𝐵𝑉 was equal to the total volume of lacunae in the reconstruction divided by the bone volume.

  volume expressed as the total volume of canaliculi divided by the bone volume. To obtain a local measure, we also computed the local canalicular porosity expressed by the ratio 𝐶𝑎.𝑉 𝐶𝑒𝑙𝑙.𝑉 between the average volume of canaliculi per cell and the average volume of each cell, and the ratio 𝐶𝑎.𝑉 𝐿𝑐.𝑉 between the average volume of canaliculi and lacunae per cell. Moreover, we calculated the total porosity of the LCN ( 𝐿𝐶𝑁.𝑇𝑉 𝐵𝑉

  Figure 5 illustrates results of the segmentation by the VRG method around three selected lacunae. MIPs are shown for VOIs of 256×256×128 voxels, corresponding to a physical size of 30.7 µm×30.7 µm×15.4 µm. Figure 5 respectively shows the MIPs of: (a)-(d)-(h) the original reconstructed volume; (b)-(e)-(i) the segmented image by the maximum entropy thresholding; (c)-(f)-(j) the variation region growing method initialized by (b)-(d)-(h). We can see that the latter detects both the lacunae and canaliculi voxels. The red circle regions in Fig.5show that the connectivity between some canaliculi is restored after the variational region growing process.

  𝐿𝑐.𝐿 2 𝐿𝑐.𝐿 3 and 𝐿𝑐. 𝑆𝑀𝐼traduces the fact that both parameters are related to the anisotropy of the lacunae. Besides, there were good linear regressions between since our data set is composed of only eight samples, the results should be confirmed in further studies.

  Figure CaptionsFigure1: Illustration of the image acquisition in X-ray phase nano-CT : the CT scanning of the sample is sequentially repeated at 4 different focus-to-sample distances 𝑍 1 , 𝑍 2 , 𝑍 3 and 𝑍 4[START_REF] Yu | Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue[END_REF] Figure2: Workflow for the segmentation of the LCN. The top line corresponds to the segmentation of lacunae and the bottom one to that of canaliculi.

Figure 3 :Figure 5 :

 35 Figure 3: Segmentation of the canaliculi in the 3D volume, illustrated by MIPs of 256 slices along the Z-axis. (a) MIP of the original volume; (b) MIP of the result after vesselness enhancement; (c) MIP of the seed map after maximum entropy thresholding; (d) MIP after variational region growing including segmented lacunae and canaliculi; (e) MIP of the segmented canaliculi Figure 4: 3D Voronoi tessellation. (a) A slice from the original volume; (b) The corresponding slice in the 3D Voronoi tessellation image; (c) An overlay of (a) and (b) Figure 5: Results of the VRG method around three lacunae; (a)-(d)-(h): MIPs along the Z-axis of the original sub volume at 120 nm; (b)-(e)-(i): MIPs of the corresponding image segmented by the maximum entropy thresholding; (c)-(f)-(j): MIPs of the segmented image after variational region growing Figure 6: Comparison of VRG and geodesic voting, illustrated by MIPs of 128 slices along the Zaxis. (a) MIP of the original volume; (b) MIP of the segmented LCN by variational region growth; (c) MIP of the segmented LCN by geodesic voting; (d), (e) and (f) zoomed MIPs on the red square regions corresponding to (a), (b) and (c) respectively.

Figure 7 :

 7 Figure 7: Segmentation results for the sample A2. (a) MIP along the Y -axis of 100 middle slices from the reconstructed volume; (b) 3D rendering of the segmented lacunae (yellow) and canaliculi (green). The white spot corresponds to a Haversian canal.

  

  

  

  

  

  

  

  

Table 1 :

 1 Experimental parameters of the beamline ID16A

	Undulator	Energy	Dose	Exit window	Scintillator	Detector	Exposure time	# projections
	U22.4	33.6 keV	1.4 MGy	Polycrystalline	GGG:Eu	FReLon	0.5 s	2000
	U18.3	17.05 keV 2.1 MGy	diamond window	23 μm	E2V 16 M	0.35 s	1800
				(500 μm)				

Table 2 :

 2 Morphometric parameters of lacunae

	Sample ID	Lc.N	Lc.TV (10 -5 mm 3 )	Lc.TV/BV (%)	Lc.N/BV (10 4 mm -3 )	Lc.V (µm 3 )	Cell.V (10 4 µm 3 )	Lc.V/Cell.V (%)
	A1	194	7.6	0.88	2.2	393.4±172.6	5.1±2.8	0.92±0.55
	A2	298	9.3	0.81	2.6	311.1±116.6	3.6±1.3	0.98±0.59
	A3	347	10.1	0.9	3.1	291.5±108.1	3.1±1.1	1.02±0.49
	A4	255	7.2	0.64	2.3	284.1±99.9	4.3±1.6	0.75±0.39
	A5	278	8.3	0.77	2.6	298.8±96.4	3.8±1.3	0.86±0.38
	A6	229	7.6	0.83	2.5	333.4±132.6	5.1±2.7	0.84±0.53
	A7	222	7.6	0.69	2	341.0±168.5	4.6±1.8	0.83±0.47
	A8	254	7.8	0.69	2.3	307.0±161.3	4.3±1.5	0.77±0.36
	Mean All	259.6	8.2	0.78	2.4	315.7		4.2	0.88
	Std. All	44.9	0.9	0.09	0.3	134.8		2.3	0.48
	Sample ID		Lc.S (µm 2 )	Lc.L1 (µm)	Lc.L2 (µm)	Lc.L3 (µm)	Lc.L1 /Lc.L2		Lc.L2 /Lc.L3	Lc.SMI
	A1	365.8±110.7	19.3±4.7	9.1±2.2	4.7±1.2	2.2±0.8	2.0±0.6	3.1±0.3
	A2	334.7±92.8	16.8±4.0	10.0±2.1	4.1±1.0	1.8±0.6	2.6±0.8	3.0±0.4
	A3	298.3±77.2	16.9±4.3	8.2±1.8	4.7±1.0	2.2±0.8	1.8±0.5	3.2±0.4
	A4	301.9±81.7	15.7±3.6	9.3±2.1	4.3±1.0	1.8±0.6	2.3±0.8	3.0±0.4
	A5	317.4±70.0	16.4±3.8	9.3±1.8	4.5±1.0	1.8±0.6	2.2±0.7	3.0±0.4
	A6	329.3±91.4	17.2±4.2	9.2±1.9	4.5±1.1	2.0±0.7	2.1±0.6	3.1±0.3
	A7	335.6±110.5	17.7±4.8	9.1±2.4	4.6±1.3	2.1±0.8	2.1±0.8	3.1±0.4
	A8	323.4±106.5	17.5±5.0	9.1±2.2	4.3±1.0	2.1±0.9	2.2±0.7	3.1±0.4
	Mean All		323.3	17.1	9.2	4.4	2		2.2	3.1
	Std. All		93.8	4.4	2.1	1.1	0.8		0.7	0.4
	Lc.N -number of lacunae		Lc.TV -total volume of lacunae (mm 3 )

Table 3 :

 3 Morphometric parameters of canaliculi

	Sample ID	Ca.TV (10 -5 mm 3 )	LCN.TV (10 -5 mm 3 )	Ca.TV /BV (%)	LCN.TV /BV (%)	Ca.V (µm 3 )	Ca.V /Cell.V (%)	Ca.V /Lc.V (%)	Ca.N
	A1	3.2	10.9	0.37	1.26	166.9±93.9	0.36±0.21	45.1±22.9	67.8±30.1
	A2	5.2	14.5	0.46	1.27	175.4±89.8	0.52±0.25	58.4±28.8	71.8±28.9
	A3	2.8	12.9	0.25	1.14	80.2±42.1	0.27±0.13	29.4±16.7	49.8±20.3
	A4	3.0	10.2	0.26	0.9	116.8±78.4	0.29±0.18	42.6±28.5	51.4±24.2
	A5	4.2	12.5	0.39	1.16	149.8±103.6	0.42±0.30	50.4±32.4	62.0±28.1
	A6	5.2	12.9	0.57	1.4	228.0±147.5	0.52±0.34	71.7±49.4	59.0±32.7
	A7	3.3	10.9	0.3	0.99	148.2±79.7	0.36±0.19	47.0±25.9	60.4±27.9
	A8	2.0	9.8	0.18	0.87	79.8±43.5	0.20±0.11	27.9±15.2	46.4±24.0
	Mean All	3.6	11.8	0.35	1.12	139.3	0.37	45.8	58.2
	Std. All	1.1	1.5	0.12	0.18	99.9	0.25	31.7	28.1
	Ca.TV -total volume of canaliculi (mm 3 )	LCN.TV -total volume of the LCN (mm 3 )	
	Ca.TV/BV -porosity of canaliculi (%)		LCN.TV/BV -porosity of the LCN (%)	

Table 4 :

 4 Spearman correlation between morphologic parameters

	Parameter 1 Parameter 2	R 2	120 nm p-value
	Lc.N/BV	Cell.V	0.5390 0.0381
	Lc.TV/BV	Lc.V/Cell.V 0.6840 0.0113
	Lc.V	Lc.S	0.8757 0.0006
	Lc.L1	Lc.S	0.7469 0.0056
	Lc.L2/Lc.L3	Lc.SMI	0.8375 0.0014
	Ca.TV/BV	Ca.V/Cell.V 0.9213 0.0002
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